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Abstract

Map-Based Localization approaches
use a local map of the sensed envi-
ronment that is matched against a
previously stored map to correct the
robot localization in the world. In
many cases these methods are based
on a probabilistic representation
of the spatial uncertainty and use
the Kalman Filter (KF) or the
Extended Kalman Filter (EKF)
to update the robot’s location
estimation. On the other hand,
Fuzzy Logic has been widely used to
generate robust and efficient navi-
gational behaviors for mobile robots
in spite of the presence of noise and
non-linearities in the system. In this
paper we introduce a map-based
localization approach that combine
a fuzzy robot’s location, a possi-
bilistic method to propagate the
uncertainty in the robot’s motion
and the use of the EKF to decrease
the spatial uncertainty when valid
landmarks are found. Experiments
in simulation and in the real world
are shown to validate the proposal.
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1 Introduction

The localization method shown in this work
is included within the map-based localization
approaches [3]. Thus the idea of the localiza-
tion method is, first, perceptual information is
gathered by the robot and some kind of local
map is built. The uncertainty and vagueness
in the sensor data and in the robot’s location
have to be taken into account. Next, the local
map must be matched to a previous map using
some matching procedure. Finally, from the
results of the matching between both objects
of both maps the robot’s location is corrected.

In these approaches the Kalman Filter or the
Extended Kalman Filter [7] have been widely
used as good tools to diminish the uncertainty
in the robot’s location when the matching be-
tween the maps has been obtained. On the
other hand, the uses of Fuzzy Logic in robotic
systems, to generate robust and efficient nav-
igational and perceptual behaviors, in spite of
the presence of noise and non-linearities in the
system, have been numerous [9].

In this work we are interested in dealing
with the re-usability of existing probabilistic
knowledge about the Kalman Filter and to
manage a possibilistic approach to represent
the robot’s location and the propagation of
the uncertainty in the robot’s motion. Thus
we use an approximate representation of the
robot’s location by means of fuzzy sets, a pos-
sibilistic method to propagate the uncertainty
and when the conditions of the environment
are appropriate the Extended Kalman Filter
is applied to diminish the uncertainty in the
robot’s location. In this way, on one hand, we
use fuzzy techniques to represent the robot’s



location and its motion since these techniques
have proved to be effective in controlling sys-
tems that are significantly non-linear, which
may operate under conditions of great vari-
ability. On the other hand, we also use the
existing background about the probabilistic
techniques by means of the iterative Extended
Kalman Filter to correct the robot’s location
when the conditions of the environment are
appropriate.

Now we described the contents of the pro-
posal. First, Section 2 shows the model of
the robot’s motion, then in Section 3 the pos-
sibilistic techniques used to represent the ap-
proximate robot’s location, the propagation
of the uncertainty and the map matching pro-
cess are explained. In Section 4 we describe
how the EKF, a probabilistic technique, is
used to estimate the robot’s location. In Sec-
tion 5 the overall process is summarized and
Section 6 shows some experimental examples
of the robot localization. Finally, Section 7
shows some conclusions and questions for fu-
ture works.

2 The model of the robot’s motion

The model of the robot’s motion is summa-
rized in Figure 1. Taking into account the
Figure 1, the forward movement of the robot
is given by the vector I that links two con-
secutive locations of the robot. This vector
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Figure 1: Robot motion model

forms an angle ¢, with the X axis. In addi-
tion the robot changes its own orientation in
Aay = agy1 — ag. The values of the robot’s
location {x,y, a} in the step k and in the step
k41 are known thanks to the odometric sys-
tem but we are interested in studying the re-

lationship between both locations to consider
the influence of the odometric errors. Thus,
we suppose a relationship between both loca-
tions defined by the following equations:

Tpt1 = T + Iy, - cOS Py;

Yk+1 = Yg + I - sin @g;
Qpt1 = ag + Aag.

To consider the errors of odometric system,
the experiment of square bidirectional trajec-
tories of Michigan University (UMBmark) [2]
has been carried out in our robot. This exper-
imental test gives us a measure of the odo-
metric errors. Using this measure, we have
applied a percentage of the error to consider
the values of I, and Aaqy, that we call 47 and
Yo respectively. We suppose that the values
of error follow a normal probability distribu-
tion so that the error wy in I is defined by
wr ~ N(0,€7) with e = 77 - I, and the error
wq In Aay is defined by w, ~ N(0,€,) with
€a = Ya - Aay.

3 Possibilistic techniques

3.1 Approximate robot’s location

Our approach needs to know the initial
robot’s location in the environment from a
coordinates frame, although this information
can be approximated. From this information,
and taking into account a model of the error
in the robot’s motion, a region in which the
robot can be located is obtained.

To consider the uncertainty in the robot’s lo-
cation, we use the approach described in [10]
where the concept of approximate location is
defined by a fuzzy subset of a given space,
read under a possibilistic interpretation. That
is, the approximate robot’s location is repre-
sented by a fuzzy set Posg, then the mem-
bership function ppes, (z,y) indicates the de-
gree of possibility that the robot be located
at (z,y) in the step k. Actually, we do not
work with this fuzzy set directly but we work
with the projections of Posi on the X, Y axis.
Let be ProX(Posy) the projection on X of
Posy, and ProY (Posy) the projection on Y
of Posy, they are defined by fuzzy sets with
triangular membership functions represented



by three values {xg, x1,z2} with z; the mode
and xg, o the points that define the support
of the fuzzy set.

Likewise, the orientation of the robot is mea-
sured by the degrees of the angle formed by
the forward direction of robot with the X axis
and it is represented by a new triangular fuzzy
set ajf.

At the beginning of the navigation these fuzzy
sets are initialized with the initial robot’s lo-
cation including certain level of uncertainty.
When the robot moves around the environ-
ment the uncertainty will be propagated tak-
ing into account the model of the robot’s mo-
tion described in Section 2 and the model of
uncertainty propagation that we describe be-
low.

3.2 The propagation of the
uncertainty

Once we have a model of the robot’s mo-
tion and of the odometric error related to the
translation and rotation of the robot, we ap-
ply the approach on Spatial Reasoning shown
in [4] to compute the approximate robot’s lo-
cation after it moves from an initial known
location.

The errors related to translation and rotation
are used to define two symmetrical triangular
fuzzy sets. Let Iy = {Ir — wr, I, I + wr}
and ¢rr = {Pr — Was Pk, Ok + wWa} are two
fuzzy sets, they represent the fuzzyfication of
the forward vector I and the angle ¢y, re-
spectively. Figure 2 shows the fuzzy region
(and its projections) where the robot can be
located after a translation Iy with angle ¢y ;.
From the fuzzy region where the robot ar-
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Figure 2: Projections of the fuzzy region of
the forward movement Ij; with angle ¢y

rives, ProX (Posi4+1) and ProY (Posy41) can
be computed by means of the following pro-
cess. Let I be a fuzzy set that represents the
possibility distribution of the location B in re-
lation to the location A. Let F5 be a fuzzy set
that represents the possibility distribution of
the location C' in relation to the location B.
That is: I, g = F1 and Il c = F3. Then,
the question is how to determine the possibil-
ity distribution of C' in relation to A. To solve
it, the compositional inference rule [11] can
be used: 114 c = Fy o F>. The arithmetic of
fuzzy numbers is used to compute II4 ¢ since
the fuzzy sets involved are symmetrical fuzzy
numbers. Thus, the composition operation is
solved using the sum operation of two fuzzy
numbers [8]. Then: 114 ¢ = F1 & F> where &
is the sum operator of two fuzzy numbers.

Thus, let ProX (Posy) be a fuzzy set that rep-
resents the projection on X of the approx-
imate robot’s location in the step k. Let
ProX(I;) be the fuzzy set projection on
X of the forward advance Iy; of the robot
from the location Posi. Then, the projection
on X of the new location ProX(Posyy1) is:
ProX(Posyy1) = ProX(Posy) ® ProX (Iy).

To update the projection on Y a similar pro-
cess is followed. To update the orientation
of the robot aypy1, the fuzzy set Aay, =
{Aag, — wa, Ay, Aay, + wa} is considered.
This fuzzy set Aayy is summed to the fuzzy
set that represents the current robot orienta-
tion ayy using the @ operator.

3.3 The map matching process

To carry out the robot localization, a lo-
cal map built during the robot navigation, is
matched to a previous one built in a previous
exploration phase. Both maps are built using
the approach proposed in [1]. This approach
let us to build fuzzy segment maps from the
ultrasound sensor data and the exploration of
the environment, in a way similar to the ap-
proach proposed in [5]. The map matching
process is carried out by matching of the seg-
ments of both maps. For it, we use a matching
level among fuzzy segments so that we will be
able to identify a fuzzy segment of the local
map with the fuzzy segment of the previous
map with highest matching level.



The matching operator is defined taking into
account two aspects. First, both segments
have to be co-linear segments and second,
their projections on X and Y must have an
high level of overlapping. Using the matching
level, the segment of the stored map with the
highest matching level to the local segment, is
taken into account to correct the robot’s loca-
tion by means of the Extended Kalman Filter
as we explain in the following section.

4 Probabilistic techniques

4.1 The EKF applied to the
localization problem

The Kalman Filter is a probabilistic method
widely used to achieve an optimal estimation
of the state of a system from its iterative per-
formance. The filter uses a model of the per-
formance of the system and a model of the
measures to compute an expectation on the
measures that is matched to the real sensed
measures. Both the model of the system and
the model of the measures can be affected by
noise that is considered as a normal probabil-
ity distribution. The filter receives as input
information the measures sensed by the sys-
tem and it produces as output information,
on one hand, the innovation that is the dif-
ference between the prediction and the ob-
servation, and on the other hand, the esti-
mate state of the system after considering the
correction supplied by the innovation. The
Extended Kalman Filter is used instead of
Kalman Filter when the equations that define
the dynamic of the system, or the equations
that define the computation of the measures,
or even both of them, are non-lineal. Thus,
the Extended Kalman Filter let us to fuse sev-
eral noisy sources of information obtaining a
good, from the statistic point of view, esti-
mation of the state of the system that is con-
sistent with the information from the noisy
sources.

In the case of the robot localization in our
proposal, these sources of information are the
odometric data as coordinates and its orien-
tation, that is {x,y,a} and the distance to
certain walls of the environment. Using both
sources of information the robot’s location can
be corrected in spite of the presence of uncer-

tainty on both cases. For that, the distance
to the walls computed from the approximate
estimation of the robot’s location is matched
against the distance to the walls sensed by the
sensory system of the robot. To carry out this
process it is needed, on one hand, to define the
model of the robot’s motion. Thanks to that
model we will be able to predict the state of
the system. On the other hand, it is needed
also to define the way to obtain the real mea-
sures and how to compute the prediction of
these measures taking into account the pre-
diction of the state of the system. Then we
also need a model of the measures. Both mod-
els are shown below.

4.2 The model of the system

The model to represent the dynamic of the
system has been shown in Section 2. To rep-
resent the effects of the odometric errors we
rewrite the third equation of the robot’s mo-
tion in the following terms: aj1 = ag + Bk +
o being O, = Aayg — ¢i. Thus, the evolution
of the robot’s motion taking into account the
errors in the values of ¢ and I is represented
by:

Th41 xr + I - cos ¢k 0 0
Yk+1 Y + Ii - sin ¢y 0 0
a1 | = ok + Pk +| B |+| O
Prt1 0 Agy vg
Ik+1 0 Afk vr

that is interpreted as

w(k+1) = f(z(k)) +u(k) +v(k), v(k)~ N(0,Q(k))
where f(x(k)) is a non-lineal function of the
system state, u(k) is the vector of the control
input to lead the system to the step k£ + 1
from the step k and v(k) is a vector of noise

N(0,Q(k)).
4.3 The model of the measures

The way to compute the prediction of the
measures is using the distance from the
robot’s center to the walls situated perpen-
dicular to any ultrasound sensor. Let (xg, yx)
be the center of the robot and representing
the sensed wall by means of the equations of
straight lines in the way of cartesian normal
equation, that is r; = ¢;x + fiy + ¢; = 0, then



the distance of the robot center to r; is com-
puted by:
d(k)i = leizk + fiyk + gil-

To group the distances to several walls we use
the following matrix to represent the model of
the measures H (k):

lewrr, + fiye + 91
leazr, + foyr + 9o

H(k)xy =

L |emxk + fryk + gm‘ ]

In order to take into account the presence of
noise in the sensory system, the final model
of the measures is computed by:

(k) = H(k)z(k) + w(k), w(k) ~ N(0, R(k))

where R(k) represents the covariance of the
noise in the measures. Note that the filter
works taking into account measures obtained
from different walls and that the number of
sensed walls can change while the iterative
performance of the filter. This fact let us a
great flexibility in the robot navigation. The
filter is able to fuse the information from the
different sensors with the current prediction
on the robot’s location to obtain a good es-
timation on the real robot’s location and di-
minishing its uncertainty.

4.4 The EKF equations of the system

Because the equation system related to F' is
a non-lineal system, it is needed to use the
equations of the Extend Kalman Filter. Thus,
F' is approximated by the Jacobian matrix of
F that is f,(k) being applied to the estima-
tion of the state of the system z(k|k). Then,

fo(k) = [%_ﬂmzi(klk) B

1 0 0 —Iising, coso
0 1 0 Igcosgr sing
0 01 1 0
0 00 0 0
0 00 0 0

a=a(k|k)

In relation to the model of the measures we di-
rectly use the matrix H defined above. There-
fore, the final equations to use are shown be-
low.

First, the predictions of the state and the co-
variance are computed by:

&k + 1|k) = f(2(K[k), u(k))

P(k + 1|k) = fo(k)P(klk) f2 (k) + Q(k).

Once we have the measures of the distance
to the walls, the innovation can be computed
by:

v(k+1) = 2(k +1) — H(k + 1)(&(k + 1|k))
and the covariance of the innovation by:
S(k+1)=H(k+1)P(k+1|k)H" (k4 1)+ R(k + 1)

after that, the gain of the filter can be com-
puted by:

Wk+1)=Pk+1k)H (k+1)S " (k+1)

and the estimation of the state of the sys-
tem and the covariance of the state are finally
obtained by:

G+ 1k +1) =2k + 1k) + W(k + Dv(k+1)

P(k+1|k+1) = P(k+1|k)—W (k+1)S(k+1)W 7 (k+1).

5 The localization process

Once the different elements that are involved
in the robot localization have been explained,
in this section the overall localization process
is described. First the robot begins its naviga-
tion from an initial location that is expressed
using the concept of approximate location of
Section 3.1 and this approximate location is
updated using the method explained in Sec-
tion 3.2. While the robot navigates it is build-
ing a local map of the environment that is
matched to the previous stored map by means
of the method of Section 3.3. If the process
of matching let us to identify the walls with
an high level of certainty then these walls can
be used to correct the robot’s location using
the EKF as we saw in Section 4.4. One prob-
lem arises when the sensed walls can not be
identified by the process of matching. In this
case the robot stops and tries to find out the
best perceptual state to self-localization using
the walls situated near to distinguished places
like corners, corridors or hallways so that its
location can be corrected. In the worst case,
if the robot becomes completely lost, then our



approach should be adapted to deal with this
situation. One solution could be to maintain
several hypothesis on the robot location until
the environment exploration lets to the robot
to know the actual location. This solution has
been applied in [10] obtaining good results.

However a main aspect of our proposal has
not been solved yet. It is the relation-
ship between the possibilistic method to rep-
resent the robot’s location and the proba-
bilistic method to correct the robot’s loca-
tion. The transformations that we have car-
ried out in our proposal are based on the
work of Gupta [6] that proposes a method
to transform possibilistic information into
probabilistic information for investment deci-
sions. In that paper, Gupta defines a suit-
able possibility /probability consistency prin-
ciple called Budgeting Possibility /Probability
Consistency Principle (BPPCP) and also, an
associated measure of the consistence. The
method suggested converts fuzzy data into
normal probability distribution and it can be
better applied in those cases where Symmet-
rical Fuzzy Numbers (SFNs) are used (it is
our case). Expressing a SFN as (z1 £ s), it is
symmetrical around x; where p, (1) =1 and
s is known as spread. Thus, from the informa-
tion of SFN about a variable, the mean and
the variance of related probability distribu-
tion can be determined from x; and s respec-
tively. The required probability distribution
for SEFN may be taken as a normal probability
distribution with parameters Mean = x; and
SD = s/z where z is an arbitrary variate to
be determined so as to ensure that

+oo z1+s
/ p(z)dr ~ / p(z)dr =~ 1.
T1—58

—00

The normal probability distribution obtained
satisfies the BPPCP and provides the maxi-
mum level of the associated measure of con-
sistence. Gupta suggests to the variable z a
value equal to 4 in the example shown in the
paper, so that we have also used z = 4.

Using this approach, first it is needed to trans-
form the information expressed in a possi-
bilistic way to a probabilistic form in order
to set the initial values of the EKF, second
place the robot’s location is corrected using
the EKF and the measures of the distance to

the walls and finally the probabilistic informa-
tion about the robot’s location is transformed
to a possibilistic representation coherent with
the transformation method explained above.
Below this three steps are described.

To use the EKF it is needed to supply to the
filter certain input information as the initial
values of the robot’s location {x, y, a} and the
covariance matrix of the state of the system.
The terms of the diagonal of the covariance
matrix represent the variances related to the
variables that are present in the state vector
and express the underlaying uncertainty. The
uncertainty under the probabilistic approach
is supposed that follows normal probability
distributions. Then, we need to determine the
values of the mean and the standard deviation
of such as distributions. For achieve that, the
information contained into the fuzzy sets is
taken into account to use the transformation
method of Gupta. We recall that our robot
is able to keep certain values about the ap-
proximate robot’s location using the method
explained in Section 3. The idea is to use
the values of support and mode of each fuzzy
set ({zo,x1,x2}), to set the initial values of
{z,y,a} and their variances. In each vari-
able, the mode of the fuzzy set z; is taken
to set the mean value m of the normal distri-
bution N(m,o). In relation to the standard
deviation o, it is computed taking as value of
4 for z. Thus 0 = (z1—x0)/4. Applying these
rules the values needed to set the initial val-
ues of {x,y,a} and the covariance matrix of
the system are obtained.

In relation to the values of the noise present in
the system Q(k) the same approach to com-
pute the odometric errors of Section 2 has
been used to keep the coherence of the er-
ror model. To model the noise presents in the
measures of the ultrasound sensors, for each
sensor s;, the noise is considered that follows
a normal distribution wg, ~ N(0,R;). For
each sensor, R; is computed depending on the
distance of the sensed wall and the orienta-
tion of that wall in relation to the direction of
the beam of the ultrasound sensor. Thus, the
measures affected by a lesser error are walls
near to the sensor and perpendicular to the
direction of the beam. The use of several val-
ues for the error of the measures is important



in order to let the filter to give more weight
to the best measures.

When the filter has been properly initialized,
it carries out its performance estimating the
robot’s location and using the information of
the measures to correct the estimation of the
robot’s location. When the robot location has
been corrected, then the probabilistic infor-
mation is used to generate an approximate lo-
cation to obtain again the possibilistic model.
We follow the inverse process. For exam-
ple, in the case of the variable z, a fuzzy set
{xo, 1,22} is generated with x; the mean of
the normal distribution for x and xg = x — 4o
and xo = x 4+ 40 being o the standard devia-
tion associated to x.

6 Experimental Results

The proposal has been implemented in a mo-
bile robot Nomad 200 and it has been vali-
dated first in simulation and afterwards in an
office-like environment of the real world. Fig-
ure 3 shows an example in a simulated envi-
ronment. In this example, the robot follows
the contour of a wall situated on its left side
and corrects its location several times while
it follows the wall. The robot’s motion is

Previous segments map Local map matching

Initial
location

MMoments of the EEF activation

Figure 3: First localization example

represented by the little crosses. The crosses
become bigger if the uncertainty associated
to the robot’s location increases. The un-
certainty increases faster when the robot has
to turn to follow the wall since the rotations
are the motions that incorporate more uncer-
tainty to the system. The stored segments
form part of a fuzzy segments map built in a

previous exploration phase. While the robot
navigates around the environment it builds a
local fuzzy segment map. The robot’s loca-
tion is activated when certain level of uncer-
tainty is achieved. Then, the robot applies
the map matching process to find valid sen-
sory references and to be able to apply the
EKF. The moments of the activation of the
EKF are depicted by circles, so we show that
in a few iterations the robot’s location is cor-
rected and its uncertainty is reduced.

The second example, shown by Figure 4, is
carried out in the real world. In this exper-

Local se=ginents Corrected location by EKF

Previous segments map

Plot of the robot's location _\%@7
&

Figure 4: Second localization example

iment the robot begins its navigation from
the left of the environment. When the uncer-
tainty increases to certain level then the robot
tries to correct its location. Again, the robot
uses the local segments map which are repre-
sented by three parallel lines situated on the
sensed points on the left, on the right and at
front of the robot’s trajectory. Using the ex-
plained matching process, the robot can iden-
tify the sensed walls and uses the EKF to cor-
rect its location. In this example, the robot
corrects its location and then it stops.

7 Conclusions and future work

In this work we use possibilistic techniques to
represent the robot’s location, the propaga-
tion of the uncertainty on the robot’s motion
and to carry out the map matching process.
On the other hand the EKF, a probabilistic
technique, is used to correct the robot loca-
tion when valid references are found as a re-
sult of the map matching process. There are
several reasons to use of different uncertainty
representation models in the tasks involved in
our proposal. First, in our behavior-based ar-
chitecture the behaviors that connect percep-
tion to action are designed by fuzzy rules and



use concepts of fuzzy control in their perfor-
mances. Also the perception model to estab-
lish the contexts of application of the different
behaviors uses fuzzy rules and fuzzy concepts.
Thus, we need to maintain a fuzzy model to
represent the robot location to be consistent
with other levels of our architecture. Second,
fuzzy techniques offer a good performance un-
der non-linear conditions and under the pres-
ence of noise in the system and in the sensor
data. Third, fuzzy methods for localization
exist, as for example [10], but we think that in
[10] the assurance of the localization method
depends highly on the kind of landmark that
the robot is able to find using the sensory sys-
tem. This generates high dependence on the
correct detection of the landmarks. On the
contrary, by using the segment maps to carry
out the matching, the robot is able to correct
its location more frequently. Moreover, the
high background probabilistic that exists in
the area of robot localization is used to cor-
rect efficiently the robot’s location by means
of the EKF. Also, in this work we show an
example of the use of both possibilistic and
probabilistic techniques in the same system.
Among the advantages of Kalman Filter we
found the following ones. It uses all available
information that it gets to make an overall
best estimate of a state, being optimal un-
der certain assumptions. It is recursive, then
not all data needs to be kept in storage and
re-processed every time. Finally, it is a data
processing algorithm or filter, then it tries to
obtain an optimal estimate of variables from
data coming a noisy environment.

Regarding the future work, several aspects
of the proposal need further research. The
extension of the proposal when the initial
robot’s location is unknown or the robot
becomes completely lost and the study of
other approaches to carry out the possibilis-
tic/probabilistic transformation.  Also, we
will study the incorporation of some method
to resolve the simultaneous localization and
map building problem.
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