Course guide of Fundamentals of Computer Science for Biology (2001113)

Curso 2024/2025
Approval date: 27/06/2024

Grado (bachelor's degree)

Bachelor'S Degree in Biology

Branch

Sciences

Module

Materias Básicas Instrumentales para la Biología

Subject

Informática

Year of study

1

Semester

1

ECTS Credits

6

Course type

Core course

Teaching staff

Theory

  • Rafael Alcalá Fernández. Grupo: C
  • Waldo Fajardo Contreras. Grupo: A
  • Alberto Luis Fernández Hilario. Grupo: B
  • Francisco Javier García Castellano. Grupo: D

Practice

  • Rafael Alcalá Fernández Grupos: 10, 11, 12 y 9
  • Manuel Chica Serrano Grupos: 15, 5 y 8
  • Waldo Fajardo Contreras Grupos: 1, 2, 3 y 4
  • Francisco Javier García Castellano Grupos: 14 y 16
  • Miguel José Molina Solana Grupo: 13
  • Isaac Triguero Velázquez Grupos: 6 y 7

Timetable for tutorials

Rafael Alcalá Fernández

Email
No hay tutorías asignadas para el curso académico.

Waldo Fajardo Contreras

Email
No hay tutorías asignadas para el curso académico.

Alberto Luis Fernández Hilario

Email
No hay tutorías asignadas para el curso académico.

Francisco Javier García Castellano

Email
No hay tutorías asignadas para el curso académico.

Manuel Chica Serrano

Email
No hay tutorías asignadas para el curso académico.

Miguel José Molina Solana

Email
No hay tutorías asignadas para el curso académico.

Isaac Triguero Velázquez

Email
No hay tutorías asignadas para el curso académico.

Prerequisites of recommendations

High school mathemathics are recommended.

Brief description of content (According to official validation report)

  • Tools for work and communication: Operating systems, ofimatics, thematic dictionaries, Image processing, e-learning platforms, and presentations.
  • Information search: browsers, databases, university libraries.
  • Scientific/technical software: Data processing, Mathematics, Simulation, Cartography.
  • Introduction to programming: applications, programming, and statistics with Python.

General and specific competences

General competences

  • CG01. Organisational and planning skills 
  • CG02. Teamwork
  • CG03. Applying knowledge to problem solving
  • CG04. Capacity for analysis and synthesis
  • CG05. Knowledge of a foreign language
  • CG07. Informatic knowledge regarding the field scope

Specific competences

  • CE25. Design models of biological processes
  • CE36. Implantar y desarrollar sistemas de gestión relacionados con la Biología  
  • CE41. Manejar las bases de datos y programas informáticos que pueden emplearse en el ámbito de Ciencias de la Vida 
  • CE77. Knowing computer science applied to Biology

Objectives (Expressed as expected learning outcomes)

  • Know and handle some work and communication tools: Operating systems, ofimatics, and thematic dictionaries.
  • Know and handle software for image processing, e-learning platforms, and presentations.
  • Know and perform information searches using browsers, databases, and university libraries.
  • Know and handle some scientific/technical software: data processing, Mathematics, Simulations, and Cartography.
  • Design and implement simple computer programs and know how to apply them to solve specific problems in biology.
  • Solve statistical problems with a programming language such as python.

Detailed syllabus

Theory

  1. Introduction to Computer Science
  2. Representation of information
  3. Databases
  4. Programming fundamentals
  5. Programming fundamentals in python
  6. Basic data types
  7. Control structures
  8. Advanced data types
  9. Introduction to bioinformatics

Practice

Seminars / Workshops:

  • Ofimatics skills.
  • Python applications.

Laboratory practices:

  1. Spreadsheets. Charts.
  2. Databases.
  3. Basic programming in python

Bibliography

Basic reading list

Complementary reading

Recommended links

Python. https://www.python.org/doc/

W3Schools: it provides extensive tutorials and documentation for learning Python, covering a wide range of topics from basic syntax to advanced web development with Python. https://w3schools.com/python/

PRADO 2 platform. https://prado.ugr.es

Microsoft 365 help & learning. https://support.microsoft.com/en-us/microsoft-365

OpenOffice documentation. https://wiki.openoffice.org/wiki/Documentation

Codedex.io: it provides an easy and entertaining approach to learning Python by solving different levels and tasks in a gamification way https://www.codedex.io/python ;

CodeCombat: it offers an interactive platform where users can learn Python by solving coding challenges within a game-like environment. https://codecombat.com/play

Sintonia DASCI. https://www.tiktok.com/@sintonia_dasci

Programming for Lovers. https://programmingforlovers.com/

Studio Code. https://studio.code.org/

Teaching methods

  • MD01. Lección magistral/expositiva 
  • MD02. Sesiones de discusión y debate 
  • MD03. Resolución de problemas y estudio de casos prácticos 
  • MD04. Prácticas de laboratorio y/o clínicas y/o talleres de habilidades 
  • MD06. Prácticas en sala de informática 
  • MD07. Seminarios 
  • MD10. Realización de trabajos en grupo 
  • MD11. Realización de trabajos individuales 

Assessment methods (Instruments, criteria and percentages)

Ordinary assessment session

Continuous evaluation:

Formative activities Weight
Theory 50%
Practice 50%
  • Theory (50%) [S1]: There will be three tests (20%, 15% and 15% of the evaluation, respectively). The first one will happen after lesson 3, the second in the middle of Python lessons (1st December), and the third one will take place on the date established by the grade for the computer science exam in the ordinary examination. These tests enable a continuous evaluation of the theory part of the course.
  • Practice (50%) [SE2, SE3, SE4]: Participation and evaluation of laboratory activities, seminars, and supervised works will be comprised of participation and assessment.

The details of this ponderation are as follows:

  • SE1: Evaluation of the acquired level through theory classes: 50% (Theory)
  • SE2: Evaluation of the acquired level through laboratory activities: 20% (Practice)
  • SE3: Evaluation of the acquired level through seminars and guided work: 20% (Practice)
  • SE4: Evaluation of assistance, attitude, and participation in activities: 10% (Practice)

To pass the course, it will be necessary to obtain a final mark of 5 (out of 10) or higher. A minimum mark of 4 in both theory and practice is required. If that is not met, the final evaluation for the course will be the minimum between 4.9 and the student's marks.

Extraordinary assessment session

  • The student will take an exam including theory and practice. All the lessons and activities in the syllabus will be included in the exam.
  • Students not attending the practical part of the exam will maintain the marking they obtained during the ordinary session in this part.
  • The final mark of the course will be the sum of each part with a weight of 50% each.
  • To pass the course, it is necessary to obtain a mark of 5 (out of 10) or higher. It is also mandatory to obtain 4 or more in each part (theory and practice), otherwise, the final mark for the course will be the minimum between 4.9 and the student's marks.

Single final assessment

  • The students will take two tests: one to evaluate their knowledge regarding the theory aspects of the course, and another to evaluate acquired competencies related to the practical part.
  • The final mark will be the average of both marks. To pass the course, it is necessary to obtain a mark of 5 (out of 10) or higher. It is also mandatory to obtain 4 or more in each part (theory and practice), otherwise, the final mark for the course will be the minimum between 4.9 and the student's marks.

Additional information

Following the recommendations of CRUE and the Secretariat of Inclusion and Diversity of the UGR, the mechanisms for the acquisition and assessment of competencies included in this syllabus will be applied according to the design principle for all people, facilitating learning and demonstration of knowledge according to the needs and functional diversity of the students.

The platform of support resources for teaching (PRADO2) at https://prado.ugr.es

Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).