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1.1 abstract

Doors are common objects in indoor environments and its detection can
be used in robotics tasks such as map-building, navigation and position-
ing. In this work we present a new approach to door-detection in indoor
environments using computer vision. Doors are sought in grey-level images
detecting the segments that form their doorframes. The Hough Transform is
used in order to extract the segments in the image after applying the Canny
edge detector. Features like size, direction, or distance between segments are
used by a fuzzy system to analyze if the relationship between them reveals
the existence of a door. The system has been tuned using a genetic algo-
rithm to achieve the maximum performance in detecting the doors of our
environment. For that purpose, a large database of images containing doors
seen from different angles and distances has been created. The method has
shown to be able to detect typical doors under strong perspective deforma-
tions and it is fast enough to be used for real-time applications in a mobile
robot.

1.2 Introduction

Environment perception is one of the most challenging problems to face
when designing and implementing physical agents like autonomous mobile
robots. Using different kind of sensors a robot gets information from the
environment that can be used either to control the robot or to create a model
of the world. Indoor environments are usually structured so we can usually
find generic objects like doors, walls or corridors and the ability of a robot to
discover these places can be a key point for a robust navigation and model
creation. In previous works, we have developed a fuzzy perceptual model
based on ultrasound sensors able to detect those typical places and build
a map of the environment that is used to aid our robot in its navigation
(Aguirre y González 2002; Aguirre y González 2003). Unfortunately, this
model is submitted to the typical weakness of ultrasound sensors.

Vision has been widely used to enlarge perception capabilities of robots
(Adorni et al. 2001; Huber y Kortenkamp 1998; Paulino et al. 2001; Srinivasan et al. 1999;
Wells et al. 1996). The use of 3D models has become very popular nowadays
although it requires a great effort either to model the environment and to
perform the matching process (Gasteratos et al. 2002; Stevens y Beveridge 2000;
Zheng et al. 1993). Artificial landmarks have been used to perform a robust
localization and navigation in the environment (Muñoz-Salinas et al. 2004;
Desouza y Kak 2002; Katsuki et al. 2003; Li y Yang 2003; Scharstein y Briggs 2001;
Tashiro et al. 1995). However it has the disadvantage of requiring to alter
the environment to place the landmarks. It is usually preferable to use land-
marks that can be found in the environment. Door is a common object that



can be found in indoor environments and it can be very useful for navigat-
ing, map-building and positioning tasks. In this paper we present a new
approach to visual door-detection using a single camera and a visual fuzzy
system.

Door-detection using artificial vision has been performed using different
techniques in the literature. In (Cicirelli et al. 2003) a technique based on
neural networks for detecting doors based on its components is presented.
The system consist in two neural networks, one for detecting the upper
corners of the door and another for detecting the lateral and upper part of
the doorframe. Each net analyzes (for every pixel in the image) a subwindow
of size 18x18 and decides if it belongs either to the corner of a door, to the
lateral or upper part of the doorframe or to none of them. The input for the
net is the hue and saturation components of the subwindows. Each net has
a total of 648 inputs neurons, a hidden layer and an output one with one
neuron in it. An analysis of the whole output is made after classifying each
pixel of the image considering that there is a corner if the total number of
pixels classified as corner by the net exceed a certain threshold. To detect
the lateral bars of the door a similar process is made and all the information
is combined properly to decide if the elements found form a door. The
system is able to detect doors under partial occlusion conditions and from
different perspectives, but it has three main drawbacks. First, it requires a
high computational effort (3 seconds in analyzing an image). Second, it can
not detect fully opened doors. And finally, it is dependent on the color of
the door.

Using a functionality-based approach, a method for generic object recog-
nition used for robot navigation is presented in (Kim y Nevatia 1998). A
door is defined as an inverted U that can be crossed by people. A trinoc-
ular vision system is used in order to detect segments in the images of the
environment. The segments are analyzed to check if they accomplish a set
of size and height restrictions typical of its indoors environment doors. The
trinocular vision system makes possible to know the real position of the seg-
ments in the space and thus check the imposed restrictions. The system has
the disadvantage of the cost of the perceptual system.

In (Stoeter et al. 2000) a method for detection of doors limited to corri-
dors is explained. First they capture an image of the corridor and enhance
the edges. After a dilation followed by an erosion, vertical stripes are se-
lected. Possible doors are detected taking into account the distance and
direction of the walls in respect to the robot based on their expected dimen-
sions. However, it is not very clear how the vertical stripes are classified in
doors. Furthermore, the technique limits the detection to corridors and it
does not consider deformations caused by changes of perspective.

In the approach developed by (Monasterio et al. 2002), a simple tech-
nique for detecting a door is used in order to aid an autonomous robot to
cross it. The detection of the door is based either on ultrasound and vi-



sual information. The visual detection is based on the extraction of the
lateral bars of the doorframe. Edges in the image are enhanced and then
dilated, eventually, columns wider than 35 pixels are considered as doors.
This method does not take into account perspective deformations and it is
only applicable when the door is at a distance that makes its doorframe to
be seen wider than 35 pixels. Furthermore, the method has only been tested
placing the robot at 1 meter in front of the door and with relatives angles
to the door not exceeding 30o degrees.

In this work a new approach to visual door-detection is presented. Our
approach leads on the detection of the segments that form the frame edges
of a doorframe in a grey-level image. In order to detect if there is any
doorframe in a image, edges are extracted using Canny (Canny 1986) de-
tector. The result is used to calculate the Hough Transform (Hough 1962)
and then segments are extracted (Foresti 2000). Features like size, direction,
or distance between segments are used by a fuzzy system to analyze if the
relationship between them reveals the existence of a door. The membership
functions of the system have been designed based on expert knowledge. In
order to adapt the fuzzy system to the environment conditions in which the
robot works, it has been tuned. We have employed a tuning process using
a genetic algorithm (GA) to maximize the performance of the system over
a large database of doors of our environment.

The proposed system allows to detect doors under strong perspective
deformations caused by the two degrees of freedom (DOF) allowed for our
camera. It also allows the detection of completely opened and closed doors
using a single camera independently of the color of the door. It has been
proved that the system successfully detects the doors of our environment
under a wide range of distances and angles. Our experiments also show that
the system is fast enough to be used for real-time applications in our mobile
robot. We have used for our experiments a Nomad 200 mobile robot that has
been enhanced with Pentium IV laptop computer to perform the visual pro-
cessing. Fuzzy logic (Zadeh 1975) brings several advantages when dealing
with the problem. It allows us to define concepts in a flexible way. Proper-
ties like vertical or horizontal are defined as linguistics variables allowing to
manage perspective deformations and vagueness in the segment extraction in
a natural way. Another advantage of using fuzzy logic is the facility for com-
bining the information provided by the visual system with other perceptual
model previously developed based on ultrasound (Aguirre y González 2003).

The rest of the work is structured in the following sections. Section 1.3
explains the visual fuzzy system. Section 1.4 presents the tuning algorithm
using a GA. Section 1.5 shows the experiments carried out. Finally, Section
1.6 exposes some conclusions and future work.



1.3 Visual Fuzzy Door-Detection

In this section it is explained how the doors are detected using artificial
vision and a visual fuzzy system that examines the segments of the image.
We must define what it is considered as door. Our approach consists in
looking for doorframes. For that purpose, the segments of an image are
examined analyzing if they belong to the frame edges of a doorframe.

According to our experience, after the segment extraction, it is possible
to consider three cases of study. First case, only appears one of the frame
edges of the doorframe. Second case, there appears the two frame edges of
the doorframe, the internal and the external. Third case, there appears one
of the frame edges of the doorframe and an incomplete part of the other.
These three cases can be better understood seen Figure 1.1. Although in the
figure the three cases are depicted with completely vertical and horizontal
segments, our aim is to be able to detect them under perspective deforma-
tions that make the segments appear with different inclinations and sizes.
In order to formally describe the method, we define three complex fuzzy
concepts: Frame Edge (FE), Complete Doorframe (CDF) and Frame Edge
with Evidence (FEE). The method analyzes the membership degree of the
segments found in an image to those fuzzy concepts.

The fuzzy concept Frame Edge is used to represent a frame edge of a
doorframe. It is defined as a pair of vertical segments (belonging to the
lateral of a doorframe) joined in its upper part to a horizontal segment
(belonging to the upper part of a doorframe). Schematically an FE can be
represented as shown in Figure 1.1(a). The simplest approach would be to
consider a door as a unique FE, but this could lead us to confusion with
squared objects of the environment (like cupboards).

When we look at a door it is possible to see its two frame edges. One
corresponding to the limit between the doorframe and the wall, and another
caused by the grey-level difference between the doorframe and the scene
behind it (if its is opened) or its leaf (if it is closed). We model this situa-
tion by the fuzzy concept Complete Doorframe (CDF) that is schematically
represented in Figure 1.1(b).

Unfortunately, the two frame edges of a doorframe can not always be
found. It happens when the door is seen open and the leaf hides a lateral
bar of the doorframe. In this case it is usually possible to find one FE
and evidences of the incomplete one around the former. This situation is
represented by the fuzzy concept Frame Edge with Evidence (FEE) and is
schematically depicted in Figure 1.1(c).

The method searches incrementally. First it looks for FE among the
segments of an image. Then it analyzes if there are two frame edges that
could belong to the same doorframe forming a CDF. Finally, it tries to find
evidences around the remaining FE forming FEEs. In order to determinate
the membership degree of the segments in the image to these complex fuzzy



(a) (b) (c)

Figure 1.1: (a) FE (b) CDF (c) FEE

concepts, simpler fuzzy concepts like vertical segment or parallel segments
are employed. Features of the segments like size, distance or direction are
used to determinate if the segments accomplish certain restrictions typical
of the frame edges of the doorframes. Fuzzy logic allows to analyze the
segments taking into account the deformations caused by the perspective
projection and to manage the inaccuracy in the segment extraction.

The detection process starts applying the Canny (Canny 1986) edge ex-
tractor to a grey level image. The result is a binary image I(x, y) where
pixels labeled as true belongs to edges in the original image. We assume, in
order to ease notation, that I(x, y) has size NxN . Using the edge pixels of
I(x, y) we apply the Hough Transform (Hough 1962) obtaining a set of seg-
ments (Foresti 2000) that we denote as S = {S0, S1, ..., Sn}. Each segment
Si is defined by two points in the image Si = {pi

0, p
i
1} where pi

j = (xi
j , y

i
j)

(coordinates in the image plane). When the segments are extracted, the
analysis to detect possible doorframes starts.

1.3.1 Candidate segment selection

The set of extracted segments is analyzed to select only those that could
belong to frame edges. We must remember that we are looking for those
segments that belong to the lateral and upper part of a doorframe. As
we wish to make the detection under different distances and using a two
DOF camera, the projection of the segments does not need to be necessar-
ily parallel to the image plane. Therefore, doorframes do not necessarily
are seen as rectangular objects in the image. This circumstance forces us
to understand the concept vertical and horizontal segments belonging to a
doorframe in a flexible way. Furthermore, when analyzing an image it is
usual to extract segments that do not belong to any doorframe. To face
both circumstances we define the two fuzzy concepts Vertical Segment (VS)
and Horizontal Segment (HS).

If we analyze indoor environments, we could see that doors are relatively
tall objects. Therefore their vertical segments (VS) are projected with a



large and relatively vertical aspect. On the other hand, the upper segments
of the frame edges of a doorframe (HS) can be projected in a wide range of
sizes and orientations around the horizontal direction. Nevertheless, we can
assume that they are in upper positions of the image. Direction, size and
height features of a segment Si are used to establish its membership degree
to the fuzzy concepts VS and HS.

The first feature is measured using a linguistic variable called Direction(Si)
that has the three possible values (horizontal, medium and vertical) repre-
sented using the fuzzy sets shown in Figure 1.2(a). The direction is consid-
ered as vertical when the angle of the segment in respect to the x axis of the
image is near to π

2 radians and horizontal when is near to zero. The input
value to this variable, directionS(Si), is calculated as expressed in Equation
1.1. The function arctan returns the angle of the segment in the range [0, π

2 ]
but this value is escalated to the range [0, 1]:

directionS(Si) =
2
π

arctan
( |ya

1 − ya
0 |

|xa
1 − xa

0|
)

(1.1)

The second feature is measured using the linguistic variable SizeS(Si)
that has the three possible values represented using the fuzzy sets shown in
Figure 1.2(b). The input value for this variable is the size of the segment
size(Si) that is limited to [0, 1] using Equation 1.2. Where dist(pi

0, p
i
1) is the

Euclidean distance between the two points that define the segment Si and
N
√

2 is the maximum possible distance between two points in the image
(the diagonal).

size(Si) =
dist(pi

0, p
i
1)

N
√

2
(1.2)

Finally, the height of a segment in the image is measured using the
linguistic variable Y Position(Si). It has the three possible values (high,
medium and low), defined in Figure 1.2(c). Its input value, Y Pos(Si), is
the position of the middle point of the segment in the vertical axis of the
image limited to the interval [0, 1]. It is calculated using Equation 1.3. Low
values indicates that the segment has its middle point in the upper part of
the image and vice versa.

Y Pos(Si) =
yi
0 + yi

1

2N
. (1.3)

Using these linguistic variables we can finally define the fuzzy concepts
VS and HS. The fuzzy sets related to the concept VS are shown in Figure
1.2(d) and are identical to the fuzzy sets related to the concept HS. The two
rule bases shown in Table 1.1 are used to calculate the membership degree of
a segment Si to the concepts VS and HS in the range [0, 1]. Both values are
calculated by a fuzzy inference process and its corresponding defuzzification.



We shall denote the membership degree of a segment Si to the fuzzy concepts
VS and HS by V S(Si) and HS(Si) respectively.
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Figure 1.2: Linguistic variables for segment classification

IF THEN
Direction SizeS YPosition VS(Si) HS(Si)
horizontal small high low high
horizontal medium high low high
horizontal big high low high
medium small high low medium
medium medium high low high
medium big high low high
vertical small medium low
vertical medium high low
vertical big high low

Table 1.1: Rule bases for classification of segments in vertical or horizontal

The selection of candidate segments for the following phase is made
based on the membership degrees V S(Si) and HS(Si). Given a segment
Si, it is used in the following phase if: either V S(Si) or HS(Si) exceed
a certain threshold α1. In this case Si is classified as vertical segment if
V S(Si) > HS(Si) and horizontal segment in the other case. Let us denote
the set of vertical segments selected as V = {V 0, ..., V n/V S(Si) > α1 ∧
V S(Si) > HS(Si)} and the horizontal one as H = {H0, ...., Hn/HS(Si) >
α1 ∧ V S(Si) ≤ HS(Si)}.

In the Figure 1.3(a) there is shown an image with a door in it. In
Figure 1.3(b) there are all the segments extracted from the scene. The
center column (Figures 1.3(c) and 1.3(d)) shows the vertical and horizontal
segments selected for α1 = 0.4 and on the right column (Figures 1.3(e) and
1.3(f)) for α1 = 0.7. As it can be seen, higher values of α1 reduces the
number of segments for the next phase thus reducing the computing time
required. Nevertheless, the segments that we could be looking for might not
have the highest values. Therefore, the proper selection of α1 is a non trivial



problem and this value is going to be automatically selected in the tuning
process that will be explained in Section 1.4.

(a) Original image α 1 =0.4 α1 =0.7

α 1 =0.4 α1 =0.7(b) All segments detected (f) Vertical segments(d) Vertical segments

(c) Horizontal segments (e) Horizontal segments

Figure 1.3: Classification of segments as vertical or horizontal for different
α1

1.3.2 Frame Edge

Next step is to analyze if there is any frame edge (FE) of a doorframe in
the set of extracted segments. The concept FE expresses that there exists
an horizontal segment joined in its upper part to two vertical segments (see
Figure 1.1(a)). Therefore, we choose among the segments selected in the
previous phase, one horizontal segment for each pair of vertical ones and
the trio is analyzed. The horizontal and vertical concepts (HS and VS)
have been previously calculated. In order to evaluate if the trio is properly
joined, we define the fuzzy concept Frame Edge Cohesion (FEC) taking into
account the distances between their extreme points as it is explained below.

The process starts selecting for each horizontal segment H i ∈ H a pair
of vertical segments {V j , V k} ∈ V and the trio is analyzed. Let us denote
the trio by F i = {Li, Supi, Ri}, being Li ∈ V the leftmost vertical segment,
Supi ∈ H the horizontal segment and Ri ∈ V the rightmost vertical segment
of the trio.



If the trio were part of a frame edge, the upper points of the vertical
segments should be very close to the extreme points of the horizontal one.
Furthermore, the vertical segments should not be too closed. Both distances
should be modeled taking into account that there can be errors in the seg-
ment extraction that makes appear the points of the vertical and horizontal
segments not completely joined. There also must be considered that the
distance between the vertical segments can vary depending on the perspec-
tive and the distance under which the door is seen. There have been defined
two linguistic variables that measure these distances. SegDistV H(F i) mea-
sures the distance between the vertical segments and the horizontal one and
SegDistV V (F i) measures the distance between the vertical segments. We
denote Supi

l to the leftmost extreme point of the segment Supi and Supi
r to

the rightmost one. Likewise we denote Li
u to refer to the uppermost extreme

point of the segment Li and similarly Ri
u. In Figure 1.4(a) are depicted these

points.
The linguistic variable SegDistV H(F i) can have the five possible values

represented by the fuzzy sets shown in Figure 1.5(a) whose input value,
distV H(F i), is calculated using the Equation 1.4. This equation calculates
the maximum of the distances between the upper extreme points of each
vertical segment and the horizontal one. The value is escalated to the range
[0, 1]. The value 0 indicates that both elements are not separated and the
value 1 that are completely separated. We have decided to use the maximum
operator to force a small distance between both extreme points. These
distances are shown in Figure 1.4(b).

distV H(F i) =
max{dist(Supi

l, L
i
u), dist(Supi

r, R
i
u)}

N
√

2
(1.4)

In order to evaluate the distance between the vertical segments, the lin-
guistic variable SegDistV V (F i) is used. This variable has the five possible
values represented in Figure 1.5(b). Its input value, distV V (F i), is calcu-
lated using Equation 1.5. It escalates the distance between the upper points
of both segments to the range [0, 1]. This distance is also shown in Figure
1.4(b).

distV V (F i) =
dist(Li

u, Ri
u)

N
√

2
(1.5)

The membership degree FEC(F i) ∈ [0, 1] of F i to the fuzzy concept
FEC is calculated using the rule base of Table 1.2 by a fuzzy inference
process and its corresponding defuzzification. The fuzzy sets related to the
possible values of the concept FEC are shown in Figure 1.5(c).

FEC(F i) indicates that the separation between the segments of F i is
appropriate to belong to a frame edge, but it does not take into account the
corresponding membership degree of each individual segment to the concepts
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Figure 1.5: Linguistic variables for detecting frame edges

VS and HS. Finally, the membership degree FE(F i) ∈ [0, 1] of F i to the
fuzzy concept FE is calculated as expressed in Equation 1.6. FE(F i) does
not only expresses how well the trio forms a frame edge, but also how well
its segments accomplish the corresponding fuzzy concepts HS and VS.

FE(F i) = min{FEC(F i), V S(Li),HS(Supi), V S(Ri)} (1.6)

Only those F i whose membership degree FE(F i) exceeds a thresh-
old α2 are used in the following phase. Let us denote this set as F =
{F 0, ..., Fn/FE(F i) > α2}. In the Figure 1.6 there is shown an image and
the frame edges detected for different membership degrees to the fuzzy con-
cept FE. As in the previous case, the selection of the parameter α2 is going
to be automatically selected in the tuning process.



SegDistV V (F i) SegDistV H(F i)
VL L M H VH

VL L L L L L
L H M M L L
M H H M L L
H H M L L L
VH M L L L L

Table 1.2: Rule base for linguistic variable FEC(F i)

α 1 =0.6 FE(F  )iFE(F  )i(b) Segments selected(a) Original image in [0,0.7] in [0.7,1](d) FE detected for(c) FE detected for

Figure 1.6: Frame Edges detected in a image

1.3.3 Complete Doorframe

In some cases, it is possible to see the two frame edges of a doorframe. For
example when the door is seen open from the side that does not contains its
leaf, or when the door is closed but the color of its leaf is different from the
color of the doorframe. Therefore, the set of frame edges F selected in the
previous phase is analyzed in order to see if two of them belong to the same
doorframe. The fuzzy concept Complete Doorframe (CDF) evaluates if two
frame edges F i and F j belong to the same doorframe (see Figure 1.1(b)).
The previous phase allows the detection of frame edges F i and F j . The new
fuzzy concept, Frame Edges Similarity (FES), evaluates the degree in which
two frame edges are parallel and near as it is explained below.

If two frame edges belong to the same doorframe then their segments
should be parallel and be relatively near. We define the linguistic variable
FEDist(F i, F j) to measure the distance between the two frame edges F i

and F j . This variable has the five possible values represented in the Figure
1.7(a). The input value for this variable, distF (F i, F j), is calculated using
Equation 1.7. It is limited to the range [0, 1] and it measures the distance of
two frame edges as the maximum distance between its homonyms segments.



distF (F i, F j) = max{maxDist(Li, Lj),maxDist(Supi, Supj),maxDist(Ri, Rj)}
(1.7)

The function maxDist(Si, Sj) (see Equation 1.8) calculates the distance
between two segments as the maximum of all the possible combinations of
distances between their extreme points. The value is escalated to the range
[0, 1] dividing by the maximum possible distance.

maxDist(Si, Sj) =
max{dist(pi

0, p
j
0), dist(pi

0, p
j
1), dist(pi

1, p
j
0), dist(pi

1, p
j
1)}

N
√

2
(1.8)

On the other hand, the linguistic variable Paralellism(F i, F j) (whose
possible values are shown in Figure 1.7(b)) measures the parallelism grade
between two frames edges. In order to calculate the input value for this
variable we need to express the inclination of a segment by the variable Si

φ

defined in Equation 1.9.

Si
φ = arctan

(
yi
1 − yi

0

xi
1 − xi

0

)
(1.9)

The input value for the variable Paralellism(F i, F j) is calculated as
expressed in Equation 1.10. The term cos(Sa

φ−Sb
φ) measures the parallelism

of two segments Sa and Sb in the range [0, 1]. If cosine is 0 it means that
the segments forms an angle of π

2 radians and if it is 1 means that there is
no difference in the angle between them. Therefore, Equation 1.10 expresses
the minimum grade of the parallelism between the homonyms segments of
two FEs.

parallelismF (F i, F j) = min{|cos(Li
φ−Lj

φ)|, |cos(Supi
φ−Supj

φ)|, |cos(Ri
φ−Rj

φ)|}
(1.10)
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Figure 1.7: Linguistic variables for detecting complete doorframes



Using those fuzzy variables, we define FES(F i, F j) ∈ [0, 1] (see Figure
1.7(c)) to express the membership degree of F i and F j to the fuzzy concept
FES. The concept FES expresses the degree in which two frame edges are
parallel and near taking into account its relative distance and parallelism.
The rule base of the Table 1.3 is used for that purpose. As in previous cases,
the value is calculated by a fuzzy inference process and its corresponding
defuzzification.

Finally, the membership degree CDF (F i, F j) ∈ [0, 1] of the two frame
edges to the fuzzy concept CDF is calculated using Equation 1.11. CDF
takes into account either the individual membership of each frame edge to
the concept FE and the membership of the pair to the concept FES. If the
membership degree CDF (F i, F j) exceeds a certain threshold α3 both frame
edges are considered to be belong to the same doorframe. The appropriate
value for α3 will be automatically calculated in the tuning process. In Figure
1.8 there are shown several images of doors and below there are the complete
doorframes detected in them.

Paralellism(F i, F j) FEDist(F i, F j)
VL L M H VH

L L L L L L
M M M M M L
H H H H M L

Table 1.3: Rule base for linguistic variable FES(F i, F j)

CDF (F i, F j) = min{FES(F i, F j), FE(F i), FE(F j)} (1.11)

1.3.4 Frame Edge with Evidences

In some situations, the two frame edges of a doorframe can not be seen
complete because there is a missing segment. It may happen, for example,
when the door is seen open and a lateral bar of the door is hidden by its
leaf. In that case, it is usual to find evidences of the incomplete frame edge
around a previously detected one. This situation has been considered by
the fuzzy concept Frame Edges with Evidence (FEE) (see Figure 1.1(c)).
The evidence is a pair of connected vertical and horizontal segments (let
us call it junction) that is near and relatively parallel to a detected frame
edge. Therefore, the first step consist in detecting the set of junctions in
the image. Then, the distance and parallelism between junctions and frame
edges are analyzed to check if they belong to the same doorframe. Junctions
are searched among the segments that have no been selected as belonging to
any frame edge in the previous phases. The next two sections explains this



(a) Original image (c) Original image (e) Original image

α 3 =0.6 α 3 =0.6 α 3 =0.6(d) CDF detected for (f) CDF detected for(b) CDF detected for

Figure 1.8: Complete Doorframes detected in images

process. Section 1.3.5 explains how the junctions are detected and Section
1.3.6 explains how the analysis of the distance and parallelism is performed.

1.3.5 Junction Detection

In order to detect the set of junctions in an image, the fuzzy concept Junction
(JC) is defined. JC expressed that a pair of segments (one vertical and one
horizontal) are joined in its upper part. The vertical and horizontal concepts
have been previously computed (VS and HS). In order to evaluate that
the distance between the extreme points is appropriate, the fuzzy concept
Junction Cohesion (JCC) is defined as it is explained below.

We analyze if any segment Sl ∈ V (that has not been selected as part
of an frame edge) is joined to any remaining segment Sh ∈ H measuring
the distance between them. Let us denote a junction by J i = {Sl, Sh/Sl ∈
V ∧ Sh ∈ H}. In order to measure the distance between the segments, the
linguistic variable DistJ(J i) whose fuzzy sets are identical to those shown
in Figure 1.7(a) is used. Its input value, minDist(Si, Sj), calculates the
distance between two segments as the minimum of all the possible combi-
nations of distances between its extreme points (see Equation 1.12) . If
minDist(Sl, Sh) = 0 it means that there is no distance between two of the
extreme points of the segments. If this value is 1 it means that the distance
is maximum.
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The membership degree JCC(J i) ∈ [0, 1] of J i to the fuzzy concept
JCC is calculated using the rule base of Table 1.4 by a fuzzy inference
process and its corresponding defuzzification. The fuzzy sets related to
the possible values of JCC are identical to those shown in Figure 1.7(c).
Finally, the membership degree JC(J i) ∈ [0, 1] of J i to the fuzzy concept
JC is calculated using Equation 1.13. The concept JC takes into account
either the membership degree of each individual segment to the previously
defined concepts HS and VS and to fuzzy concept JCC. If this value exceeds
a threshold α4 then J i is considered for the next phase. Let us call the set
of those junctions J = {J0, ..., Jn /J i = {Si

l , S
i
h}∧JC(J i) > α4}. The value

α4 will be automatically selected in the tuning process.

IF THEN
DistJ(J i) JCC(J i)
VL H
L M
M L
H L
VH L

Table 1.4: Rule base for linguistic variable JCC(J i)

JC(J i) = min{JCC(J i), V (Sl),H(Sh)} (1.13)

In Figure 1.9(a) there is a door whose two frames edges can not be
detected because the opened leaf hides one of them. In Figure 1.9(b) there
are depicted all the segments selected for α1 = 0.6 and in Figure 1.9(c) there
is the unique frame edge detected for α2 = 0.6. As it can be seen, there are
not the segments that form the second frame edge but there are evidences
of it around the detected one. In Figures 1.9(d), 1.9(e) and 1.9(f) there are
shown the junctions detected for different values of JC(J i).

1.3.6 Frame Edge and Junction Analysis

Next step is to analyze if there is a J i that is part of a doorframe. If so, it
must be near a detected frame edge F j and relatively parallel. The fuzzy
concept Frame Edge with Evidence (FEE) expresses that a junction and a
frame edge are part of the same doorframe. Both frame edge and junction
has been previously detected (FE and JC). A new fuzzy concept, Frame and



α 2 =0.6=0.61α(a) Original image (b) Segment selected 

in [0,0.3] in [0.3,0.6] in [0.6,1]i i iJC(J  )(e) Junctions found JC(J  )(f) Junctions foundJC(J  )(d) Junctions found

(c) Frame edges found 

Figure 1.9: Examples of junctions detected with different membership de-
grees

Junction Cohesion (FJC), analyzes if they are near and parallel analyzing
the distance and parallelism between them as it is explained below.

Analyzing a junction, it can be seen that there can be two possible
situations. The vertical segment can be either at the left or at the right
side of the horizontal segment. In the former case, the junction should
belong to the left side of the frame, thus it should be placed at the left
side of an existing frame edge and vice versa. If a junction J i is part of
the same doorframe than F j then its segments must be parallels. In order
to measure the parallelism between J i and F j the linguistic the variable
JParallelism(J i, F j) is used. Its fuzzy labels are identical to those shown in
Figure 1.7(b). The input value for this variable is parallelismJ(J i, F j) and
it is calculated using Equation 1.14. It measures the parallelism between the
junction and the frame edge in the range [0, 1]. If parallelismJ(J i, F j) = 0
indicates that there is an angle of π

2 radians between any two segments and if
it is 1 indicates that there is no difference in the angle between the segments.
Si

lφ and Si
vφ are the angles of the segments of J i calculated as expressed in

Equation 1.9.



parallelismJ(J i, F j) =

{
max{|cos(Si
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φ)|, |cos(Si

lφ − Lj
φ)|} if Si

l is at left side of Si
h

max{|cos(Si
hφ − Supj

φ)|, |cos(Si
lφ −Rj

φ)|} otherwise

(1.14)
If J i belongs to the same doorframe than F j then the distance between

them must be relatively small. Therefore the linguistic variable DistJF (J i, F j)
(whose fuzzy labels are identical to those shown in Figure 1.7(a)) is used in
order to measure the distance between J i and F j . The input value for this
variable is distJ(J i, F j) ∈ [0, 1] and it is calculated using Equation 1.15. It
measures the distance between the corresponding segments of the junction
and the frame edge. The value distJ(J i, F j) = 0 indicates that there is no
distance between J i and F j and the value distJ(J i, F j) = 1 indicates that
the distance is the maximum possible.

distJ(J i, F j) =
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otherwise

(1.15)
With those variables we establish a membership degree, FJC(J i, F j) ∈

[0, 1] on the fact that J i is an evidence of the existence of a doorframe with
frame edge F j . The value is calculated by a fuzzy inference process using
the rule base of Table 1.5 and its corresponding defuzzification. Finally,
FJC(J i, F j) is employed to calculate a membership degree FEE(J i, F j) ∈
[0, 1], on the fact that the F i and J i belong to the same doorframe taking
into account the membership degree of each element using Equation 1.16.

JParallelism(J i, F j) DistJF (J i, F j)
VL L M H VH

L L L L L L
M M M M M L
H H H H M L

Table 1.5: Rule base for linguistic variable FJC(J i, F j)

FEE(J i, F j) = min{FJC(J i, F j), FE(F i), JC(J i)} (1.16)

Figure 1.10 shows two images in the left column. In the center column
there are all the segments detected for α1 = 0.6. In the right column there
are the junctions detected in each image labeled as J i and the frame edges
labeled as F j . In Figure 1.10(c) there appears two junctions with α4 = 0.6
but only J0 belongs to the door represented by the frame edge F 0. The value
of FEE(J0, F 0) = 0.82 while FEE(J1, F 0) = 0.3. In Figure 1.10(f) there
are only one junction J0 and one frame edge F 0 and FEE(J0, F 0) = 0.74.



As in previous cases, if FEE(J i, F j) exceeds a threshold value α5, the pair
{J i, F j} is considered as belonging to the same doorframe. The appropriate
value for α5 will be automatically selected in the tuning process.

α 1 =0.6

α 1 =0.6 =0.6α 2 =0.6α 4, JC(f) FE

=0.6α 2 =0.6α 4, JC(c) FE

(d) Original Image

(b) Segment selected 

(e) Segment selected 

(a) Original image

J 0

F 0

J0

1J

0
F

Figure 1.10: Images with frame edges and junction evidences

1.4 Tuning of the System

In this section it is explained how the tuning process has been carried out.
The tuning process consists in adjusting the membership functions of the
fuzzy sets and selecting appropriates values for {α1, ..., α5}. The aim of this
process is to adjust the visual fuzzy system to the range of sizes, orientations
and heights at which the robot has to detect the doors of its environment.

We have decided to use a GA for tuning the system instead of classical
tuning approaches (Moreno-Velo et al. 2003) because it is possible to con-
sider the whole visual fuzzy system as a unique system to optimize. There-
fore, it is only necessary to define one error function to evaluate the perfor-
mance of the whole system, instead of five error functions (one for each of
the fuzzy systems). GAs are search algorithms based on natural evolution
(Goldberg 1989; Holland 1975). They consist in the creation of an initial
random population of chromosomes (each one representing a possible solu-
tion) that evolves over time in a controlled way looking for good solutions for



a specific problem (Goldberg 2002). GAs have been successfully applied to
fuzzy systems (Cordon et al. 2004; Cordon et al. 2001) either for creating
the knowledge database or tuning its fuzzy labels. The tuning process con-
sists in adapting the original system by moving, stretching and narrowing
its labels. The GA selected for the tuning process is CHC (Eshelman 1991),
an evolutionary algorithm that introduces an appropriate trade-off between
diversity and convergence. We have opted for a real coding of the chromo-
somes because it represents the problem in a more natural way than using
binary coding.

A large database of images with and without doors, taken from different
angles and distances at the fixed height of our camera, has been created.
The performance of a visual fuzzy system is evaluated and used as fitness
function for the GA. Below, the basis of the CHC algorithm and the proposed
coding scheme are explained.

1.4.1 CHC

The CHC algorithm (Eshelman 1991) is an evolutionary approach that in-
troduces an appropriate trade-off between diversity and convergence. For
that purpose, it uses a high selective pressure based on an elitist scheme
in combination with a highly disruptive crossover and a re-start when the
population is stagnated. It is based on four distinguishing components:

• Elitist selection. The new population is composed of the best individ-
uals of the parent and offspring populations.

• Uniform crossover operator. The original algorithm was designed to be
used with binary encoding. For real coding we have used the BLXα
operator (Eshelman y Schaffer 1993).

• Incest prevention. Two parents are not crossed over if they are too
close. This ensures diversity.

• Re-start. When the population reaches an stagnated state, it is re-
started keeping the best individual.

The pseudo-code of Figure 1.11 shows the algorithm. In a first step, the
population is created using a perturbation operator over the initial chro-
mosome. In our case, the initial chromosome is created from the visual
fuzzy system previously explained (based on expert knowledge). Then, the
algorithm measures the mean distance of the population (Dmean) in order
to estimate when two individuals are too closed to be crossed and in this
way avoid a possible incest. Incest prevention forces to cross separated ele-
ments causing an exploration of the area covered by the individuals of the
population. Dmean is decremented when the incest prevention mechanism



CHC:
1. P0=Create initial population.
2. Dmean=Calculate mean distance of the population.
3. Dmax=Calculate maximum distance between individuals.
4. Decrement = DecFactor ∗Dmax.
5. For i = 0 to number of desired iterations.

5.1 Pair up randomly the individuals of the population to be used as parents of the
new offspring population.

5.2 Create a new offspring population Childi with M individuals (M ≤ N) using
BLXα. If the distance between two parents is smaller than Dmean do not
generate the offspring.

5.3 Replace the individuals of Pi with the individuals of Childi that are better than
them.

5.4 If no new offspring are generated Dmean = Dmean −Decrement.
5.5 If Dmean < 0 re-start keeping the best individual and recalculate Dmean and

Decrement.

Figure 1.11: CHC evolutionary algorithm

makes impossible to generate new offspring. DecFactor allows us to select
the degree of convergence of the algorithm, the smaller it is, the greater level
of convergence is allowed and vice versa. When Dmean is below zero, the
population is re-started keeping the best individual found. The new popu-
lation is generated using the perturbation operator on the best individual
with probability 35%. It means that only the 35% of the chromosome is
altered.

1.4.2 Coding scheme and operators

In our approach, the whole visual fuzzy system is represented using a single
chromosome composed of the aggregation of its membership functions and
the values {α1, ..., α5}. Each fuzzy variable is encoded based on the crossing
points of its membership functions and the separation between them.

We shall denote the set of variables of the visual fuzzy system by V =
{V0, ..., Vn} and let us denote the set of membership functions of the variable
Vi as Li = {L0

i ...L
n+1
i }. As our system is entirely composed by trapezoidal

functions, a membership function can be defined by four parameters as in
Equation 1.17, where [Lefti, Righti] is the range of the input variable Vi.

Lj
i = [aj

i bj
i cj

i dj
i ] / aj

i , b
j
i , c

j
i , d

j
i ∈ [Lefti, Righti] (1.17)

In order to reduce the search space, we limit the set of possible configura-
tions forcing the membership functions to cross at level 0.5. This approach
has been previously employed in (Karr 1991) with triangular labels. In our
case, the use of this constraint forces to be accomplished the following re-



striction:
aj+1

i = cj
i ∧ bj+1

i = dj
i

Consequently, the crossing point P j
i of two consecutive labels Lj

i and
Lj+1

i can be calculated as expressed in Equation 1.18.

P j
i =

cj
i + dj

i

2
=

aj+1
i + bj+1

i

2
(1.18)

Therefore, for each variable Vi there is a set of n crossing points Pi =
{P 0

i , .., Pn
i } that have to be selected by the GA to obtain the maximum

performance. A range of allowed positions [Pleftji , P rightji ] is defined for
each crossing point P j

i . This restriction has two purposes. On one hand,
it limits the search space of a crossing point to a range around the initial
system. On the other hand, it avoids either the relative displacement and
the overlap of the membership functions given by the initial system. This
range is calculated using Equation 1.19. In Figure 1.12(a) there can be
seen an example of a fuzzy variable Vi with three membership functions
{L0

i , L
1
i , L

2
i }. The variable has two crossing points {P 0

i , P 1
i }. As it can be

seen, the search space for each P j
i is independent thus avoiding either the

overlap and the relative displacement between the membership functions.
The range of each crossing point is calculated at the start of the process and
remain the same during the evolution of the population.

Pleftji =

{
Lefti if j = 0
P j

i +P j−1
i

2 otherwise
Prightji =

{
Righti if j = n
P j

i +P j+1
i

2 otherwise
(1.19)

In order to increase the capability for adjusting the membership func-
tions, a parameter that indicates the separation between them is used. It
represents the separation of the upper points (cj

i and bj+1
i ) of two consecutive

membership functions Lj
i and Lj+1

i to their crossing point P j
i . We shall call

this parameter sj
i ∈ [0, 1] and it is calculated as expressed in Equation 1.20.

When sj
i = 0, there is no separation between cj

i and bj+1
i (cj

i = bj+1
i ). On the

other hand, if sj
i = 1 it means that the separation between cj

i and bj+1
i is the

maximum allowed by the limits [Pleftji , P rightji ] of the crossing point P j
i .

To clarify the utility of this parameter, Figure 1.12(b) shows the example
of a crossing point P 0

i and the corresponding membership functions for two
different values of s0

i . While the membership functions represented by the
solid lines correspond to s0

i = 0.5, the membership functions represented by
dashed lines correspond to s0

i = 0.25.

sj
i =

P j
i − cj

i

min{P j
i − Pleftji , P rightji − P j

i }
=

dj
i − P j

i

min{P j
i − Pleftji , P rightji − P j

i }
(1.20)
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Figure 1.12: (a) A fuzzy partition with 3 labels (b) Two membership func-
tions for different values of sj

i

Tuning of trapezoidal membership functions using real encoding has also
been performed in (Herrera et al. 1995), but the approach explained in this
work reduces the number of parameters employed for each variable and
thus the search space for the evolutionary algorithm is reduced. Using this
coding scheme, a variable Vi can be represented as {P 0

i , s0
i , ..., P

n
i , sn

i }. The
inverse step, given a variable Vi represented by its encoding obtaining its
membership functions, is made using Equation 1.21.

Lj
i =





aj
i = Lefti bj

i = Lefti cj
i = P j

i − sj
iMaxRangej

i dj
i = P j

i + sj
iMaxRangej

i if j = 0
aj

i = cj−1
i bj

i = dj−1
i cj

i = Righti dj
i = Righti if j = n

aj
i = cj−1

i bj
i = dj−1

i cj
i = P j

i − sj
iMaxRangej

i d = P j
i + sj

iMaxRangej
i otherwise

(1.21)

A complete visual fuzzy system is represented by a chromosome Ci. It
is encoded aggregating the set of variables and {α1, ..., α5} as in Equation
1.22. In order to ease the notation, we will also denote the elements of each
Ci by (c0

i , ...., c
n
i ).

Ci = (α1, α2, α3, α4, α5, P
0
0 , s0

0, ..., P
n
0 , sn

0 , ..., P 0
n , s0

n, ..., Pn
n , sn

n) (1.22)

Either a crossover and a perturbation operator are required to use CHC.
BLXα (Eshelman y Schaffer 1993) has been selected as crossover operator.
This operator works generating a random value in an extended range (given
by a parameter α) of the parents. Let us suppose that we want to cross two
chromosomes Ca = (c0

a, ...., c
n
a) and Cb = (c0

b , ...., c
n
b ) to obtain an offspring

Co = (c0
o, ...., c

n
o ). The BLXα operator generates for each ci

o a random
value in a extended range [BLXi

Inf , BLXi
Sup] given by the parent values

ci
a and ci

b as shown in Figure 1.13. Nevertheless, we must remember that



the element ci
o can not take any value, their values are limited due to the

coding scheme employed. In order to keep the coherence in the values of the
offspring, the range [BLXi

Inf , BLXi
Sup] can not exceed the range imposed

by the coding scheme for each element ci
o. It means that if ci

o is either an
{α1, ..., α5} or a sj

k parameter then [BLXi
Inf , BLXi

Sup] must not exceed the
range [0, 1]. Similarly, if ci

o is a crossing point P k
j then [BLXi

Inf , BLXi
Sup]

must not exceed the range [Pleftkj , P rightkj ]. Therefore, if some of the limits
calculated by BLXα exceeds the limits imposed by the coding scheme it is
truncated to a valid value. On the other hand, the perturbation operator
of the CHC algorithm must alter the 35% of a chromosome Ca. It has been
implemented by selecting randomly the 35% of the elements of Ca. For each
ci
a selected, it is assigned a random value in the range of possible values

according to the coding scheme.

ca
icb

i cb
i ca

icb
i

InfBLXi
BLXi

Sup= =α ( )−−ca
i + α ( )−

cb
ica

i

Figure 1.13: BLXα operator.

An evaluation data set and a fitness function are required in order to
run CHC. There has been created a database that contains 401 images
with doors seen at different distances and angles captured with the camera
placed on our Nomad 200 mobile robot. The database also contains 139
images of the environment where no doors are present. Let us denote by
I = {I0, ..., In} the images in the database. For each image, all the segments
have been extracted and those segments that belong to the doorframe have
been manually labeled. We shall denote by ISi all the segments extracted
in the image Ii and by DSi ∈ ISi the segments that have been manually
labeled as belonging to the doorframe. When ISi is passed to a visual fuzzy
system, it returns only the set of segments that considers belonging to a door.
Let us denote them by SSi. If the system correctly classifies all the segments
then SSi = DSi. Otherwise, there may be a subset of SSi with segments
that really belong to the doorframe, and there may be another subset of
SSi with segments that have been incorrectly considered as belonging to a
doorframe. Let us denote the former subset by CCi = {SSi ⋂

DSi} and the
latter by ICi = {SSi−DSi}. There has been defined a fitness function in the
range [0, 1] (see Equation 1.23) to evaluate the individuals of the population
in the evolution process. Fitness(Cj) evaluates an individual Cj according
to the number of segments that correctly and incorrectly returns.

Fitness(Cj) = λ
1
n

n∑

i=0

|CCi|
|DSi| + (1− λ)

1
n

n∑

i=0

(
1− |ICi|

|ISi −DSi|

)
(1.23)



Fitness(Cj) is composed by two sums. The first one has value 1 when
Cj correctly returns all the segments of the database that really belong
to doorframes. If the first sum is 0, it means that Cj does not returns
any correct segment. The second sum is 1 when no incorrect segments are
returned by Cj and it is 0 in the opposite case. Therefore, if Fitness(Cj) =
1, it means that Cj represents an optimal visual fuzzy system and vice versa.
The parameter λ is used to weight independently the importance of a correct
detection and the importance of avoiding false doors.

1.5 Experimental Results

In this section, both the performance of the proposed method and the results
of the tuning process are shown. We shall note that the fitness function
used in the evolution process (defined in Equation 1.23) does not gives an
intuitive idea of the performance of a visual fuzzy system. It measures the
number of successfully or incorrectly detected segments. Instead of that, the
performance of a fuzzy system is going to be expressed in this section based
on the number of successfully or incorrectly detected doors.

The initial visual fuzzy system (based on expert knowledge) has a Total
Success Fraction (TSF) of 0.8363. TSF considers either the success in the
images with doors and without doors. Therefore, it means that the systems
successfully detects the presence or absence of doors in the 83.63% of the
images of the database. Nevertheless, a separate analysis of both cases
is important because it can help us to understand the performance of the
system in the different situations. The True Positive Fraction of the initial
system (TPF) is 0.7755, it means that the system detects the doors in the
77.55% of the images with doors. The False Positive Fraction (FPF) is
0.0287, it means that the system detects false doors in the 2.87% of the
images that does not contain doors. These three values (TSF, TPF and
FPF) are going to be employed to analyze each one of the genetically tuned
visual fuzzy systems.

In order to run the CHC algorithm it is necessary to set five parameters:
the number of individuals of the population, the number of iterations of the
algorithm, the parameter α of BLXα operator, DecFactor and λ. For our
experiments, the number of individuals have been set to 50, the number
of iterations to 300 and α to 0.3. On the other hand, in order to specify
different values of convergence for the algorithm, two different values of
DecFactor have been used: 0.008 and 0.08. Finally, five different values
have been employed for λ: 0.05, 0.25, 0.5, 0.75 and 0.95. Consequently, the
CHC algorithm has been executed ten times for these different combinations
of DecFactor and lambda. In Table 1.6 there can be seen the results of the
experiments.

Among all the generated solutions, we consider as the best visual fuzzy



DecFactor λ TPF FPF TSF
0.008 0.05 0.8628 0.0719 0.8980
0.008 0.25 0.9351 0.1294 0.9176
0.008 0.5 0.8428 0.3597 0.8757
0.008 0.75 0.8329 0.2158 0.8723
0.008 0.95 0.9226 0.1510 0.9027
0.08 0.05 0.8329 0.0000 0.8781
0.08 0.25 0.9700 0.1438 0.9392
0.08 0.5 0.9775 0.2014 0.9290
0.08 0.75 0.9775 0.2589 0.9134
0.08 0.95 0.8877 0.5395 0.7720

Table 1.6: Results of the tuning process.

system the generated for DecFactor = 0.08 and λ = 0.25. Although it has a
relatively high FPF, it also has a high TPF and we consider that the solution
has a good trade-off between those parameters. In Figure 1.14 and Figure
1.15 there are shown some of the images with doors of the database. The
output segments of the tuned visual fuzzy system are superimposed in white.
As it can be seen, the system detects correctly doors with strong perspective
deformations. In Figure 1.16 there are shown several of the false positives
generated by the visual fuzzy system with images of the database. Some
of the false positives are due to the presence of objects whose rectangular
shape is similar to frame edges. These false positives could be avoided with
the inclusion of more information to the system, i.e., color or ultrasound
information.

Finally we want to mention the time consumed by the final visual fuzzy
system. The visual fuzzy process is performed on the Pentium IV (2.4 Ghz)
laptop computer added to our Nomad 200 mobile robot. A temporal analysis
of the system shows that the average time consumed to analyze images of
size 320x280 pixels is 160 ms. Therefore it is possible to perform the visual
processing at a frame rate of 6 fps. This frame rate has proved to be enough
for the use of the method in real-time applications in our mobile robot.

1.6 Conclusions and Future Work

In this work a visual door-detection technique based on fuzzy logic that is
genetically tuned is presented. The technique can be used for map-building,
navigation or positioning tasks in autonomous mobile robots. It is able
to detect typical doors in grey-level images and can be used for real-time
applications. Several fuzzy systems are employed to analyze the segments
extracted from the image looking for doorframes in the three different situa-
tions represented by the fuzzy concepts: Frame Edge, Complete Doorframe



Figure 1.14: Correct detections of the visual fuzzy system (I)

and Frame Edge with Evidences.
The system created is able to detect doors under the strong perspec-

tive deformations caused by the two DOF allowed for the camera of our
robot. The proposed method is valid for different image sizes because all
the parameters have been set with independence of the size of the image.

The use of fuzzy logic has allowed to manipulate several concepts like
Vertical Segment, Horizontal Segment, Frame Edge Cohesion or Parallelism
in a natural way. It also allows to manipulate the ambiguity and uncertainty
in the segment extraction. Furthermore, the use of fuzzy logic will allow
to combine the information provided by the visual fuzzy system with the
information provided by our fuzzy perceptual model based on ultrasound
(Aguirre y González 2003).

All the parameters of the visual fuzzy system has been tuned using a GA.
The system has been adapted to the range of distances and orientations
at which our robot has to detect the doors of its environment. A large
database of images has been used and the final tuned system obtains a
success percentage of 93.92%.

As future work two aspects are pointed out. First, the integration of this
visual fuzzy model with the previously developed method for detection of
typical places of indoor environments based on ultrasound. The combination
of both methods could be used to obtain an unique belief degree on the
existence of a door. As second aspect, we consider that the use of color could
aid the detection process. Color information can be used to discriminate
between objects that has been selected as doors and discard possible false
positives like paintings or cupboards.



Figure 1.15: Correct detections of the visual fuzzy system (II)

Figure 1.16: False positive detections of the visual fuzzy system
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