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a b s t r a c t

The acquisition of training labels in machine learning classification tasks is expensive. In the last years,
crowdsourcing has emerged as a popular approach to label a training set. Crowdsourcing shares the
labeling effort among a large number of (possibly non-expert) annotators. Moreover, in many realistic
applications, a limited number of expert labels can also be collected to complement the crowdsourcing
ones. Such combination of (millions of) crowdsourced and (a few) expert labels is precisely the setting
in the GravitySpy project. The goal of GravitySpy is to enhance the detection of gravitational waves,
which provide a new way of exploring the early universe in astrophysics (their first detection got the
2017 Physics Nobel prize). In this work, we propose a new probabilistic crowdsourcing model based
on sparse Gaussian Processes (GPs) which allows for the integration of expert labels. To the best of our
knowledge, this is the first probabilistic GP-based method that tackles this setting. We demonstrate
that the resulting objective function to be optimized is a natural fusion of the crowdsourcing and
the standard sparse GP classification objectives. Desirable theoretical properties of the crowdsourcing
method, translate in a mathematical sound manner into the new method. The new algorithm is
implemented in TensorFlow. A controlled experiment illustrates the properties and behavior of the
proposed method. We also show that it performs as theoretically expected in a well-known real-world
crowdsourcing dataset. Finally, its application to GravitySpy obtains 92.58% overall accuracy and 92.27%
test-likelihood, outperforming all previous methods in the literature.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With classification problems, the amount of training labels
as a direct impact on the performance of machine learning
lgorithms [1]. Consequently, collecting labels for the training
ata is one of the main steps in real-world problems [2,3]. This
tep constitutes an important bottleneck in difficult tasks where
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plenty of expert knowledge is required for labeling, such as med-
ical applications or the classification of complex remote sensing
signals [4–6]. In these cases, especially when the dataset is large,
only a limited amount of training labels can be provided by
experts, and some other labeling scheme must be considered too.

Crowdsourcing, also known as citizen science, has become a
popular approach to labeling real-world datasets [7,8]. In the
last decade, many crowdsourcing services have proliferated in
the internet, where a dataset can be published and millions of
people around the world can provide labels in exchange for a
reward [9]. Amazon Mechanical Turk (www.mturk.com), Zooni-
verse (www.zooniverse.org), and Innocentive (www.innocentive.
com) are among the most popular ones. Crowdsourcing shares the
labeling effort among a large number of annotators with different
degrees of expertise. During the last years, many crowdsourcing
algorithms have been developed to extract knowledge from the
heterogeneous crowdsourcing scenario [10–12].

In particular, the two paradigms (crowdsourcing vs expert

labels) should not be regarded as mutually exclusive, and some
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Fig. 1. Two examples of glitches observed by the LIGO detector. The goal of the GravitySpy project is to develop a machine learning system that automatically
classifies different types of glitches, in order to improve the detection of gravitational waves. More details about the problem are provided in Section 4.3.
expert labels can be collected to complement the crowdsourcing
annotations. In fact, one of the main limitations of crowdsourcing
methods, their identifiability, may be alleviated by adding some
xpert labels. The problem of identifiability was already high-
ighted in the founding work [13, section 3]. Namely, a majority of
nreliable annotators would make crowdsourcing methods learn
n incorrect concept (indeed, when crowdsourcing methods are
sed in real practice, it is implicitly assumed that most annotators
re reliable). Intuitively, the addition of some expert labels could
uide crowdsourcing algorithms to identify the underlying truth,
ven in cases where there is a majority of unreliable annotators.
Interestingly, the combination of crowdsourcing and expert la-

els is the setting available within the GravitySpy project [14,15].
ravitySpy aims at classifying glitches produced in the Nobel-
aureate Laser Interferometer Gravitational-Waves Observatory
LIGO), see Fig. 1. Whereas the labeling process of GravitySpy
as been crowdsourced, astrophysicists have also provided ex-
ert labels for a smaller training dataset. The best results with
he expert labels alone were obtained by Convolutional Neu-
al Networks [16]. Then, crowdsourcing methods leveraged the
arger crowdsourcing dataset to establish a new state-of-the-art
olution for this problem [10]. Here, we will show that a prob-
bilistic fusion of both settings outperforms the results achieved
eparately.
The proposed model, which is named SVGPCR-Mix, extends the

robabilistic crowdsourcing method SVGPCR [10] to integrate ex-
pert labels. It is based on (sparse) Gaussian Processes (GPs) [17],
which were shown to outperform deep learning crowdsourcing
approaches in the GravitySpy data, see [10]. The expertise of
annotators to label the different classes is modeled through con-
fusion matrices, which are estimated, along with the rest of model
parameters, following a variational inference scheme [18,19]. In-
terestingly, the derived variational objective (the Evidence Lower
Bound, ELBO) is a natural fusion of those in [17] (i.e., if sparse
GPs were applied on the expert labels alone) and [10] (i.e., if the
crowdsourcing labels were used alone).

Synthetic and real data are used to analyze the proposed ap-
proach in depth. First, a controlled experiment illustrates the be-
havior of the method as the amount of expert labels increases. To
study the identifiability issues of standard crowdsourcing meth-
ods, we simulate different scenarios with different behavior for
the annotators. Then, we show that the novel approach also
behaves as theoretically expected in the Music Genre dataset,
a well-known real-world crowdsourcing dataset. The main dif-
ference with the next experiment (the GravitySpy one) is that
all expert labels are available in the Music Genre dataset. This
allows us to test our method with increasing amounts of expert
labels, and compare the results with the gold standard (that is,
2

train a GP classifier with all the true labels). Finally, the proposed
probabilistic fusion of crowdsourcing and expert labels is shown
to establish a new state-of-the-art approach in the challenging
real-world astrophysics application of GravitySpy.

Different properties of the model will be demonstrated with
the experiments. Many of them are inherited from SVGPCR, such
as the scalability to large datasets, the estimation of the annota-
tors confusion matrices (i.e., their degree of expertise), and the
estimation of the ground truth for the crowdsourced samples.
Some others are specific to SVGPCR-Mix, such as addressing the
identifiability issues of crowdsourcing methods, the role of an-
chor points for the expert labels, and the relevance of the coupling
term in the ELBO.

The main contributions of this work are summarized on the
following list:

• We extend the probabilistic model in SVGPCR [10] to address
the problem of jointly training with expert and crowd-
sourced labels. To the best of our knowledge, this is the
first probabilistic GP-based machine learning algorithm that
allows for fusing knowledge obtained from crowds and ex-
perts.

• We show that the derived objective function is a natural
fusion of the crowdsourcing [10] and the standard sparse
GP classification [17] objectives.

• We demonstrate that the proposed model leverages the
expert labels to solve the identifiability issues of methods
trained with crowdsourcing labels only, see the synthetic
experiment.

• The proposed model is tested on two real-world problems,
outperforming state-of-the-art methods.

This paper is organized as follows. Section 2 is dedicated to
related works. The proposed model and inference are presented
in Sections 3.1 and 3.2, respectively. Sections 4.1, 4.2 and 4.3
contain the controlled experiment, the study on the Music Genre
dataset, and the application to LIGO data, respectively. Section 5
concludes the paper.

2. Related work

The proposed method is the first probabilistic model based on
GPs that utilizes expert and crowdsourcing labels in conjunction.
In this section we first review the literature on the GP concepts
(non-crowdsourcing labels) needed in this work, and then, exam-
ine the state of the art for crowdsourcing methods paying special
attention to probabilistic methods.

First GP formulations have been proposed for regression and
standard classification problems [20,21]. The main limitation of
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hese models was their scalability. They could not be applied on
arge datasets because they required the inversion of a kernel
atrix (of size N × N , with N the size of the training set) in
ach iteration of the training algorithm. To mitigate this problem,
nelson and Ghahramani proposed the sparse GP [22], which in-
roduced the concept of inducing points, which refers to a smaller
et of M (M ≪ N) samples that condense the information con-
ained in the training set. Later, Hensman et al. [17,23] introduced
new method using Variational Inference and inducing points,

irst for regression in [23] and then for classification in [17]. As
e will discuss in Section 3.2, our method is a generalization of
he one in [17], and coincides with it when only expert labels are
vailable.
Regarding crowdsourcing methods, it is widely accepted that

he first paper to address crowdsourcing problems was [13] pub-
ished in 1979. Initial approaches to deal with crowdsourcing
abels relied on label aggregation mechanisms prior to training.
he most simplest example is majority voting, which assumes
hat every annotator is equally reliable. More elaborated methods
uch as [24,25] consider the biases of the different annotators,
ielding a better calibrated set of training labels. These initial
ethods worked only with the labels provided by the annotators
nd they did not take into account observed features, which
eans that these models unrealistically assumed that the dif-

iculty to label a sample was always the same. To avoid that
roblem, Raykar et al. [26,27] introduced a two-class method
ased on logistic regression that took into account observed fea-
ures. The annotators’ behavior is modeled with sensitivity and
pecificity values which were estimated during training. Raykar’s
orks can be considered the cornerstones on which most of
he subsequent probabilistic modeling and inference works on
rowdsourcing are based. However, they had an important draw-
ack, the underlying logistic regression classifier did not allow
o learn complex classification functions. To solve that problem,
odrigues et al. [28] introduced the first GP model trained with
rowdsourcing labels, which used Expectation-Maximization as
nference method [29]. Later, Ruiz et al. [19] proposed the use of
ariational Inference. However, these two methods suffer from
he scalability problem inherited from GP, recall the review of
Ps at the beginning of this section. Two different approaches
ere proposed by Morales-Álvarez et al. [10,30] to address it.
irst, in [30] the authors used Random Fourier Features which can
e understood as a scalable approximation of a RBF kernel. In the
econd method, Morales-Álvarez et al. [10] introduced SVGPCR.
his method was also recently used by López-Pérez et al. [8] to
etect breast cancer in histology images. SVGPCR is a multi-class
ethod where annotators’ behavior is modeled with confusion
atrices, and the scalability problem is solved using inducing
oints. As we will discuss in Section 3.2, our method also gener-
lizes [10], and coincides with it when only crowdsourcing labels
re available.
In addition to probabilistic methods, there are several Deep

earning methods that had an important impact in crowdsourcing
iterature. First, Albarquoni et al. [31] introduced Aggnet, the first
eural network trained with crowdsourcing labels. It was applied
o a two-class classification problem, mitosis detection in breast
ancer histology images. Later, Rodrigues et al. [32] proposed a
ore general method that also addressed multi-class problems.
hey introduced the crowd layer which can be added at the end
f any classification neural network in order to train it with
rowdsourcing labels.
It is important to note that all these crowdsourcing meth-

ds share the identifiability problem, that is, they will learn
rong patterns in scenarios with majority of unreliable anno-
ators (e.g. adversarial or spammer annotators, which will be
escribed in Section 4.1). More importantly, the integration of ex-
ert labels provides our model with valuable information to learn
hat the real underlying truth is, and thus detects annotators
ho are not reliable.
 w

3

Fig. 2. Distribution of expert and crowdsourcing labels across the training
samples. There may be samples with only crowdsourcing labels, others with
only expert labels, and others with both.

3. Probabilistic modeling and inference

In this section we introduce the proposed method. Namely,
the probabilistic modeling is explained in Section 3.1. Then, vari-
ational inference is detailed in Section 3.2, where we also explain
how to make predictions on test instances.

3.1. Probabilistic model

In this section, we describe the proposed model. Before going
into the mathematical details, let us sketch the intuition behind
it. The only available data in the training step is given by the
features, the crowdsourcing labels, and a few expert labels. In
order to jointly model these three components, we assume that
each instance has an underlying true/correct label. A few of them
are known (i.e. the expert labels), but most of them are unknown.
The crowdsourcing labels given by each annotator are modeled
based on these true labels and a confusion matrix associated to
each annotator, which is estimated too. Therefore the proposed
model also estimates the degree of expertise for each annotator
(given by his/her confusion matrix). In the rest of this section we
introduce the notation and the full details for the probabilistic
model. Fig. 3 shows the graphical representation of the proposed
model, which will be helpful throughout this section.

Notation. Let X ∈ RN×D be an (observed) training set of N
D-dimensional samples. The (mostly un-observed) true labels are
denoted as Z ∈ {0, 1}N×K , where each one of the K classes is
expressed through an one-hot encoding. Two types of informa-
tion are available for training: i) a few expert (i.e., true) labels,
and (ii) crowdsourcing annotations. As shown in Fig. 2, there may
be samples with crowdsourcing annotations alone, other samples
with expert labels alone, and other samples for which both types
of information are available.

Regarding the expert labels, let O ⊆ {1, . . . ,N} denote the
samples for which the expert label is observed (and let U =

{1, . . . ,N} \ O refer to the rest). That is, looking at Fig. 2, O
refers to the yellow and orange regions, and U refers to the red
one. We split Z into ZO (the observed true labels) and ZU (the
un-observed, most of them). With regards to the crowdsourcing
annotations, let A be the number of annotators, An ⊆ {1, . . . , A}

the subset of annotators who labeled the nth sample (this is
mpty for the samples in the yellow region), and Ya

n the set
of labels provided by the ath annotator for that sample.1 All
crowdsourcing labels (for all samples and annotators) are jointly
denoted as Y.

Modeling the crowdsourcing annotations given the true la-
bels. The behavior of each annotator a (a = 1, . . . , A) is modeled
using a K × K confusion matrix Ra

= (raij ), 1 ≤ i, j ≤ K .
Specifically, raij is the probability that annotator a provides the
label i for a sample whose real class is j. This is mathematically

1 Although Ya
n typically contains only one label, it is straightforward to model

he case when an annotator provides more than one label for the same sample,
hich happens in the GravitySpy data.
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Fig. 3. Probabilistic graphical model for SVGPCR-Mix. Yellow nodes are observed,
ight blue nodes are inferred through a posterior distribution, and dark blue
odes are inferred with point estimates.

xpressed as p(y|z,Ra) = y⊺Raz, where y ∈ Y and z ∈ Z. Assuming
that annotators label samples independently, the full observation
model for the crowdsourcing labels is the following product

p(Y|Z,R) =

N∏
n=1

∏
a∈An

∏
y∈Yan

p(y|zn,Ra). (1)

Prior knowledge about the annotators’ behavior is modeled
with a (conjugate) Dirichlet distribution:

p(R) =

A∏
a=1

K∏
k=1

p(rak) =

A∏
a=1

K∏
k=1

Dir(rak|α
a
1k, . . . , α

a
Kk), (2)

where rak = (ra1k, . . . , r
a
Kk)

⊺ is the kth column of Ra and α = {αa
ij :

i, j = 1, . . . , K , a = 1, . . . , A} are prior hyperparameters. If there
is no prior information on annotator a, we set αa

ij = 1 for all
i, j = 1, . . . , K , which produces a uniform prior. Notice that, even
when there is no prior information about the annotators, the use
of a prior distribution protects us from the so-called ‘‘black swan
paradox’’ [33, Section 3.3.4.1]. Namely, if the annotator a did not
provide any labels for samples in class j, then there would be no
information to infer the column raj of Ra.

Modeling the true labels with GPs. To relate the true labels
Z and the observed features X, we resort to GPs [21], which have
proven successful in crowdsourcing [10,28]. We introduce latent
variables F = [f1, . . . , fK ] ∈ RN×K (one vector per class), for
which the following GP prior is considered:

p(F|X,Ω) =

K∏
k=1

p(fk|X,Ωk) =

K∏
k=1

N (fk|0,Kωk (X)). (3)

A standard Radial Basis Function (RBF) kernel, κ(xi, xj) = γ ·

exp{−∥xi − xj∥2/(2σ 2)}, is used for the GPs, whose parame-
ters Ω = {ωk}

K
k=1 = {γk, σ

2
k }

K
k=1 are estimated during training

(inference is discussed in the next section).
The relationship between the true labels Z and the latent

variables F is modeled through the Robust-Max likelihood [34].
Specifically, assuming independence between the true labels
given the latent variables, we have

p(Z|F) =

N∏
n=1

p(zn|fn,:) = p(ZO|F)p(ZU |F), (4)

where we have explicitly split Z into ZO and ZU . Notice that both
terms are conceptually different: while ZO is observed (along
with Y), ZU is unknown and will be estimated within the vari-
ational inference scheme (next section).

Addressing GPs scalability issues. One of the main limita-
tions of GPs is their scalability [21,30,35]. Their training cost is
O(N3), which hampers their application beyond a few thousand
samples (typically 10K). Since the GravitySpy set is much larger
than this, we sparsify our GP based on standard inducing points
approaches [17]. Namely, latent variables F are extended with
U = [u , . . . ,u ] ∈ RM×K , where M ≪ N . These variables are
1 K

4

called inducing points, and represent the values of the GP at M
different inducing locations X̃ = [x̃1, . . . , x̃M ]

⊺
∈ RM×D.

Summary of the proposed joint model. In conclusion, the full
model, including the inducing points, is given by the product of
all the distribution defined so far:

p(Y, ZO, ZU , F,U,R|Ω, X̃) = p(Y|Z,R)p(ZO|F)p(ZU |F)p(F|U,Ω)

× p(U|Ω)p(R). (5)

Notice that, in order to lighten the notation, we have omitted
the dependency of p(F|U,Ω) and p(U|Ω) on X̃ (just like X is not
explicitly shown).

Knowledge modeling. The described model offers different
alternatives to model previous knowledge that may be available
depending on the application. The expert labels ZO provide the
most straightforward way to introduce knowledge on the true
labels of instances. Another potential source of knowledge is the
behavior of annotators. Such knowledge can be modeled through
the prior distribution p(R). For instance, if we know that anno-
tator a tends to classify class j as class i, we can codify this by
increasing the value of αa

ij in the Dirichlet prior. Likewise, the
smoothness of the underlying function can be controlled by the
type of kernel used for the GP prior.

3.2. Variational inference

The goal in this section is to infer the unknown variables
in the model, i.e., the blue ones in Fig. 3. Specifically, we want
to calculate the posterior distribution over the variables Φ =

{ZU , F,U,R}, and obtain point estimates for the kernel hyperpa-
rameters Ω and the inducing point locations X̃. In principle, this
requires the integration of the joint distribution in Eq. (5) with
respect to all the variables Φ. Since this integral is analytically
intractable, we resort to variational inference (VI) [18], which
casts inference as an optimization problem.

Leveraging VI for our model. Specifically, the log likelihood
of the model can be decomposed as follows

log p(Y, ZO|Ω, X̃) =KL(q(Φ)∥p(Φ|Y, ZO,Ω, X̃)) (6)

+

∫
q(Φ) log

p(Y, ZO,Φ|Ω, X̃)
q(Φ)

dΦ  
ELBO

,

which is valid for any probability distribution q(·) of the un-
known variables Φ. The right-hand side in Eq. (6) is the sum of
two terms: the Kullback–Leibler (KL) divergence term and the
Evidence Lower Bound (ELBO). The KL divergence is always non-
negative, and it is equal to zero if and only if q(Φ) coincides with
the sought true posterior distribution p(Φ|Y, ZO,Ω, X̃). There-
ore, the optimal posterior distribution over Φ can be obtained
y minimizing the KL term. Regarding the parameters Ω and

˜ , they must be optimized to maximize the log likelihood of
he model, i.e., left-hand side of Eq. (6). Interestingly, both tasks
minimizing the KL divergence on q(Φ) and maximizing the log
ikelihood of the model on Ω and X̃) can be jointly accomplished
y maximizing the ELBO with respect to q(Φ), Ω and X̃. This is
ndeed the training objective for VI.

The proposed parametric posterior distribution. To optimize
ith respect to the probability distribution q(Φ), VI assumes a
arametric form qΘ(Φ) for it, and optimizes with respect to these
arameters Θ, which are called the variational parameters. In this
ork we assume that q(Φ) factorizes as:

(ZU , F,U,R) = q(ZU )q(F|U,Ω)q(U)q(R), (7)

ith

(ZU ) =

∏
q(zn) =

∏
z⊺nqn, (8)
n∈U n∈U
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(F|U,Ω) = p(F|U,Ω), (9)

q(U) =

K∏
k=1

q(uk) =

K∏
k=1

N (uk|mk, Sk), (10)

(R) =

A∏
a=1

K∏
k=1

q(rak) =

A∏
a=1

K∏
k=1

Dir(rak|α̃
a
1k, . . . , α̃

a
Kk). (11)

The variational parameters of this posterior, which are jointly
denoted as Θ, are:

1. the ground truth estimation for ZU , i.e., qn = (qn1, . . . , qnK ),
qnk ≥ 0,

∑
k qnk = 1, n ∈ U;

2. the means and covariances in the inducing points, i.e.,
{mk, Sk : k = 1, . . . , K };

3. the posterior Dirichlet parameters, i.e., {α̃a
ij > 0, i, j =

1, . . . , K , a = 1, . . . , A}.

Deriving and understanding the expression for the ELBO.
With this parametric form for the approximate posterior, the
ELBO term is given by the following expression, where ek denotes
the kth K -dimensional one-hot encoding vector:

ELBO(Ω, X̃,Θ) =

∑
n∈U

∑
a∈An

∑
y∈Yan

K∑
k=1

qnkEq(rak)
log p(y|ek, rak)

+

∑
n∈U

K∑
k=1

qnkEq(fn,:) log p(ek|fn,:) −

A∑
a=1

K∑
k=1

KL(q(rak)∥p(r
a
k))

−

∑
n∈U

K∑
k=1

qnk log qnk −

K∑
k=1

KL(q(uk)∥p(uk)) (12)

+

∑
n∈O

Eq(fn,:) log p(zn|fn,:) +

∑
n∈O

∑
a∈An

∑
y∈Yan

Eq(razn ) log p(y|zn, r
a
zn ).

Training consists in maximizing this objective function w.r.t. the
variational parameters Θ, the kernel hyperparameters Ω and
the inducing point locations X̃. As optimizer we use Adam with
default settings [36].

Interestingly, the first five terms of the ELBO are those ob-
tained in SVGPCR [10], i.e., when only crowdsourcing labels are
available. The fifth and sixth terms coincide with the ELBO of
SVGP [17], i.e., when a sparse GP is used only on the true labels.
The seventh term does not appear in any of the objective func-
tions of [10] or [17]. Notice that y and zn are observed and the
only unknown to be estimated is razn . In other words, this term
couples both parts in the presence of samples that have both
expert and crowdsourcing labels (that is, the orange region in
Fig. 2). Thus, it contributes to learning the behavior of annotators
by comparing both types of labels, and its role will be analyzed
in the experiments (Fig. 8). In other words, the proposed method
is a natural generalization of both SVGP and SVGPCR.

As in the case of SVGPCR and SVGP, the ELBO in Eq. (12) allows
for training in mini-batches (the seventh term also factorizes
across data points). The computational cost is the same as in
SVGPCR, i.e., O(Nb(M2

+AbK )), where Nb is the number of samples
in the minibatch and Ab is the average number of annotations per
instance (in the minibatch).

Summary of the training process. The full training procedure
is summarized in Algorithm 1. Notice that it is similar to the train-
ing process for SVGP [17] and SVGPCR [10]. In particular, notice
that the GP kernel hyperparameters are optimized during training
to maximize the ELBO. Regarding the initializations mentioned
in Algorithm 1, the kernel hyperparameters Ω and the inducing
points locations X̃ are initialized by training a standard SVGP
on the available true labels. As for the variational parameters

(denoted jointly as Θ), qn, mk and Sk are also initialized with

5

the same SVGP. Finally, α̃a
ij is initialized using the crowdsourcing

annotations given by each annotator and the probabilities for
each class obtained in qn. The algorithm is implemented using
TensorFlow and GPflow [37], which leverage automatic differenti-
ation for computing gradients (this is specially useful for Eq. (12)).
To ensure reproducibility and extensibility, the code is publicly
available at https://ccia.ugr.es/vip/resources/SVGPCRMix.html.

Algorithm 1 Training procedure for SVGPCR-Mix.
Input : Training data X, crowdsourcing labels Y, and observed expert

labels ZO .
Initialize variational parameters Θ, GP kernel hyperparameters Ω,
inducing point locations X̃.

foreach batch of samples B ⊂ [1, . . . ,N] do
Consider X, Y and ZO restricted to the corresponding batch, i.e. XB,
YB and (ZO)B.

Calculate ELBO(Θ,Ω, X̃) for the corresponding batch using eq. (12).
Gradient step w.r.t. Θ, Ω and X̃ using Adam optimizer with default
parameters.

Output: Variational parameters Θ, GP kernel hyperparameters Ω,
inducing point locations X̃.

Understanding the estimated distributions and how to
make predictions on test instances. Once the ELBO is maxi-
mized, the estimated values for Ω, X̃ and Θ are substituted into
Eq. (7) to fully determine the approximate posterior q(ZU , F,U,R).
his distribution summarizes all the information extracted from
he observed data {Y, ZO,X}. Interestingly, each factor into which
q(·) is decomposed (see Eq. (7)) has a different purpose. Firstly,
the choice of q(F|U,Ω) being equal to the prior conditional, recall
q. (9), allows for the cancellation of both terms in Eq. (6).
his is crucial for training in mini-batches, and therefore for the
calability of the proposed method (see [17,38] for more details
n sparse GPs). Secondly, q(ZU ) contains the estimated ground
ruth for the training samples which do not have true labels.
hirdly, the estimated behavior for the annotators is encoded in
(R). Finally, q(U) allows for predicting on new samples x∗ by

conditioning on the inducing points [10,17]. More specifically,
given a previously unseen test sample x∗, the distribution for its
atent variables f∗ is calculated as

(f ∗

k |x∗) =

∫
p(f ∗

k |x∗,uk)p(uk|Y, ZO)duk ≈ Eq(uk)p(f
∗

k |uk) (13)

= N
(
f ∗

k |Bx∗X̃mk, kx∗x∗ + Bx∗X̃
(
Sk − KX̃X̃

)
BX̃x∗

)
,

where Bx∗X̃ stands for Kx∗X̃K
−1
X̃X̃

. The predictive distribution for
the label z∗ is then obtained as p(z∗) =

∫
p(z∗

|f∗)p(f∗)df∗, which
can be computed with numerical methods, e.g., Monte Carlo sam-
pling. The probabilistic graphical model for making predictions on
new samples is shown in Fig. 4.

4. Experimental results

The experimental evaluation is organized as follows. Sec-
tion 4.1 includes a controlled experiment to illustrate the behav-
ior and properties of the proposed method. Section 4.2 shows
that it also performs as theoretically expected in a well-known
real-world crowdsourcing dataset for which all expert labels are
available. Finally, Section 4.3 shows that our approach establishes
a new state-of-the-art method in a challenging real-world astro-
physics problem: glitch classification in signals acquired by the
Laser Interferometer Gravitational-wave Observatory (LIGO).

4.1. Controlled experiment

Problem formulation. A two-class synthetic dataset is consid-

ered on (−π, π ). For each x ∈ (−π, π ), its class is given by the

https://ccia.ugr.es/vip/resources/SVGPCRMix.html
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Table 1
Sensitivity and specificity values in the three different scenarios: majority of good, adversarial or spammer annotators.

Annotator ID Sensitivities Specificities

1 2 3 4 5 1 2 3 4 5

Majority good 0.9 0.7 0.8 0.9 0.1 0.6 0.8 0.5 0.8 0.2
of * adversarial 0.1 0.3 0.2 0.1 0.9 0.4 0.2 0.5 0.2 0.8
annotators spammer 0.5 0.57 0.48 0.49 0.9 0.45 0.51 0.5 0.51 0.8
b
r

o
p

k
s
v
M
t

Fig. 4. Probabilistic graphical model for SVGPCR-Mix predictions. Once the
roposed model is trained, we have the values for X̃ and Ω (point estimates),

and U (distribution q(U)). Then, given a new sample x∗ , the distributions of
f∗ and z∗ can be computed to predict its label, see Eq. (13). Yellow nodes are
observed, light blue nodes are inferred through a posterior distribution, and dark
blue nodes are inferred using point estimates.

sign of cos(3x), i.e., x ∈ C1 if cos(3x) > 0 and x ∈ C0 otherwise.
The ground truth can be seen in Fig. 6 (GT curve). Notice that the
classes are not linearly separable.

Crowdsourcing annotations are simulated on 100 randomly
distributed samples on (−π, π ). Specifically, to analyze identi-
fiability issues, three different scenarios are considered with a
majority of good, adversarial, or spammers annotators. In each
cenario, five annotators are simulated. Annotators are modeled
y their sensitivity and specificity (i.e., the entries r11 and r00
f their confusion matrix, respectively). Specifically, the values
f sensitivity and specificity for the good annotators are high
i.e., they learned the correct concept), for the adversarial anno-
ators are low (i.e., they learned the wrong concept), and for the
pammers are around 0.5 (i.e., they provide a random label). The
xact values for each annotator in each scenario are reported in
able 1. Notice that each annotator labels all 100 samples.
SVGPCR-Mix outperforms related approaches and alleviates

he identifiability issue. First, we illustrate the performance of
VGPCR-Mix as the amount of expert labels grows from 2% (so that
here is at least one sample of each class) to 100%.2 It is compared
o three closely related methods. The first two separately rely
n the two sources of available information: SVGPCR (if only the
rowdsourcing labels were available), and GPSubset (if a GP was
pplied on the true labels only). The third, GPFull, represents the
deal case when expert labels are available for all the training
oints and a GP is trained on them (this must be understood
s a golden reference). Results are shown in Fig. 5, for the three
ifferent scenarios, and averaged over 10 independent runs (a test
et of size 1000 is used).
Several aspects can be highlighted in this figure. In the first

lace, the SVGPCR-Mix performance improves with the amount of
xpert labels, approaching the golden reference GPFull. Moreover,
he curves saturate quickly (earlier than 20%), which supports the
dea that just a few expert labels are needed to complement the
rowdsourcing ones. In second place, notice that SVGPCR exhibits
ifficulties when annotators become less reliable (due to the
dentifiability issues of crowdsourcing methods). Interestingly,
VGPCR-Mix requires just a small percentage of expert labels to

2 Every two expert labels, one is obtained for a sample that also has
rowdsourcing labels and the other for a new sample. The relevance of this
s analyzed in Fig. 8.
6

Table 2
Training and testing times for the four compared methods (in seconds). We
show the training time when using an increasing percentage of expert labels.
The reported results are the mean over ten independent runs. Regarding the
missing values in the table, notice that, by definition, GPFull is only trained
with 100% of expert labels, GPSubset cannot be trained when there is 0% expert
labels, and SVGPCR does not use expert labels.
% of expert labels Training time Testing time

0% 20% 40% 60% 80% 100%

GPFull – – – – – 4.12 0.32
GPSubset – 1.48 1.59 1.99 2.81 4.47 0.34
SVGPCR 4.24 – – – – – 0.34
SVGPCR-Mix 4.24 5.64 4.42 5.01 5.64 7.63 0.38

fix this. In third place, as theoretically expected, SVGPCR-Mix stays
above SVGPCR and GPSubset (which uses only one of the sources
of information).

Assessing training and testing times. This first experiment is
complemented with Table 2, which reports the average training
and testing times for each method. All the compared methods are
very similar in terms of testing time (production time), since all
of them rely on GP prediction. As for the training time, all the
results are in the same order of magnitude, although, as expected,
times tend to grow when increasing the percentage of expert
labels. Likewise, the training time for SVGPCR-Mix (which uses
oth crowdsourcing and expert labels) is greater than that for the
est of methods (which use only one source of labels).

Analyzing the role expert labels as anchor points. The sec-
nd experiment analyzes how the expert labels behave as anchor
oints to improve the performance of SVGPCR-Mix. Fig. 6 shows

the predictive distribution of the model as the amount of expert
labels grows (a majority of spammers scenario is considered).
If crowdsourcing labels are used only (0% curve), the informa-
tion is so noisy that kernel hyperparameters converge to zero
and the predictive distribution is constant (recall we are in the
majority-of-spammers scenario, where the identifiability limita-
tion of crowdsourcing methods is stronger). The first significant
change happens when 5% of expert labels are added (these labels
are depicted as orange dots). The accuracy (threshold=0.5) is close
to the one provided by the ground truth (GT) model, but the
actual posterior probability values are not. The second change
occurs with 11% of expert labels (additional labels are depicted
as blue crosses). Now, the predictive distribution approximates
the ground truth very accurately. Interestingly, notice that no true
labels were added in the connected component containing -1;
however, the model learned the connection between true and
crowdsourcing labels in other regions, and used it to its benefit
also here.

Estimating the annotators behavior. The third experiment
studies how SVGPCR-Mix exploits the expert labels to learn the
annotators behavior. Fig. 7 shows the sensitivity and specificity
estimations as the amount of expert labels increases (in the ma-
jority of spammers scenario). For annotators 1−4, the estimations
eep close to 0.5 (recall from Table 1 that all of them are indeed
pammers). For annotator 5, whose true sensitivity and specificity
alues are high, the estimation evolves. In the beginning, SVGPCR-
ix cannot distinguish this annotator from the spammers due to

he identifiability limitation of crowdsourcing methods. However,
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Fig. 5. Performance of SVGPCR-Mix and related methods as the amount of expert labels increases in the three different scenarios considered. The proposed fusion of
xpert labels improves the results, and this is more significant as the annotators are less reliable.
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Fig. 6. Predictive distribution of SVGPCR-Mix as the amount of expert labels
ncreases. These play the role of anchor points to unravel the ground truth (GT).

s the percentage of expert labels increases, it is able to make a
uch better estimation.
Analyzing the role of the ELBO’s new term. The last exper-

ment studies the influence of the ELBO seventh term (the new
ne introduced by this model) on the estimation accuracy. As
xplained in Section 3.2, such term appears if there are samples
ith both expert and crowdsourcing labels. Therefore, Fig. 8
hows the performance of SVGPCR-Mix as expert labels are added
ollowing three different schemes: full (they are added on samples
hat also have crowdsourcing labels), null (they are added on sam-
les that do not have crowdsourcing labels), and middle (every
wo, one is of the full-type and the other of the null-type). The
esults are significantly better for the full and middle cases, that
s, when the seventh term of the ELBO is being actually involved
n the calculation, mitigating the identifiability problem.

.2. Music genre dataset

Motivation and problem formulation. In the previous sec-
ion, the synthetic dataset allowed for a detailed analysis of
VGPCR-Mix behavior. Here we focus on a real-world crowdsourc-
ing problem for which all true labels are available. This allows
us to assess the performance of SVGPCR-Mix as the amount of
xpert labels increases in a real-world scenario. Take into account
hat such analysis will not be possible in the next section (LIGO
ataset), where the number of samples with expert labels is only
% of the number of samples with crowdsourcing labels.
The Music Genre dataset consists of 1000 fragments (30 s

ength) of songs. The goal is to distinguish between 10 music
enres: classical, country, disco, hiphop, jazz, rock, blues, reggae,
op, and metal [39]. For preprocessing and feature extraction, the
uthors in [40] used the Marsyas music information tool (http:
/marsyas.info/) to extract 124 features. These features include
elevant technical metrics such as means and variances of timbral
eatures, time-domain zero-crossings, spectral centroid, roll-off,
lux, and Mel-Frequency Cepstral Coefficients (MFCC).
7

The dataset contains 100 samples from each genre, which
were randomly divided in 70 samples for training and 30 for
testing. This results in a total of 700 samples for training and 300
for test (recall that there are ten different genres). Crowdsourcing
labels were obtained with Amazon Mechanical Turk, which is one
of the most popular crowdsourcing platforms (www.mturk.com).
Each annotator listened to a subset of fragments and labeled them
as one of the ten genres listed above. A total amount of 2945
labels were provided by 44 different annotators.

SVGPCR-Mix outperforms related methods. Here, SVGPCR-
Mix is compared to the same methods as in the previous section.
The performance in terms of overall accuracy and test likelihood
is shown in Fig. 9. Whereas the overall accuracy only considers
the predictive mode, the test likelihood also takes into account
the quality of the predictive uncertainty. This is an important
aspect in practice, where the reliability on the prediction is as
important as the prediction itself. The results in Fig. 9 are the
mean over ten independent runs.

Interestingly, SVGPCR-Mix behaves as theoretically expected. It
btains better results than SVGPCR and GPSubset in both metrics.

Recall that SVGPCR and GPSubset only leverage one source of
information (crowdsourcing labels in the former and expert labels
in the latter). Moreover, SVGPCR-Mix converges to the golden
reference GPFull as the amount of expert labels increases. This
confirms that, also in a real-world problem, the proposed fusion
of crowds and experts provides an empirical benefit.

4.3. Glitch detection in LIGO

In this section, we evaluate the proposed model on the real
problem that motivated its development: glitch detection in sig-
nals acquired by LIGO.

Problem description. LIGO is a large-scale physics experi-
ment whose goal is to detect gravitational waves (GWs) [41].
GWs are ripples in the fabric of space–time, which are produced
by massive astronomical events (such as binary black holes or
neutron stars mergers). Although their existence is a theoretical
consequence of General Relativity, their first direct observation
was made on 2015 by LIGO. The discovery had a tremendous
impact in the scientific community, and was awarded the 2017
Nobel in Physics. Specifically, GWs have inaugurated a whole
new way to explore the universe, which before could only be
perceived through electromagnetic radiation.

To identify GWs, LIGO deploys cutting-edge technology that is
sensitive to different sources of noise. This contamination appears
as glitches in the spectrograms that astrophysicists analyze to
search for GWs (recall Fig. 1, which shows examples of two
specific types of glitches). The goal of the GravitySpy project3 is to
evelop a machine learning system that automatically classifies
he different types of glitches. Since LIGO produces a constant
tream of data, GravitySpy leverages the Zooniverse platform4

3 https://ciera.northwestern.edu/programs/gravityspy/.
4 https://www.zooniverse.org/projects/zooniverse/gravity-spy.

http://marsyas.info/
http://marsyas.info/
http://marsyas.info/
http://www.mturk.com
https://ciera.northwestern.edu/programs/gravityspy/
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Fig. 7. Sensitivities and specificities estimated by the proposed model in the majority of spammers scenario. The x-axis shows the number of used expert labels. We
bserve that SVGPCR-Mix leverages expert labels to learn the behavior of annotators.
Fig. 8. Performance of SVGPCR-Mix as expert labels are added following three different schemes (more details in the text). The best results are obtained when the
LBO seventh term is considered.
Fig. 9. Performance of SVGPCR-Mix and related methods in the real-world Music Genre crowdsourcing dataset as the amount of expert labels used increases. The
performance is given in terms of test overall accuracy (left) and test likelihood (right). The proposed SVGPCR-Mix obtains better results than SVGPCR and GPSubset,
approaching the golden reference GPFull as the amount of expert labels increases.
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to obtain crowdsourcing labels. Moreover, to complement these,
some expert labels have been provided by astrophysicists.

The GravitySpy dataset. To the best of our knowledge, cur-
rently GravitySpy is one of the largest data sets containing crowd-
sourcing and expert labels. Namely, our training set contains
173,565 samples (glitches) and 1,828,981 crowdsourcing annota-
tions (i.e., a mean value of more than 10 labels per sample), which
have been provided by 3443 collaborators through the Zooniverse
platform. For each glitch, we use 256 relevant features extracted
in [16]. The glitches have been classified into 15 different classes
proposed by astrophysicists (they all are shown in [10, Figure 3]).
Moreover, there are 7901 samples with expert labels (2593 of
them also have crowdsourcing annotations; this ensures that the
seventh term of the ELBO is used, recall Fig. 8). GravitySpy test
set is made up of 9997 samples.

Baselines. Two methods have addressed this problem so far,
and they will be used as baselines for our approach. The first
one, which will be referred to as DL, uses the expert labels to
train a Convolutional Neural Network [16]. The second one is
SVGPCR [10], which uses a GP-based crowdsourcing model to
train with all the crowdsourcing labels. Recall that each one of
these methods leverages one type of labels, whereas the proposed
SVGPCR-Mix is able to train with both. Since SVGPCR-Mix is a
generalization of both SVGPCR and SVGP [17] (recall Section 3.2),
e also include the later in the comparison for completeness.
SVGPCR-Mix achieves state-of-the-art results in the LIGO

ata. Table 3 shows the overall accuracy (OA) and test likelihood
TL) for the four compared methods across the different classes.
8

Whereas the former considers just the predictive mode, the latter
also takes into account the quality of the uncertainties. SVGPCR-
Mix consistently obtains the best results in both metrics, which
justifies the proposed fusion of expert and crowdsourcing labels.
Notice also that the samples with expert labels are only 5% of
the samples with crowdsourcing labels. This supports the idea
illustrated in the synthetic experiment that just a few expert
labels are enough to complement the crowdsourcing ones.

Let us analyze several aspects of the performance more in-
depth. The good performance of SVGP and DL (which only use
7901 samples) is due to (1) the quality of the expert labels and (2)
(for DL) the representation power of Convolutional Neural Nets
of spectrograms (images). Notice also that the results of SVGPCR
re not far from those of SVGPCR-Mix. This implies that most
nnotators are reliable (otherwise, the identifiability issues would
everely harm the performance of SVGPCR, recall Fig. 5). This is a
aluable piece of information for astrophysicists, since it validates
he training system designed for the volunteers. We further verify
t by empirically estimating the overall accuracy of annotators.
e do it based on the 2593 samples that have both expert and

rowdsourcing labels. Indeed, results in Fig. 10 show an estimated
A greater than 0.9 for almost all the annotators. Finally, we also
tress the scalability of SVGPCR-Mix, which is able to cope with
73565 training samples and 1828981 crowdsourcing labels (far
eyond the standard GPs limit).
Confusion matrix estimation. Next, let us illustrate the ability

f SVGPCR-Mix to estimate the annotators confusion matrices. We
onsider annotator #80, which has annotated many samples that
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Table 3
Performance (accuracy and test likelihood) for the four compared methods in the LIGO problem. DL is the Convolutional Neural Network introduced in [16], SVGP
efers to the Scalable Variational GP introduced in [17], and SVGPCR denotes the crowdsourcing method in [10]. The proposed SVGPCR-Mix obtains the best global
esults in terms of both OA and TL.
Classes Overall accuracies Test likelihood

DL SVGP SVGPCR SVGPCR-Mix DL SVGP SVGPCR SVGPCR-Mix

1080LINE .9759 (.0025) .9697 (.0064) .9720 (.0069) .9883 (.0023) .9727 (.0023) .9209 (.0088) .9688 (.0075) .9853 (.0021)
1400RIPPLE .7569 (.0106) .6642 (.0416) .8577 (.0171) .7967 (.0267) .7541 (.0064) .5884 (.0363) .8509 (.0156) .7975 (.0275)
BLIP .9603 (.0018) .9592 (.0032) .9622 (.0052) .9715 (.0028) .9587 (.0012) .9481 (.0057) .9587 (.0055) .9685 (.0024)
EXTR.LOUD .8136 (.0185) .8784 (.0283) .7295 (.0427) .8273 (.0422) .7993 (.0156) .7835 (.0225) .7242 (.0408) .8146 (.0435)
KOIFISH .7797 (.0132) .7992 (.0125) .8828 (.0115) .8522 (.0127) .7711 (.0112) .7788 (.0130) .8784 (.0117) .8484 (.0138)
L.F.BURST .8996 (.0052) .8904 (.0115) .8861 (.0105) .8983 (.0057) .8988 (.0056) .8787 (.0128) .8838 (.0098) .8959 (.0053)
L.F.LINE .8490 (.0152) .8693 (.0304) .9156 (.0111) .8785 (.0132) .8403 (.0144) .8304 (.0326) .9118 (.0103) .8752 (.0135)
NOGLITCH .9290 (.0025) .9400 (.0068) .7951 (.0162) .9506 (.0071) .9272 (.0019) .8791 (.0139) .7932 (.0146) .9461 (.0055)
OTHER .4859 (.0141) .4954 (.0212) .4011 (.0091) .3870 (.0132) .4800 (.0119) .4571 (.0137) .3999 (.0091) .3854 (.0155)
P.L.60HZ .7983 (.0165) .9264 (.0076) .8425 (.0127) .9396 (.0037) .7937 (.0181) .8720 (.0135) .8380 (.0107) .9374 (.0055)
REP.BLIPS .5197 (.0137) .5581 (.0509) .6700 (.0210) .6641 (.0289) .5227 (.0087) .5094 (.0432) .6651 (.0198) .6493 (.0223)
SCATT.LIGHT .9585 (.0016) .9580 (.0071) .9562 (.0056) .9667 (.0024) .9581 (.0011) .9302 (.0107) .9520 (.0057) .9640 (.0024)
SCRATCHY .9220 (.0060) .9013 (.0148) .9000 (.0165) .8847 (.0166) .9194 (.0055) .8419 (.0107) .8953 (.0176) .8819 (.0204)
VIOLIN .9769 (.0013) .9700 (.0032) .9914 (.0017) .9758 (.0016) .9764 (.0006) .9574 (.0045) .9886 (.0014) .9738 (.0011)
WHISTLE .9535 (.0069) .9649 (.0000) .9201 (.0047) .9535 (.0111) .9528 (.0019) .9370 (.0037) .9179 (.0046) .9483 (.0060)

GLOBAL .9113 (.0020) .9145 (.0043) .9183 (.0027) .9258 (.0019) .9081 (.0018) .8813 (.0045) .9149 (.0027) .9227 (.0073)
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Fig. 10. Histogram of the annotators according to their Overall Accuracy
valuated on ZO . In this problem there exists a majority of good annotators.

also have expert labels (namely, 927 of them). This allows us to
empirically calculate its confusion matrix through a frequentist
analysis of its annotations. Additionally, we only consider the
classes for which the selected annotator provided more than
100 annotations. The confusion matrices estimated by SVGPCR-
Mix (and also by SVGPCR) are shown at the top of Fig. 11. Both
matrices are very similar, and have values close to the empirical
estimation. Notice also that the annotator is a reliable one (ma-
trices do not look diagonal because only classes with at least 100
annotations are shown). Recall from Section 3.2 that annotator
confusion matrices are estimated through a posterior Dirichlet
distribution q(R). The value reported here is the expectation of
this distribution.

In the second row of Fig. 11, we compare the confusion vectors
for classes 3 (BLIP) and 12 (SCATTERED LIGHT). By confusion
vector we refer to a column of the confusion matrix, i.e., the
probabilities assigned by the annotator for a certain class. Here
we chose these two classes for being those where SVGPCR-Mix
and Empirical confusion vectors are most similar and different (in
the squared error sense), respectively. However, in both cases we
observe that SVGPCR and SVGPCR-Mix almost match the empir-
ical value, which confirms the accuracy of their estimations. In
addition to the discussed case of annotator #80, the global exam-
ination of SVGPCR and SVGPCR-Mix confusion matrices yields very
similar results. This makes us conclude that the improvement
in performance is due to a better underlying classifier, which
benefits from the proposed fusion of expert and crowdsourcing
labels.

Limitations of the method. Finally, to provide a deeper anal-
ysis of the proposed method, it is worth discussing potential
limitations (as well as possible solutions). For instance, notice
that SVGPCR-Mix does not perform feature extraction on its own,
as it is fed with raw data or previously extracted features (as
 w

9

in the case of GravitySpy). This limits its direct application on
highly structured data such as images or audio. An interesting
line of future research is to leverage deep kernel learning (DKL)
techniques so that the kernel used in SVGPCR-Mix allows for
eature extraction. Another limitation is that the interpretability
f the estimated inducing point locations is low, due to their
igh dimension. This limitation is inherited from the sparse GP
heory, and could be addressed with techniques from that field,
ee e.g. [42]. Also, dimensionality reduction methods can help to
ake inducing point locations more interpretable.

. Conclusions

In this work we have proposed a new probabilistic model
or detecting glitches in signals acquired by LIGO. The dataset
ollected by the GravitySpy project motivated the development of
n algorithm combining the quality of labels provided by experts
ith the ability of the crowds to label huge data sets. The pro-
osed method is a natural generalization of SVGPCR and SVGP. We

have studied the identifiability issues of standard crowdsourcing
methods. We have demonstrated that the use of true labels makes
our method robust in scenarios where the majority of annotators
are not reliable, whereas previous crowdsourcing methods in the
literature catastrophically fail in this case. Furthermore, we have
seen that only a small percentage of samples with true labels
suffices for SVGPCR-Mix to recognize the behavior of annotators
nd extract all the useful knowledge from the crowdsourcing
ata. We have subsequently applied SVGPCR-Mix to the Gravi-
ySpy data, establishing a new state-of-the-art approach for this
roblem. Finally, we have illustrated the differences between
VGPCR and SVGPCR-Mix when estimating the confusion matrices
f GravitySpy annotators.
This work is a relevant contribution in the growing field of

itizen science, as it allows for a smarter collaboration between
ts two main actors: crowds and experts. More importantly, our
esults suggest that the participation in citizen science projects
ould be extended to wider pools when using SVGPCR-Mix, since
xpert labels have proven especially useful in scenarios with
lenty of noise (i.e. those with a majority of spammer and ad-
ersarial annotators). We hope that the proposed method fosters
ew research in this direction, making a real impact on other
mbitious crowdsourcing projects in addition to gravitational

aves search.
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Fig. 11. First row, from left to right: for certain annotator, Empirical confusion matrix and those estimated by SVGPCR and SVGPCR-Mix, respectively. Second row: for
the same annotator, detail of the assigned classes for two different true classes (BLIP and SCATTERED LIGHT). These are commonly referred to as confusion vectors.
The estimations by both SVGPCR and SVGPCR-Mix are very similar to the empirical values.
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