
A dynamic mixed strategy for an adversarial model
based on OWA weights

Pablo J. Villacorta, David A. Pelta and Maria Teresa Lamata

Abstract— Adversarial decision making is aimed at determin-
ing optimal decision strategies to deal with an adversarial and
adaptive opponent. One defense against this adversary is to
make decisions that are intended to confuse him, although our
rewards can be diminished. In this contribution, we propose
time varying decision strategies for a simple adversarial model.
These strategies have been obtained by using linear OWA
weights that have influence on the decision made. Several time-
varying patterns have been used to build such strategies. We
have compared their performance against static strategies. The
new strategies tested consistently outperform the optimal static
strategy in a variety of situations. This is an encouraging result
that confirms these strategies deserve further investigation.

I. INTRODUCTION

Adversarial decision is largely about understanding the
minds and actions of ones opponent. It is relevant to a
broad range of problems where the actors are actively and
consciously contesting at least some of each others objectives
and actions [1]. The field is also known as decision making
in the presence of adversaries or adversarial reasoning.

In its most basic form, adversarial decision making in-
volves two participants, S and T , each of which chooses
an action to respond to a given input without knowing the
choice of the other. As a result of these choices, a payoff is
assigned to the participants. When this scenario is repeated
many times, i.e. situations of repeated conflicting encounters
arise, then the problem becomes complex as the participants
have the possibility to learn the others strategy. Examples
of this type can be found in the military field, but also
in problems of real-time strategy games, government vs
government conflicts, economic adversarial domains, team
sports (e.g., RoboCup), competitions (e.g., Poker), etc. [1]

Adversarial decision making is aimed at determining op-
timal strategies (for S) against an adversarial and adaptive
opponent (T ) that is watching S’s decisions. One defense
against this adversary is to make decisions that are intended
to confuse him, although S’s rewards can be diminished. In
other words, S wants to force the presence of uncertainty
in order to confuse the adversary while its payoff is as less
affected as possible.

In previous work [2], a model to study the balance between
the level of confusion induced and the payoff obtained was
proposed. The main conclusion of such study was that one

Pablo J. Villacorta, David A. Pelta and Maria Teresa Lamata are with
the Models of Decision and Optimization Research Group, Department
of Computer Science and AI, University of Granada, Spain (email: {pjvi,
dpelta, mtl}@decsai.ugr.es).

This work was supported in part by projects TIN2008-01948 and
TIN2008-06872-C04-04 from the Spanish Ministry of Science and Inno-
vation and P07-TIC-02970 from the Andalusian Government

way to produce uncertainty in situations of repeated encoun-
ters is through decision strategies for S that contain certain
amount of randomness. Villacorta and Pelta [3] present a
study on automatic design of such randomized strategies.
Here we focus on strategies for S that are not constant along
the time, but change at certain time steps in the iterated
process. A similar study was carried out in [4] but with a
slightly different approach that did not make use of OWA
weights.

The aim of this work is to use OWA weights [5] to
randomize over eligible actions. With these OWAs, we intend
to design time-varying decision strategies for agent S, and
compare them with strategies that do not change over time.
We call the former dynamic strategies, and the latter, static
strategies. More specifically, in a dynamic strategy S uses
initially a set of weights that are not OWAs directly but have
been computed using OWAs. S uses such weights to make
randomized decisions for a certain time, and then switches
to a different set of weights (that were calculated in the same
way using OWAs) at a certain moment, and so on. It is
expected that these changes benefit his ability to confuse the
adversary and increase S’s reward. Through our experiments,
we try to answer the following questions regarding such
dynamic strategies:

1) When must S change his strategy?
2) Which strategy must S use after each change?
The contribution is organized as follows. Some basic

concepts on adversarial reasoning are outlined in Section I-
A. Section II describes the main characteristics and compo-
nents of the model used. Section III deals with the need
of randomized strategies and defines static and dynamic,
time-changing decision strategies for agent S. Section IV
provides a review of OWA (Ordered Weight Averaging)
weights and their utility in our problem. In Section V we
describe the computational experiments performed and the
results obtained. Finally, Section VI is devoted to discussions
and further work.

A. Adversarial Reasoning

As stated before, adversarial decision making is largely
about understanding the minds and actions of one’s opponent.
A typical example is the threat of terrorism and other
applications in Defense, but it is possible to envisage less
dramatic applications in computer games where the user is
the adversary and the computer characters are provided with
adversarial reasoning features in order to enhance the quality,
difficulty and adaptivity of the game. The development of
intelligent training systems is also an interesting field.



Agent R
ei

Agent S

Agent T

Payoff Calculation

aj , ag, pij

aj

( ei ,aj )

guess = ag

reward

Fig. 1. Graphical representation of the model. inputs ij are issued by agent
R while response or actions ak are taken by agent S.

Almost twenty years ago, P. Thagard [6] stated that in
adversarial problem solving, one must anticipate, understand
and counteract the actions of an opponent. Military strategy,
business, and game playing all require an agent to construct
a model of an opponent that includes the opponent’s model
of the agent.

A brief survey of techniques where the combination of
game theory with other approaches is highlighted, jointly
with probabilistic risk analysis and stochastic games is
presented in [1]. Other direct examples that demonstrate
in which sense adversarial reasoning (and game theory in
particular) can be fully used in real problems are patrolling
models for autonomous robots. For further details, please
refer to [7], [8] and [9].

II. ADVERSARIAL MODEL

The model we are dealing with was first presented in [2]
and it consists of on two agents S and T (the adversary), a
set of possible inputs E = {e1, e2, . . . , ei, . . . , en} issued by
a third agent R, and a set of potential responses or actions
A = {a1, a2, . . . , aj , . . . , am} associated with every input.
We have a payoff or rewards matrix P :

P (n×m) =


p11 p12 . . . p1m
p21 p22 . . . p2m
p31 p32 . . . p3m

pn1 pn2 . . . pnm


where pij is the reward or profit associated with action aj
to respond to the input ei.

Agent S must decide which action to take given a par-
ticular input ei and with a perfect knowledge of the payoff
function P . His aim is to maximize the sum of the profits
or rewards given a sequence of inputs. These are issued
one at a time and they come from an external environment,
represented by agent R. For the experiments, the inputs of
the sequence are independent and generated randomly.

Agent T does not know the payoff function P but is
watching agent S in order to learn from his actions. His
aim is to reduce agent S payoff by guessing which action
he will take as a response to each input of the sequence.
Algorithm 1 describes the steps of the model, being E the
length of the sequence of inputs.

Algorithm 1 Sequence of steps in the model.
for l = 1 to L do

A new random input ei arises.
Agent T “guesses” an action ag
Agent S determines an action aj
Calculate payoff for S
Agent T records the pair (ei, aj)

end for

Given a new input ei, S and T issue responses ak and ag
respectively. Agent T keeps records of the actions taken by
S using an observation matrix, O, with dimensions n ×m.
Oij stores the number of times that, in the past, agent S
decided to take action aj when the input was ei.

The reward calculation for S at every stage is defined as:

p′ = pij × F (ag, ak) (1)

where F is:

F (a, b) =

{
0 if a = b
1 otherwise (2)

This means that agent S gets no reward when agent T
matched his response. In other words, S wants to avoid being
imitated but at the same time he wants to minimize payoff
loss due to sub-optimal decisions.

III. BEHAVIOUR OF THE AGENTS

In this section, we provide alternatives for modeling the
behavior of both agents. For simplicity, we assume that
the inputs issued by agent R are equiprobable and that the
number of inputs equals the number of actions (i.e, the payoff
matrix is square).

A. Strategies for Agent T

Agent T applies a very simple frequency-based decision
strategy. Given an input ei , T uses a strategy called Pro-
portional to the Frequency (PF): the probability of selecting
an action j as a prediction to input ei is proportional to Oij

(the observed frequency from agent S) [2].

B. Static mixed strategy for Agent S.

Agent S could use a totally deterministic strategy that
always select the action with the highest payoff as a response
to current input ei. However, this would be very easy to
learn for agent T so he would quickly predict this behavior
correctly after a short number of inputs. S could also employ
a totally random strategy that would select an action in a
totally random way. This behaviour would be very hard to
learn from observations but, on the other hand, the payoff
attained would be low because bad actions (i.e. those with
low payoff) may be selected with the same probability than
best actions. It is clear that the need exists here to get to a
good balance between confusion and payoff, as concluded in
[2].



In classic game theory, a randomization over the existing
actions (responses) is called a mixed strategy. A mixed strat-
egy is a set of weights representing a probability distribution
over the actions (i.e. the sum of the weights is 1). When
a player has to do a movement, he uses this probability
distribution to choose his action. In our model, we are
interested in the best randomization, or in other words, the
set of weights that lead to the highest payoff when playing
against agent T .

With these weights, it is possible to calculate the so-called
expected payoff for a given player, which is the sum of all the
possible outcomes of the game weighted by the probability
that each outcome inputually arises. In our adversarial model,
this means that we can weight each payoff by the probability
that agent S eventually gets that payoff. This probability
is computed as the product of the probabilities of several
independent facts happening simultaneously. Agent S will
attain payoff pij if three conditions hold at the same time:

1) Input ei must arise. We will refer to this probability as
P [E = ei].

2) Agent S must select action aj as a response. This
probability is noted αij .

3) Finally, S will only get the score pij if agent T does
not sucessfully predict his response. This probability
can be computed as follows.

In case agent S is using a non-variant weight (or prob-
ability) αij during an input sequence of length L to select
payoff pij , then the probability that agent T does not guess
his actions if T uses PF strategy is (1-αij ), as explained
in the following reasoning. After Li inputs of a certain kind
ei, since agent S uses αij , then action aj will have been
selected Li · αij times, and this is what agent T sees in Oij .
The probability that T selects action aj as a prediction is
then

Pguess =
Oij∑m
j=1 Oij

=
Li·αij

Li
= αij (3)

with m being the number of available actions. The prob-
ability of not being guessed correctly is then 1 − Pguess =
1− αij .

Taking into account the probabilities of the three condi-
tions described above yields to the following expression of
the expected payoff for agent S after a sequence of L inputs
when he uses weights αij to select his actions:

EPstatic = L·
n∑

i=1

P [E = ei]·
m∑
j=1

αij · (1− αij)· pij (4)

If we want to maximize the expected payoff, we have
to maximize expression 4 by computing the values of the
optimal weights αij . This can be achieved using numerical
optimization methods, such as a gradient descent, subject
to two restrictions: (a) αij ≥ 0 and (b)

∑m
j=1 αij = 1.

When the inputs are independent, as we are considering in
our model, then the set of optimal weights for each input
ei can be computed separately, because a set of weights

does not interact with the rest. This yields to n independent
optimization problems (one per input), each of them having
m free variables (one per different action).

The optimization problem for the input ei described above
can be formalized as follows.

max{αij}

m∑
j=1

αij · (1− αij)· pij (5)

subject to:
n∑

j=1

αij = 1

αij ≥ 0 (6)

The problem above refers only to weights of row i. There
are thus n independent optimization problem like (5), one
for each row.

C. Dynamic mixed strategy for Agent S

In the previous section we described a static strategy for
agent S. It was static in the sense that he used all the time
the same probability distribution (set of weights) to make
a probabilistic decision. We now propose changing these
weights along time or, more precisely, at certain moments.
Two questions arise at this point:

1) When must S change his strategy?
2) Which strategy must S use after each change?
None of these questions have an easy answer. In the first

case, S must take into account what he knows about the state
of the problem, what the adversary is supposed to know, how
the adversary is supposed to behave, and maybe also a history
of S’s responses to the most recent inputs. At this stage of the
research, we do not use information about the actual state of
the problem nor mantain such history. Agent S just switches
from one strategy to another, based on a change frequency
that we have to define in advance.

Regarding the second question, notice that the information
agent T has observed in the past is a basic element when
predicting S‘s responses. This suggests that changing the
strategy of S (i.e. changing the weights he uses for making
decisions along time) can be a good way to introduce
confusion while still getting high rewards. To be precise,
we want to study

1) How the change frequency affects the payoff attained
by S, and

2) How OWAs can be useful to define different sets of
weights so agent S can switch from using one set to
using another at certain moments.

In a dynamic strategy, a period is a series of consecutive
inputs for which S will use the same weights to answer.
The static mixed strategy described above can be viewed
as a single period, because the weights computed by S do
not change along time. Now the idea is to define several
periods and apply a different mixed strategy for every period.
The length of a period is the duration of the period, i.e. the



number of inputs during which agent S will use the same
mixed strategy.

The next example illustrates this concept. Suppose that we
have an input sequence of length L = 1000 inputs. Then, we
can define for instance 4 periods of lengths N1 = 300, N2

= 100, N3 = 200 and N4 = 400. For a given period, the
set of optimal weights can be very different from that of
other periods. Since the probability of every input to arise
is independent from that of the other inputs, once again we
can solve the problem independently for each input. For that
reason, we can define a different number of periods and
with different length for each input ei, and thus design a
dyamic strategy to be used when that concrete input arises.
Such dynamic strategy will be different from other dynamic
strategies that are to be used when other inputs arise.

In spite of the fact that the length of the periods and the
weights used in each period can vary for each possible input
ei, the strategies tested in this work have the same length
in all periods, and the set of weights used in one period is
used again after a certain number of periods. This is due to
the way we have defined the particular dynamic strategies of
this paper, but the design methodology explained above is a
general one and allows any number of periods with different
lengths and weights.

IV. OWA WEIGHTS FOR MIXED STRATEGIES

The weights used by S to make random decisions in each
period can be computed in multiple ways. One possibility
is to use Ordered Weight Averaging weights (OWAs), since
they allow to obtain several sets of weights by changing a
generating parameter.

The OWA operator has received very much attention since
its appearance. In 1988 Yager [5] introduced the OWA
operator to provide a method for aggregating multiple inputs
that lie between the max and min operators. Many extensions
and practical applications have been proposed for the past
two decades, showing that they are potentially useful in any
field where aggregation of information is required.

An OWA [5], [10] of dimension m is a function F :
Rm → R that has associated with it a weighting vector
W = [w1, ..., wm]T such that (i) wj ∈ [0, 1], and (ii)∑

j wj = 1. Furthermore,

F (a1, a2, ..., am) =
∑
j

wjbj

where bj is the j-th largest element of the aj . Notice that a
weight wi is not associated with a specific argument but with
an ordered position of the aggregate. This ordering operation
essentially provides a non-linear aspect to this aggregation
operation.

A number of properties can be associated with these oper-
ators. It is first noted that the OWA aggregation is commuta-
tive, that is, the aggregation is indifferent to the initial index-
ing of the argument. A second property is monotony, i.e., if
âj ≥ aj for all j, then F (â1, â2, ..., âm) ≥ F (a1, a2, ..., am).
The third property is idempotency: in particular, if aj = a for
all j, then F (a1, a2, ..., am) = a. The satisfaction of these

three properties assures that these operators belong to a class
called mean operators. Min and Max are particular cases
of OWA operators. The Max operator is recovered when
W = Wmax = [1, 0, ..., 0]T . The Min operator is recovered
when W = Wmin = [0, 0, ..., 1]T . Both operators are bounds
of the OWA aggregation:

Minj{aj} ≤ F (a1, a2, ..., am) ≤ Maxj{aj}

We can refer to the weights with the low indices as weights
at the top, and those with higher indices as weights at the
bottom. Using this convention, we see that if most of the
weights are at the top, then the aggregation is emphasizing
the higher-valued arguments in the calculation of the aggre-
gated value. If most of the weights are at the bottom, then
the aggregation is emphasizing the smaller-valued argument
in the aggregation.

A. Linear OWA weights

It is possible to generate OWA weights by using only
linear functions. This approach was suggested in Cables and
Lamata [11]. The first step is to identify a set of linear
functions that satisfy the properties of the OWAs operators.
Summarizing, [11] proposes the following linear function to
generate OWAs:

f(x) = ax+
1

m
− a

(
1 +m

2

)
(7)

where x is the index j of the weight wj and m is the
number of elements we want to aggregate, which are equiv-
alent to the number of available actions (responses) in our
model. Parameter a is the slope of the line and controls how
the weights are distributed, i.e. which elements will be em-
phasized most. As stated in [11], a ∈

(
− 2

m(m−1) ,
2

m(m−1)

)
.

B. OWA weights in dynamic strategies

The main reason for which we employ OWAs is that
several sets of weights can be generated by adjusting only
one parameter that affects the relation between the weights.
Our idea is that agent S switches between different sets of
weights along the time during the repeated decision process,
in order to increase the confusion induced but also trying to
get high rewards. The switching frequency and the weights
we alternate are issues to be studied, and they will be
described in further detail in Section V.

Let us focus only on one input ei. We first compute, say, r
different sets of OWA weights for input ei, each of them with
m weights (as many as the number of actions in our model).
Let W k

i = {w1, ..., wm}, k = 1, ..., r be each of these
sets (also called weighting vectors in OWA terminology).
Although we calculate the OWA weights wj , they are not
the final weights that S uses to make decisions in a mixed
strategy. Every weight wj is then multiplied by one of the
payoffs pij of row i of the payoff matrix P . After this, the
result of the multiplication is normalized (again into [0, 1])
to obtain r sets of weights V k

i = {v1, ..., vm}, k = 1, ..., r.
The normalized elements vj ∈ [0, 1] will be the weights of



the mixed strategy of S, i.e. the probability that S chooses
action j as a response to input ei. Finally, a dynamic mixed
strategy that makes use of the r sets of weights is applied by
changing the current set of weights V k

i every certain number
of inputs. In other words, every set of weights V k

i is used
during a period (recall Section III-C). Of course, the same set
of weights can be used in more than one period if necessary.
More details are given in the following section.

V. EXPERIMENTS AND RESULTS

We have considered 5 different values for parame-
ter a of the expression of the linear OWA: a ∈
{−0.1,−0.05, 0, 0.05, 0.1}. The OWAs obtained are summa-
rized in Table I.The difference between OWA weights and
the final weights used in each period of a dynamic mixed
strategy has been depicted in Fig. 3.

TABLE I
LINEAR OWA WEIGHTS FOR 5 ALTERNATIVES

Slope a w1 w2 w3 w4 w5

-0.1 0.4 0.3 0.2 0.1 0
-0.05 0.3 0.25 0.2 0.15 0.1

0 0.2 0.2 0.2 0.2 0.2
0.05 0.1 0.15 0.2 0.25 0.3
0.1 0 0.1 0.2 0.3 0.4

TABLE II
THE 15 PAYOFF MATRICES TESTED

Matrix Values
M1 0.8 0.85 0.9 0.95 1
M2 0.6 0.7 0.8 0.9 1
M3 0.4 0.55 0.7 0.85 1
M4 0.2 0.4 0.6 0.8 1
M5 0.01 0.25 0.5 0.75 1
M6 0.9 0.95 1 1.05 1.1
M7 0.8 0.9 1 1.1 1.2
M8 0.7 0.85 1 1.15 1.3
M9 0.6 0.8 1 1.2 1.4
M10 0.5 0.75 1 1.25 1.5
M11 0.4 0.6 0.8 1 1.5
M12 0.4 0.6 0.8 1 1.75
M13 0.4 0.6 0.8 1 2
M14 0.4 0.6 0.8 1 2.25
M15 0.4 0.6 0.8 1 2.5

We want to test, in terms of the payoff attained by agent
S, these normalized weights when used in the periods of a
dynamic mixed strategy. Two factors are going to be tested:

1) The change frequency, measured as the duration of the
periods of a dynamic strategy (all the periods having
the same duration), and

2) The change pattern according to which the set of
weights of the next period is selected (from all the sets
available) when we switch from one period to another.

�
�
��
��
�
��
��
�	

�
�
�
��
�


��������
�������
�������������
�

�� ��� ����� ���� ���� ���� ���� 	���

��


���	�


����

����

���	�

(a)

�
�
��
��
�
��
��
�	

�
�
�
��
�


��������
�������
�������������
�

�� ��� ����� ���� ���� ���� ���� 	���

��


���	�


����

����

���	�

(b)
�

�
�
��
��
�
��
��
�	

�
�
�
��
�


��������
�������
�������������
�

�� ��� ����� ���� ���� ���� ���� 	���

��


���	�


����

����

���	�

(c)
Fig. 2. Change patterns of linear OWA weights, with periods of 40 inputs.
(a) Serrated. (b) Periodic. (c) Alternating

We have defined three different change patterns (serrated,
periodic and alternating) that are depicted in Fig. 2. Each
pattern changes the generating parameter a (slope) of the
OWA weights following a different sequence. We have also
evaluated three different durations for every period: 40, 60
and 120 inputs. Fig 2 shows the three patterns when the
duration of a period is 40 (see X axis of the plots). Similar
patterns were applied for durations 60 and 120.

In order to evaluate the change patterns and change
frequencies, the input sequence must be long enough so
every input arises enough times to study the real behavior
of the pattern applied to that input. For this reason, we took
a model with 5 different actions but only one input. This
means that the same input e0 arises at every step. As can be
seen in the figures, the length of the input sequence in all



0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1 2 3 4 5

Index of the OWA weight

V
a

lu
e

 o
f 

th
e

 O
W

A
 w

e
ig

h
t a=-0,1

a=-0.05

a=0

a=0.05

a=0.1

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

p1=0.4 p2=0.6 p3=0.8 p4=1 p5=2.5

Payoff that will be multiplied by OWA weight

F
in

a
l 
n

o
rm

a
li
z
e

d
 w

e
ig

h
t

a=-0.1
a=-0.05
a=0
a=0.05
a=0.1

(b)
Fig. 3. OWAs weights and their influence in the final normalized weight for
a mixed strategy with payoff matrix M15. (a) Linear OWAs. (b) Normalized
weights after applying OWAs of (a) to M15.

our experiments is always 600 inputs.
Table II shows the payoff matrices tested in the exper-

iments. Every row of the table is indeed a whole payoff
matrix, since in the model used in our experiments we
consider only one input, so the payoff matrices have only
one row. Our goal is, first, to compare the performance of
dynamic strategies that follow each of the change patterns
and frequencies explained above and, second, to compare
their performance with that of the optimal static mixed
strategy (described in section III-B) for every payoff matrix.
The optimization process involving the static strategy was
carried out using the Microsoft Excel Solver optimization
tool, which makes use of the Generalized Reduced Gradient
(GRG2) algorithm [12].

The behaviour is shown in Fig. 4. Although it is not shown
in the figure, several of these combinations perform better
than the optimal static strategy. The greatest improvement
was achieved when the dynamic strategy switches in periods
of 120-input length, following a serrated change pattern.
These results are depicted in Fig. 5. The payoff of agent
S has been calculated as a percentage over the total payoff

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Payoff matrix

P
a
y
o

ff
 (

%
 o

v
e
r 

m
a
x
im

u
m

) Serrated 40

Serrated 60

Serrated 120

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Payoff matrix

P
a
y
o

ff
 (

%
 o

v
e
r 

m
a
x
im

u
m

)

Periodic 40

Periodic 60

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Payoff matrix

P
a
y
o

ff
 (

%
 o

v
e
r 

m
a
x
im

u
m

)

Alternating 40

Alternating 60

Alternating 120

Fig. 4. Payoff attained for every combination of change frequency and
change pattern with linear OWAs

that could have been attained if we always choose the action
with highest payoff and suppose there is no adversary who
diminishes the reward. This value is computed for every
payoff matrix by multiplying the lenght of the input sequence
(in our case, 600) by the maximum payoff of that matrix.
Notice that the greatest improvement is achieved in matrices
M11 to M15 in which there exists one action whose payoff is
much greater than all others (see Table II). This configuration
seems specially realistic because it models scenarios where
a clear objective (or action) must be accomplished, so any



other goal different from that one has little interest.
An additional remark should be done on dynamic strate-

gies. They do not require an optimization problem to be
solved for every payoff matrix. On the contrary, the optimal
static strategy does require solving an independent non-linear
constrained optimization problem for every row of every
payoff matrix.

35

40

45

50

55

60

65

70

75

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Payoff matrix

P
a

y
o

ff
 (

%
 o

v
e

r 
m

a
x

im
u

m
)

Optimal static strategy

Serrated 120 from linear OWAs

Fig. 5. Payoff attained by the optimal static strategy and the best performing
dynamic strategy

VI. CONCLUSIONS AND FURTHER WORK

A new kind of strategies that vary along time have been
proposed and tested in an adversarial model. These strategies
consist of several sets of weights that constitute a probability
distribution over the eligible actions. The agent uses a set of
weights for a period of time, and then switches to another
one. OWA (Ordered Weight Averaging) weights have been
employed to compute the weights to be used in each period.
Several possibilities of change patterns and change frequen-
cies have been investigated and succesfully tested, proving
that they outperform the optimal static strategy computed
by numerical optimization methods. The serrated change
pattern, which does not depend on the payoff matrix, has
shown the best results, since it consistently outperforms the
optimal static strategy for all payoff matrix except two or
three (in which the loss of performance was very small).
This is an encouraging result regarding the investigation of
more complex time-varying patterns in the future.

Further work on this topic may include adapting the
strategy to the particular circumstances of the decision maker
at every decision step (i.e. the current state of the problem),
instead of using a fixed precomputed strategy like we are
doing now. This may also include using a history of most
recents responses and the resulting payoffs. Special emphasis
should be put on the adaptation mechanism that modifies the
probability distribution used by the agents along the time,
and also in the conditions that should be evaluated when
testing if a change in the weights is really desirable.

REFERENCES

[1] A. Kott and W. M. McEneany, Adversarial Reasoning: Computational
Approaches to Reading the Opponents Mind. Chapman and Hall/
CRC Boca Raton, 2007.

[2] D. Pelta and R. Yager, “On the conflict between inducing confusion
and attaining payoff in adversarial decision making,” Information
Sciences, vol. 179, pp. 33–40, 2009.

[3] P. Villacorta and D. Pelta, “Evolutionary design and statistical assess-
ment of strategies in an adversarial domain,” in Proceedings of the
IEEE Conference on Evolutionary Computation (CEC’10), 2010, pp.
2250–2256.

[4] D. Pelta and R. R. Yager, “Dynamic vs. static decision strategies in ad-
versarial reasoning,” in Proceedings of the Joint 2009 IFSA/EUSFLAT
Conference, 2009, pp. 472–477.

[5] R. R. Yager, “On ordered weighted averaging aggregation operators
in multicriteria decision making,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.

[6] P. Thagard, “Adversarial problem solving: Modeling an opponent using
explanatory coherence,” Cognitive Science, vol. 16, no. 1, pp. 123 –
149, 1992.

[7] F. Amigoni, N. Basilico, and N. Gatti, “Finding the optimal strategies
for robotic patrolling with adversaries in topologically-represented
environments,” in Proceedings of the 26th International Conference
on Robotics and Automation (ICRA’09), 2009, pp. 819–824.

[8] P. Paruchuri, J. P. Pearce, and S. Kraus, “Playing games for security:
An efficient exact algorithm for solving bayesian stackelberg games,”
in Proceedings of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’08), 2008, pp. 895–902.

[9] F. Amigoni, N. Gatti, and A. Ippedico, “A game-theoretic approach
to determining efficient patrolling strategies for mobile robots,” in
Proceedings of the International Conference on Web Intelligence and
Intelligent Agent Technology (IAT’08), 2008, pp. 500–503.

[10] R. R. Yager, “Families of OWA operators,” Fuzzy Sets and Systems,
vol. 59, no. 2, pp. 125–148, 1993.

[11] E. Cables-Perez and M. T. Lamata, “OWA weights determination by
means of linear functions,” Mathware & Soft Computing, vol. 16, pp.
107–122, 2009.

[12] D. Fylstra, L. Lasdon, J. Watson, and A. Waren, “Design and Use
of the Microsoft Excel Solver,” Interfaces, vol. 28, no. 5, pp. 29–55,
1998.


