Guía docente de la asignatura

Inteligencia Artificial

Curso 2021 / 2022
Fecha última actualización: 21/06/2021
Fecha de aprobación: 21/06/2021

Grado

Grado en Ingeniería Informática

Rama

Ingeniería y Arquitectura

Módulo

Formación Específica de Rama

Materia

Bases de Datos, Sistemas de Información y Sistemas Inteligentes

Curso

2

Semestre

2

Créditos

6

Tipo

Obligatoria

Profesorado

Teoría

  • Antonio González Muñoz. Grupos: A y C
  • Juan Fernández Olivares. Grupos: B y D

Prácticas

  • Antonio González Muñoz. Grupos: 1
  • Francisco G.raúl Pérez Rodríguez. Grupos: 10, 11, 5, 6 y 9
  • Juan Fernández Olivares. Grupos: 4
  • Miguel José Molina Solana. Grupos: 3, 7 y 8

Tutorías

Antonio González Muñoz

gonzalez@ugr.es
  • Primer semestre
    • Jueves de 9:30 a 11:30 (D40 Etsiit)
  • Segundo semestre
    • Jueves de 11:30 a 13:30 (D40 Etsiit)
    • Lunes de 9:30 a 11:30 (D40 Etsiit)
    • Miércoles de 9:30 a 11:30 (D40 Etsiit)

Juan Fernández Olivares

faro@ugr.es
  • Segundo semestre
    • Martes de 9:00 a 13:30 (D24 Etsiit)
    • de 11:30 a 13:00 (D24 Etsiit)
  • Primer semestre
    • Martes de 11:00 a 14:00 (D24 Etsiit)
    • Miércoles de 11:00 a 14:00 (D24 Etsiit)

Francisco G.raúl Pérez Rodríguez

fgr@ugr.es
  • Segundo semestre
    • Lunes de 10:00 a 13:00 (D23 Etsiit)
    • Martes de 10:00 a 11:30 (D23 Etsiit)
    • Miércoles de 10:00 a 11:30 (D23 Etsiit)
  • Primer semestre
    • Martes de 10:00 a 13:00 (D23 Etsiit)
    • Miércoles de 10:00 a 13:00 (D23 Etsiit)

Miguel José Molina Solana

miguelmolina@ugr.es
  • Jueves de 11:00 a 12:00 (Fo17 Etsiit)
  • Lunes de 11:00 a 12:00 (Fo17 Etsiit)
  • Martes de 11:00 a 12:00 (Fo17 Etsiit)
  • Miércoles de 12:30 a 15:30 (Fo17 Etsiit)

Prerrequisitos y/o Recomendaciones

No es necesario que los alumnos tengan aprobadas asignaturas, materias o módulos previos como requisito indispensable para cursar esta asignatura. No obstante, se recomienda la superación de los contenidos y adquisición de competencias de las materias de formación básica, en especial para poder desarrollar correctamente los trabajos de prácticas es conveniente haber cursado y aprobado las asignaturas de Fundamentos de Programación, Metodología de la Programación y Estructura de Datos.

Breve descripción de contenidos (Según memoria de verificación del Grado)

  • Fundamentos de Inteligencia Artificial
  • Representación del Conocimiento
  • Búsqueda
  • Aprendizaje
  • Aplicaciones de la Inteligencia Artificial

Competencias asociadas a materia/asignatura

Competencias generales

  • CG08 - Conocimiento de las materias básicas y tecnologías, que capaciten para el aprendizaje y desarrollo de nuevos métodos y tecnologías, así como las que les doten de una gran versatilidad para adaptarse a nuevas situaciones.
  • CG09 - Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad. Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en Informática.

Competencias específicas

  • CE21 - Conocimiento y aplicación de los principios fundamentales y técnicas básicas de los sistemas inteligentes y su aplicación práctica.

Resultados de aprendizaje (Objetivos)

  1. Conocer qué es la Inteligencia Artificial, sus fundamentos como disciplina científico-técnica y su historia.
  2. Entender la IA como conjunto de técnicas para el desarrollo de sistemas informáticos que exhiben comportamientos reactivos, deliberativos y/o adaptativos (sistemas inteligentes).
  3. Conocer el concepto de agente inteligente y el ciclo de vida ”percepción, decisión y actuación”.
  4. Comprender que el desarrollo de sistemas inteligentes pasa por el diseño de agentes capaces de representar conocimiento y resolver problemas y que puede orientarse a la construcción de sistemas bien completamente autónomos o bien que interactúen y ayuden a los humanos.
  5. Adquirir las habilidades básicas para construir sistemas capaces de resolver problemas mediante técnicas de IA.
  6. Entender que la resolución de problemas en IA implica definir una representación del problema y un proceso de búsqueda de la solución.
  7. Conocer la representación de problemas basados en estados (estado inicial, objetivo y espacio de búsqueda) para ser resueltos con técnicas computacionales.
  8. Conocer las técnicas más representativas de búsqueda no informada en un espacio de estados (en profundidad, en anchura y sus variantes), y saber analizar su eficiencia en tiempo y espacio.
  9. Conocer las técnicas más representativas de búsqueda informada en un espacio de estados (A*, búsqueda local).
  10. Entender el concepto de heurística y analizar las repercusiones en la eficiencia en tiempo y espacio de los algoritmos de búsqueda.
  11. Conocer las técnicas básicas de búsqueda con adversario (minimax, poda alfa-beta) y su relación con los juegos.
  12. Analizar las características de un problema dado y determinar si es susceptible de ser resuelto mediante técnicas de búsqueda. Decidir en base a criterios racionales la técnica más apropiada para resolverlo y saber aplicarla.
  13. Implementar cualquiera de estas técnicas en un lenguaje de programación de propósito general.
  14. Comprender la necesidad de representar el conocimiento y realizar inferencia para que un sistema pueda exhibir comportamiento inteligente.
  15. Conocer los fundamentos de la representación del conocimiento en lógica proposicional y sus mecanismos de inferencia asociados. Entender la necesidad de la forma normal conjuntiva y la utilidad e importancia del algoritmo de resolución.
  16. Conocer los fundamentos de la lógica de primer orden y sus mecanismos de inferencia (unificación, reducción y resolución, encadenamiento progresivo y regresivo). Entender la utilidad de los demostradores de teoremas.
  17. Aplicar los aspectos de representación basada en la lógica y mecanismos de inferencia, mediante técnicas y herramientas de programación lógica.
  18. Entender la utilidad de la representación del conocimiento basada en reglas y los sistemas de producción.
  19. Entender la necesidad de otras representaciones estructuradas de conocimiento.
  20. Saber analizar y seleccionar de entre los modelos básicos de representación del conocimiento y sus mecanismos de inferencia asociados cuál es el más apropiado para desarrollar un sistema inteligente.
  21. Conocer los fundamentos, necesidad y utilidad de agentes capaces de aprender.
  22. Entender las técnicas básicas de aprendizaje automático. Conocer las técnicas necesarias para el aprendizaje de árboles de decisión. Saber resolver problemas en los que sea necesaria la aplicación de esta técnica.
  23. Conocer distintas aplicaciones reales de la IA. Explorar y analizar soluciones actuales basadas en técnicas de IA.

Programa de contenidos teóricos y prácticos

Teórico

  • Tema 1: Introducción a la Inteligencia Artificial.
  • Tema 2: Agentes.
  • Tema 3: Búsqueda en espacios de estados.
  • Tema 4: Búsqueda con adversario y juegos.
  • Tema 5: Comportamiento inteligente: Representación del Conocimiento e inferencia basadas en lógica.
  • Tema 6: Introducción al aprendizaje automático.

Práctico

Seminarios

  • Seminario 1: Agentes reactivos
  • Seminario 2: Agentes deliberativos
  • Seminario 3: Juegos

Prácticas de Laboratorio

  • Práctica 1: Resolución de un problema práctico con agentes reactivos
  • Práctica 2: Resolución de un problema práctico con agentes deliberativos
  • Práctica 3: Resolución de un problema práctico con juegos

Bibliografía

Bibliografía fundamental

  • N. Nilsson, Inteligencia Artificial: una nueva síntesis, Ed. Mac Graw Hill, 2000.
  • S. Russell, P. Norvig, Artificial intelligence: a modern approach, 3rd Edition, Pearson-Prentice Hall, 2009

Bibliografía complementaria

  • E. Rich, K. Knight, Inteligencia Artificial, Segunda Edición, Mc Graw Hill Co. 1992.
  • F.F. Luger, Artificial Intelligence: Structures and strategies for complex problem solving, Sixth Edition, Pearson International Edition, 2009.
  • M. T. Jones, Artificial Intelligence: A systems approach, Computer Sciences Series, 2008.
  • T. Mitchell, Machine Learning, Ed. Mac Graw-Hill, 1998.

Metodología docente

  • MD01 Lección Magistral (Clases Teóricas-Expositivas) 
  • MD02 Actividades Prácticas (Resolución de Problemas, Resolución de Casos Prácticos, Desarrollo de Proyectos, Prácticas en Laboratorio, Taller de Programación, Aula de Informática, Prácticas de Campo). 
  • MD03  Seminarios (Debates, Demos, Exposición de Trabajos Tutelados, Conferencias, Visitas Guiadas, Monografías). 
  • MD04 Actividades no presenciales Individuales. 
  • MD05 Actividades no presenciales Grupales. 
  • MD06 Tutorías Académicas. 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación ordinaria

Las notas de teoría y de prácticas se calculan sobre 10, y la nota final será la nota media de ambas notas. Para aprobar la asignatura es necesario tener una calificación numérica superior o igual a 5 (sobre 10). No obstante, además del requisito anterior, se establece como requisito adicional para superar la asignatura que tanto la calificación correspondiente a la parte teórica como la correspondiente a la parte práctica sean mayores o iguales a 3 (sobre 10). De no llegar a 3 sobre 10 en una de las partes, la nota no será la media, será el mínimo de las dos notas.

En relación a las pruebas:

  • Para la parte de teoría se realizará un examen multi-pregunta.
  • Para la parte de prácticas se evaluará la entrega de tres prácticas, propuestas y realizadas durante el curso (25% de la nota cada práctica) y un examen de problemas (25% de la nota). 

Evaluación extraordinaria

Las notas de teoría y de prácticas se calculan sobre 10, y la nota final será la nota media de ambas notas. Para aprobar la asignatura es necesario tener una calificación numérica superior o igual a 5 (sobre 10). No obstante, además del requisito anterior, se establece como requisito adicional para superar la asignatura que tanto la calificación correspondiente a la parte teórica como la correspondiente a la parte práctica sean mayores o iguales a 3 (sobre 10). De no llegar a 3 sobre 10 en una de las partes, la nota no será la media, será el mínimo de las dos notas.

En relación a las pruebas:

  • Para la parte de teoría se realizará un examen multi-pregunta.
  • Para la parte de prácticas se evaluará la entrega de varias prácticas (75%), propuestas para esta evaluación, y un examen asociado a los problemas (25%).

Evaluación única final

Las notas de teoría y de prácticas se calculan sobre 10, y la nota final será la nota media de ambas notas. Para aprobar la asignatura es necesario tener una calificación numérica superior o igual a 5 (sobre 10). No obstante, además del requisito anterior, se establece como requisito adicional para superar la asignatura que tanto la calificación correspondiente a la parte teórica como la correspondiente a la parte práctica sean mayores o iguales a 3 (sobre 10). De no llegar a 3 sobre 10 en una de las partes, la nota no será la media, será el mínimo de las dos notas.

En relación a las pruebas:

  • Para la parte de teoría se realizará un examen multi-pregunta.
  • Para la parte de prácticas se evaluará la entrega de varias prácticas (75%), propuestas para esta evaluación, y un examen asociado a los problemas (25%).

Información adicional

ESCENARIO A (ENSEÑANZA-APRENDIZAJE PRESENCIAL Y TELE-PRESENCIAL)

Horario (Según lo establecido en el POD)

El horario de tutoría se puede consultar en el siguiente enlace

Herramientas para la atención tutorial (Indicar medios telemáticos para la atención tutorial)

La atención tutorial se realizará preferentemente online, con cita previa, mediante las plataformas y herramientas que recomiende la Universidad de Granada.

Medidas de adaptación de la evaluación (Instrumentos, criterios y porcentajes sobre la calificación)

El profesorado de la asignatura adaptará, total o parcialmente, los contenidos para su impartición presencial y tele-presencial simultánea en los horarios establecidos por el centro. Esta adaptación estará sujeta a los condicionantes de infraestructura y medios que existan en el momento de adopción del Escenario A. Se utilizarán las plataformas y herramientas proporcionadas por la Universidad de Granada.

Evaluación ordinaria

La evaluación se regirá por las indicaciones dadas en el apartado “Evaluación” de este documento. Para todas aquellas actividades evaluables que no se puedan realizar de manera presencial, se aplicará lo establecido en el escenario B.

Evaluación extraordinaria

La evaluación se regirá por las indicaciones dadas en el apartado “Evaluación” de este documento. Para todas aquellas actividades evaluables que no se puedan realizar de manera presencial, se aplicará lo establecido en el escenario B.

Evaluación única final

La evaluación se regirá por las indicaciones dadas en el apartado “Evaluación” de este documento. Para todas aquellas actividades evaluables que no se puedan realizar de manera presencial, se aplicará lo establecido en el escenario B.

ESCENARIO B (SUSPENSIÓN DE LA ACTIVIDAD PRESENCIAL)

Horario (Según lo establecido en el POD)

El horario de tutoría se puede consultar en en le siguiente enlace

Herramientas para la atención tutorial (Indicar medios telemáticos para la atención tutorial)

La atención tutorial se realizará preferentemente online, con cita previa, mediante las plataformas y herramientas que recomiende la Universidad de Granada.

Medidas de adaptación de la evaluación (Instrumentos, criterios y porcentajes sobre la calificación)

El profesorado de la asignatura adaptará, total o parcialmente, los contenidos para su impartición online preferentemente en los horarios establecidos por el centro. Esta adaptación estará sujeta a los condicionantes de infraestructura y medios que existan en el momento de adopción del Escenario B. Se utilizarán las plataformas y herramientas proporcionadas por la Universidad de Granada.

Evaluación ordinaria

  • Para la parte de teoría se realizará un examen multi-pregunta usando las herramientas y plataformas provistas por la Universidad de Granada.
  • Para la parte de prácticas se evaluará la entrega de tres prácticas, propuestas y realizadas durante el curso (25% de la nota cada práctica) y un examen de problemas (25% de la nota) que se realizará usando las herramientas y plataformas provistas por la Universidad de Granada. Las prácticas podrán ser defendidas, si el profesor lo considera oportuno, a través de videoconferencia.

Evaluación extraordinaria

  • Para la parte de teoría se realizará un examen multi-pregunta usando las herramientas y plataformas provistas por la Universidad de Granada.
  • Para la parte de prácticas  se evaluará la entrega de varias prácticas (75%), propuestas para esta evaluación, y un examen asociado a los problemas (25%) que se realizará usando las herramientas y plataformas proporcionadas por la Universidad de Granada. Las prácticas podrán ser defendidas, si el profesor lo considera oportuno, a través de videoconferencia.

Evaluación única final

  • Para la parte de teoría se realizará un examen multi-pregunta usando las herramientas y plataformas provistas por la Universidad de Granada.
  • Para la parte de prácticas  se evaluará la entrega de varias prácticas (75%), propuestas para esta evaluación, y un examen asociado a los problemas (25%) que se realizará usando las herramientas y plataformas proporcionadas por la Universidad de Granada. Las prácticas podrán ser defendidas, si el profesor lo considera oportuno, a través de videoconferencia.