
Expected Payoff Analysis of Dynamic Mixed
Strategies in an Adversarial Domain

Pablo J. Villacorta and David A. Pelta
Models of Decision and Optimization Research Group

CITIC-UGR, Department of Computer Science and AI, University of Granada
C/ Periodista Daniel Saucedo, 18071 Granada, Spain

Telephone: (+0034) 958 24 23 76
Email: {pjvi, dpelta}@decsai.ugr.es

Abstract—Adversarial decision making is aimed at determining
optimal decision strategies to deal with an adversarial and
adaptive opponent. One defense against this adversary is to make
decisions that are intended to confuse him, although our rewards
can be diminished. In this contribution, we describe ongoing
research in the design of time varying decision strategies for a a
simple adversarial model. The strategies obtained are compared
against static strategies from a theoretical and empirical point
of view. The results show encouraging improvements that open
new venues for research.

Index Terms—Adversarial reasoning, decision strategies, deci-
sion making

I. INTRODUCTION

Adversarial decision is largely about understanding the
minds and actions of ones opponent. It is relevant to a
broad range of problems where the actors are actively and
consciously contesting at least some of each others objectives
and actions [1]. The field is also known as decision making
in the presence of adversaries or adversarial reasoning.

In its most basic form, adversarial decision making involves
two participants, S and T , each of which chooses an action
to respond to a given event without knowing the choice of
the other. As a result of these choices, a payoff is assigned to
the participants. When this scenario is repeated many times,
i.e. situations of repeated conflicting encounters arise, then
the situation becomes complex as the participants have the
possibility to learn the others strategy. Examples of this type
can be found in the military field, but also in problems of
real-time strategy games, government vs government conflicts,
economic adversarial domains, team sports (e.g., RoboCup),
competitions (e.g., Poker), etc. [1]

Adversarial decision making is aimed at determining op-
timal strategies (for S) against an adversarial and adaptive
opponent (T). One defense against this adversary is to make
decisions that are intended to confuse him, although S’s
rewards can be diminished. It is assumed that making decisions
in an uncertain environment is a hard task. However, this
situation is of upmost interest in the case of adversarial
reasoning as what agent S wants is to make its behaviour
as uncertain or unpredictable as possible. In other words,S
wants to force the presence of uncertainty in order to confuse
the adversary while its payoff is as less affected as possible.

In previous work [2], a model to study the balance between
the level of confusion induced and the payoff obtained was
proposed. The main conclusion of such study was that one way
to produce uncertainty is through decision strategies for S that
contain certain amount of randomness. [3] presents a study on
automatic design of such strategies. Here we focus on decision
strategies that S can use as a means of optimizing his payoffs
in situations of repeated conflicting encounters. Essentially we
are studying how S can defend against an opponent who is
trying to learn their decision rules.

The aim of this contribution is to design and analyze
decision strategies for agent S that are not constant along
the time, but change at certain time steps in the iterated
process. More specifically, we tackle the strategy design as
a constrained non-linear optimization problem whose solution
gives both the exact moment at which agent S must change
and the new strategy he must use.

The contribution is organized as follows. Some basic con-
cepts on adversarial reasoning are outlined in Section II. Sec-
tion III describes the main characteristics and components of
the model used. Section IV deals with the need of randomized
strategies. Subsection IV-B explains a static mixed strategy
for agent S. Section IV-C introduces the concept of dynamic,
time-changing decision strategies for agent S as opposite to
the former static strategy. The analytical expression of the
expected payoff attained by S when using such a dynamic
strategy is given and explained in detail, and the need of an
optimization process for determining the best parameters in
this expression is motivated. In Section V we describe the
computational experiments performed and the results obtained.
Finally, Section VI is devoted to discussions and further work.

II. ADVERSARIAL REASONING

As stated before, adversarial decision making is largely
about understanding the minds and actions of one’s opponent.
A typical example is the threat of terrorism and other appli-
cations in Defense, but it is possible to envisage less dramatic
applications in computer games where the user is the adversary
and the computer characters are provided with adversarial
reasoning features in order to enhance the quality, hardness
and adaptivity of the game. The development of intelligent
training systems is also an interesting field.

The threat of terrorism, and in particular the 9/11 event,
fueled the investments and interest in the development of
computational tools and techniques for adversarial reasoning.
However, the field has earlier developments. For example,
almost twenty years ago, P. Thagard [4] stated that in ad-
versarial problem solving, one must anticipate, understand
and counteract the actions of an opponent. Military strategy,
business, and game playing all require an agent to construct a
model of an opponent that includes the opponent’s model of
the agent.

Game theory is perceived as a natural good choice to
deal with adversarial reasoning problems. A brief survey
of techniques where the combination of game theory with
other approaches is highlighted, jointly with probabilistic
risk analysis and stochastic games is presented in [1]. Other
direct examples that demonstrate in which sense adversarial
reasoning (and game theory in particular) can be fully used
in real problems are patrolling models for autonomous robots.
The aim is to design routes for patrolling trying to minimize
the chance that an enemy enters a security border. A lot
of research is being done in this area, and several abstract
models (with their respective algorithmic solutions) have been
proposed so far. Although this topic is not the focus of our
particular work, such models bear a clear resemblance to the
adversarial reasoning model analyzed in III. In particular, the
kind of optimization process applied here was inspired in the
one presented in [5]. For further details, please refer to [6]
and [7].

III. ADVERSARIAL MODEL

The model we are dealing with was first presented in [2]
and it consists of on two agents S and T (the adversary), a
set of possible inputs or events E = {e1, e2, . . . , en} issued
by a third agent R, and a set of potential responses or actions
Ai = {a1, a2, . . . , am} associated with every event. We have
a payoff or rewards matrix P :

P (n×m) =


p11 p12 . . . p1m
p21 p22 . . . p2m
p31 p32 . . . p3m

pn1 pn2 . . . pnm


where pij ∈ [0, 1] is the reward or profit associated with action
j to respond to the event i.

Agent S must decide which action to take given a particular
input ik and with a perfect knowledge of the payoff function
P . His aim is to maximize the sum of the profits or rewards
given a sequence of inputs. These are issued one at a time
and they come from an external environment, represented by
agent R. For the experiments, the inputs of the sequence are
independent and generated randomly.

Agent T does not know the payoff function P but is
watching agent S in order to learn from his actions. His aim
is to reduce agent S payoff by guessing which action he will
take as a response to each input of the sequence. Algorithm

Fig. 1. Graphical representation of the model. Events ij are issued by agent
R while response or actions ak are taken by agent S.

Algorithm 1 Sequence of steps in the model.
for j = 1 to L do

A new input ej arises.
Agent T “guesses” an action ag
Agent S determines an action ak
Calculate payoff for S
Agent T records the pair ej , ak

end for

1 describes the steps of the model, being E the length of the
sequence of inputs.

Given a new input ej , S and T issue responses ak and ag
respectively. Agent T keeps records of the actions taken by S
using an observation matrix, O, with dimensions n×m. Oij

stores the number of times that, in the past, agent S decided
to take action aj when the input was ei.

The reward calculation for S at stage c is defined as:

p′ = pjk × F (ag, ak) (1)

where F is:

F (a, b) =

{
0 if a = b
1 otherwise (2)

This means that agent S gets no reward when agent T
matched his response.

IV. BEHAVIOUR OF THE AGENTS

In this section, we provide alternatives for modeling the
behavior of both agents. For simplicity, we assume that the
inputs issued by agent R are equiprobable and that the number
of inputs equals the number of actions (i.e, the payoff matrix
is square).

A. Strategies for Agent T

Agent T applies a very simple frequency-based decision
strategy. Given an event ei , T uses a strategy called Propor-
tional to the Frequency (PF): the probability of selecting an
action j as a prediction to event ei is proportional to Oij (the
observed frequency from agent S) [2].

B. Static Mixed Strategy for Agent S.

Agent S could use a totally deterministic strategy that
always select the action with the highest payoff as a response
to current stimulus ei. However, this would be very easy to
learn for agent T so he would quickly predict this behavior
correctly after a short number. S could also employ a totally
random strategy that would select an action in a totally
random way. This behaviour would be very hard to learn from
observations but, on the other hand, the payoff attained would
be low because bad actions (i.e. those with low payoff) may
be selected with the same probability than best actions.

The need exists here to get to a good balance between
confusion and payoff, as concluded in [2]. But instead of
running computational simulations that test new proposals of
strategies, our objective now is to calculate the expected payoff
of new strategies without running a computational experiment.

In classic game theory, a randomization over the existing
actions (responses) is called a mixed strategy. A mixed strategy
is a set of weights representing a probability distribution over
the actions (i.e. the sum of the weights is 1). When a player
has to do a movement, he uses this probability distribution to
choose his action. In our model, we are interested in the best
randomization, or in other words, the set of weights that lead
to the highest payoff when playing against agent T .

With these weights, it is possible to calculate the so-called
expected payoff for a given player, which is the sum of all the
possible outcomes of the game weighted by the probability that
each outcome eventually arises. In the adversarial model we
are dealing with, this means that we can weight each payoff of
the payoff matrix P by the probability that agent S eventually
gets that payoff. This probability can be computed as the
product of the probabilities of several independent events
happening simultaneously. Agent S will attain payoff pij if
three conditions hold: (i) Input ei must arise. We will refer to
this probability as P (I = i). (ii) Agent S must select action aj
as a response. This probability is noted αij . (iii) Finally, S will
only get the score pij if agent T does not successfully predict
his response. This probability can be computed as follows.

In case agent S is using a non-variant weight (or probability)
αij during an input sequence of length L to select payoff pij
, then the probability that agent T does not guess his actions
if T uses PF strategy is (1-αij), as explained in the following
reasoning. After Li inputs of a certain kind ei, since agent
S uses αij , then action aj will have been selected Li · αij

times, and this is what agent T sees in Oij . The probability
that T selects action aj as a prediction is then

Pguess =
Oij∑m
j=1 Oij

=
L·αij

L
= αij (3)

with m being the number of actions available. The probabil-
ity of not being guessed correctly is then 1−Pguess = 1−αij.

Taking into account the probabilities of the three conditions
described above yields to the following expression of the
expected payoff for agent S after a sequence of L inputs when
he uses weights αij to select his actions:

EPstatic = L·
n∑

i=1

P (I = i)·
m∑
j=1

αij · (1− αij)· pij (4)

Note that the length of the input sequence L could be
inserted into the summation because it does not depend on
i. In that case, we could rename the product L·P (I = i)
as Li, the number of times within a sequence of length L
that the input was ei. This notation will be used in the next
section. Obviously,

∑n
i=1 Li = L. If we want to maximize

the expected payoff, we have to maximize expression 4 by
computing the values of the optimal weights αij . This can
be achieved using numerical optimization methods, such as a
gradient descent, subject to two restrictions: (a) αij ≥ 0 and
(b)

∑m
j=1 αij = 1. When the events are independent, as we

are considering in our model, then the set of optimal weights
for each event ei can be computed separately, because a set
of weights does not interact with the rest. This yields to n
independent optimization problems (one per input type), each
of them having m free variables (one per different action).

The optimization problem for the input type ei described
above can be formalized as follows.

max{αij}

m∑
j=1

αij · (1− αij)· pij (5)

subject to:
n∑

j=1

αij = 1

αij ≥ 0 (6)

The problem above refers only to weights of row i. There
are thus n independent optimization problem like (5), one for
each row.

C. Dynamic Mixed Strategy for Agent S

In the previous section we described a static strategy for
agent S. It was static in the sense that he used all the time
the same probability distribution (set of weights) to make a
probabilistic decision. We now propose changing these weights
along time or, more precisely, at certain moments. A period
is a series of consecutive inputs for which S will use the
same weights to answer. The static mixed strategy described
above can be viewed as a single period, because the weights
computed by S do not change along time. Now the idea is to
define several periods and calculate the optimal mixed strategy
for every period. The length of a period is the duration of the
period, i.e. the number of events during which agent S will
use the same mixed strategy.

The next example illustrates this concept. Suppose that we
have an input sequence of length L = 1000 stimuli. Then, we
can define for instance 4 periods of lengths N1 = 300, N2 =
100, N3 = 200 and N4 = 400. For a given period, the set of
optimal weights can be different from that of other periods.
Since the probability of every input to arise is independent

from that of the other inputs, once again we can solve the
problem independently for each event. For that reason, we
can define a different number of periods of different length for
each event, and solve an independent optimization problem for
that input. We will call Nh

i the length of the h-th period of
event ei. Fig. 2 shows a different dynamic mixed strategy for
each event, with different number of periods and/or different
moments in which S switch from a period to the following one
at different moments. The length of the whole input sequence
is L = 1000. Suppose there exist n = 4 different kinds of inputs
in our model. If the random inputs are uniformly distributed,
then we could expect that approximately 250 inputs of each
event should arise.

�
�

�
�
�

�
�
�

�

�
�

�
�
�

�
�
�

�

�
�

�
�
�

�
�
�

�

�
�

�
�
�

�

Fig. 2. Example of different periods for each event in a model instance with
4 different events

The expression of the expected payoff for a dynamic strat-
egy can be computed as follows. From now, we will focus only
on one single event ei. Let αh

ij be the set of weights agent S
uses to choose an action as a response to an input of type
ei during the h-th period. Then, within a given period, αh

ij

represents the probability that S selects action j . The problem
now is how to compute the probability of not being guessed,
which is the same within a period but different from one
period to another. After the first period of length, say, N1

i ,
the observation matrix O has the following values in row i
(absolute frequencies of the responses given in the past by S
to inputs of type ei):

T (n×m) =


N1

i ·α1
i1 N1

i ·α1
im

.


Clearly, the probability of not being guessed PNG during the

first period is (1-α1
ij), according to the same explanation given

in section IV-B. This reasoning becomes more complicated
when considering row i of the observation matrix at the end
of the second period, whose length is N2

i :

T (n×m) =
N1

i ·α1
i1 +N2

i ·α2
i1 N1

i ·α1
im +N2

i ·α2
im

.


According to the values of the former matrix after 2 periods,

the probability at the end of the second period that agent T
selects action aj as a prediction is

Pguess =
Oij∑m
j=1 Oij

=
N1

i ·α1
ij +N2

i ·α2
ij

N1
i +N2

i

(7)

so the probability of not being guessed at the end of the
second period is

PNG = 1− Pguess =
N1

i (1− α1
ij) +N2

i · (1− α2
ij)

N1
i +N2

i

(8)

What happens in the middle, i.e. during the second period?
The probability of not being guessed changes at every step
because the number of times each response has been observed
by T varies along time. This variation can be modeled as
follows. At a certain step s of the second period (s is measured
from the begining of the period, so 0 ≤ s ≤ N2

i , with N2
i

being the length of the second period), the probability that T
correctly predicts response j to event i is

Pguess =
Oij∑m
j=1 Oij

=
N1

i ·α1
ij + s·α2

ij

N1
i + s

(9)

and the probability of not being guessed is then

PNG = 1− Pguess =
N1

i (1− α1
ij) + s· (1− α2

ij)

N1
i + s

(10)

As stated before, notice that this probability changes at
every step within a period. Now, it is possible to generalize
this reasoning to obtain the probability of not being guessed
at step s of the h-th period (0 ≤ s ≤ Nh

i):

PNG = 1− Pguess =

∑h−1
k=1 N

k
i (1− αk

ij) + s· (1− αh
ij)∑h−1

k=1 N
k
i + s

(11)
The expression of the total expected payoff with Hi periods

of length Nh
i for every input ei is a generalization of (4), using

(11) as probability of not being guessed:

EPdynamic =
n∑

i=1

P (I = i)·

Hi∑
h=1

Nh
i∑

s=1

m∑
j=1

αh
ij ·

∑h−1
k=1 N

k
i (1− αk

ij) + s(1− αh
ij)∑h−1

k=1 N
k
i + s

pij (12)

Considering Li as the number of times that event ei
occurred, the next expression should be also verified:∑Hi

k=1 N
h
i = Li. This should be an additional constraint in

the optimization process that will be carried out to determine
the optimal values of all the variables.

The value Li is unknown and should be estimated in some
way1. At this stage of the research we assume the following
conditions: a) the value L is known, and b) the events are

1Static mixed strategies are not affected by this issue because the probability
of not being guessed is independent of any external parameter.

generated independently with uniform distribution. So for n
events Li = L/n ∀i ∈ 1, . . . , n.

With this approach, the number of unknown parameters is
greater than that of static mixed strategies. The optimal number
of periods Hi for a certain event ei is unknown, and so is the
length of each period Nh

i . In addition, instead of computing
only m weights for every event (one set of weights per event),
we have to compute m·Hi weights (Hi sets of weights per
event).

The number of periods Hi we want to introduce is an
external parameter which is not part of the optimization
process. In order to test the influence of such parameter,
we consider Hi varying from 1 to 4 different periods, and
compared the results. Recall that the optimal length Nh

i of
every period is one of the variables to optimize.

Summarizing, if the events of a sequence are independent,
our problem can be broken down in n independent optimiza-
tion problems, each of them with the following formulation:

max{αh
ij
}∪{Nh

i
}

Hi∑
h=1

Nh
i∑

s=1

m∑
j=1

αh
ij ·

∑h−1
k=1 N

k
i (1− αk

ij) + s(1− αh
ij)∑h−1

k=1 N
k
i + s

pij (13)

subject to:
m∑
j=1

αh
ij = 1

αh
ij ≥ 0

Hi∑
h=1

Nh
i = Li = P (I = i)·L (14)

A normalization is feasible in expression (13). Instead of
using Nh

i , it is possible to optimize the proportion of the whole
sequence of inputs of a given ei. This means we can divide
every Nh

i by Li =
∑Hi

h=1 N
h
i . Let γh

i be the result of such
divisions. It is clear that γh

i is always between 0 and 1, and
therefore the sum equals 1. As a result, it is possible to execute
the optimization process without knowing the number Li of
inputs of type ei because now the restriction of the sum does
not depend on it. However, it is still necessary to know such
length when the optimized strategy is to be applied. Otherwise
it would be impossible to determine the exact moment in
which agent S should switch from using the current set of
weights αh

ij to the next set of weights αh+1
ij . This yields to

the following formulation:

max{αh
ij
}∪{γh

i
}

Hi∑
h=1

γh
i

m∑
j=1

αh
ij ·

∑h
k=1 γ

k
i (1− αk

ij)∑h
k=1 γ

k
i

pij (15)

subject to:

(a)
m∑
j=1

αh
ij = 1 (b)

Hi∑
h=1

γh
i = 1

(c)αh
ij ≥ 0 (d)γh

i ≥ 0 (16)

V. EXPERIMENTS AND RESULTS

The experiments we conducted are aimed at answering the
following questions

1) Do the results obtained with the analytical expressions
match those obtained by empirical simulations?

2) Do dynamic mixed strategies outperform a static mixed
strategy in terms of expected payoff?

In order to answer these questions we follow the next steps.
1) Model Configuration: The parameter configuration of

the model instance that has been used in the empirical evalu-
ation of strategies was the following:

• Number of different inputs and different actions: n = m
= 5

• Length of the input sequences: we checked the expected
payoff only for sequences of one event, e0. The length
of every input sequence is L0 = 500.

2) Payoff matrices: 15 different matrices were tested. For
each matrix, a set of m payoffs is defined, and every row of
the matrix has a permutation of the same set. The payoffs of
every matrix are summarized in Table I. The rest of the rows
are different permutations of the set displayed in the table.

TABLE I
SET OF PAYOFFS ASSOCIATED TO EACH 5X5 PAYOFF MATRIX. SHOWING

FIRST ROW OF EVERY MATRIX.

Matrix First row
1 1 0,9 0,95 0,8 0,85
2 0,8 0,9 0,6 0,7 1
3 1 0,85 0,7 0,4 0,55
4 1 0,6 0,8 0,4 0,2
5 0,25 0,01 0,5 1 0,75
6 1,1 0,95 0,9 1,05 1
7 1,2 1 1,1 0,9 0,8
8 1,3 1 1,15 0,85 0,7
9 1,2 1,4 1 0,8 0,6

10 1,5 1 0,75 1,25 0,5
11 0,8 0,6 0,4 1,5 1
12 0,8 0,6 0,4 1,75 1
13 0,8 0,6 0,4 2 1
14 0,8 0,6 0,4 2,25 1
15 0,8 0,6 0,4 2,5 1

3) Evaluation of a strategy: every strategy was evaluated
by running algorithm 1 100 independent times. The average
of the results was taken.

4) Numerical optimization algorithm: an important point
is the optimization method employed. Microsoft Excel Solver
tool was used to solve every optimization problem. Since every
row is a permutation of the same set of values, it is enough
to solve the problem for the first row because the weights
obtained can be applied (in the correct order) to the others
rows. The optimization algorithm implemented by Solver
for non-linear optimization problems is called Generalized
Reduced Gradient (GRG2); further details can be found in
[8].

In order to answer the first question asked above, Fig. 3
shows a comparison of the expected and empirical payoff of
an optimal static mixed strategy and an optimal dynamic mixed
strategy with 2 and with 4 periods. The plot confirms an almost

39

41

43

45

47

49

51

M11 M12 M13 M14 M15

Payoff matrix

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
)

Expected payoff

Empirical payoff

44

46

48

50

52

54

M11 M12 M13 M14 M15

Payoff matrix

P
a
y
o

ff
 a

tt
a
in

e
d

 (
%

)

Expected payoff

Empirical payoff

(a) (b)

45

46

47

48

49

50

51

52

53

54

55

M11 M12 M13 M14 M15

Payoff matrix

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
)

Expected payoff

Empirical paoyff

39

41

43

45

47

49

51

53

55

M11 M12 M13 M14 M15

Payoff matrix

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
)

Static

2 periods

4 periods

(c) (d)
Fig. 3. Expected vs empirical payoff attained by S with static strategies (a) and with dynamic strategies with 2 periods (b) and with 4 periods (c). The gain
of using dynamic strategies with 4 periods is shown in (d)

TABLE II
EXPECTED PAYOFF OF STATIC AND DYNAMIC STRATEGIES (WITH 2, 3 AND

4 PERIODS) AFTER 500 EVENTS e0

Payoff Maximum Static Dyn h=2 Dyn h=3 Dyn h=4
matrix
M1 500 361.26 361.3 363.68 363.61
M2 500 325.75 333.35 333.43 333.72
M3 500 295.51 307.95 309.69 308.91
M4 500 272.08 284.81 286.17 285.70
M5 500 252.5 269.61 268.534 267.69
M6 550 401.13 402.92 403.32 403.25
M7 600 404.56 411.35 411.59 411.76
M8 650 410.46 422.78 422.59 423.12
M9 700 419.12 435.92 420.68 436.89
M10 750 430.92 450.30 449.51 450.38
M11 750 378.41 403.99 403.06 407.56
M12 875 407.34 443.05 449.24 449.05
M13 1000 436.79 478.06 490.29 491.05
M14 1125 466.6 506.98 535.36 534.70
M15 1250 496.67 554.73 578 572.96

perfect matching between the predicted and the actual payoff
attained.

We now analyze the performance of both static and dynamic
mixed strategies to answer the second question asked above.

39

44

49

54

59

64

69

74

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Payoff matrix

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
)

Static

2 periods

3 periods

4 periods

Fig. 4. Predicted payoff for every payoff matrix. Values represent percentages
over the maximum

Since the expressions have proven to be correct from an
empirical point of view, we have just evaluated them for
every payoff matrix. The results are shown in Table II and

in Fig. 4. The column of Table II labeled maximum stands
for the total payoff attainable if agent S always selects the
action with the highest payoff and he is never guessed. This
would be the ideal situation that only occurs when there is
no adversary. The percentages of Fig. 4 were calculated as
the actual payoff attained with adversary divided by such
maximum payoff attainable with no adversary.

Fig. 4 shows a very important result. In all the payoff
matrices tested, the three optimal dynamic mixed strategies
outperformed the optimal static strategy. In addition, increas-
ing the number of periods was always beneficial in terms of the
payoff attained. Recall that these results do not come from a
simultation but from a prediction made using the expressions,
so they are not influenced by random factors. Notice that the
greater gain in performance was achieved in matrices M11

to M15, which are those where the highest payoff is much
greater than the rest. This is a particularly encouraging result
for problems in which it is very important to do the best action
as many times as possible.

VI. CONCLUSION

Static and dynamic mixed strategies for an agent in an
adversarial model have been successfully designed using nu-
merical optimization methods. Analytical expressions of the
expected payoff for both strategies have been provided and
validated also from an empirical point of view. Furthermore,
optimal dynamic mixed strategies have shown to outperform
optimal static mixed strategies in all the scenarios tested,
specially when the difference between the payoff of the best
action and the payoff of the rest of actions becomes greater. All
these results are encouraging. Further work on this topic may
include investigating expressions that do not depend on the
prior knowledge of an external parameter about the game that
is to be played (in this case, the length of the input sequence),
and also more complex time varying strategies that take into
account some other conditions of the actual state of the game.

ACKNOWLEDGMENT

This work was supported in part by project TIN2008-01948
from the Spanish Ministry of Science and Innovation and P07-
TIC- 02970 from the Andalusian Government.

REFERENCES

[1] A. Kott and W. M. McEneany, Adversarial Reasoning: Computational
Approaches to Reading the Opponents Mind. Chapman and Hall/ CRC
Boca Raton, 2007.

[2] D. Pelta and R. Yager, “On the conflict between inducing confusion and
attaining payoff in adversarial decision making,” Information Sciences,
vol. 179, pp. 33–40, 2009.

[3] P. Villacorta and D. Pelta, “Evolutionary design and statistical assessment
of strategies in an adversarial domain,” in Proceedings of the IEEE
Conference on Evolutionary Computation (CEC’10), 2010, pp. 2250–
2256.

[4] P. Thagard, “Adversarial problem solving: Modeling an opponent using
explanatory coherence,” Cognitive Science, vol. 16, no. 1, pp. 123 – 149,
1992.

[5] F. Amigoni, N. Basilico, and N. Gatti, “Finding the optimal strategies for
robotic patrolling with adversaries in topologically-represented environ-
ments,” in Proceedings of the 26th International Conference on Robotics
and Automation (ICRA’09), 2009, pp. 819–824.

[6] P. Paruchuri, J. P. Pearce, and S. Kraus, “Playing games for security:
An efficient exact algorithm for solving bayesian stackelberg games,”
in Proceedings of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’08), 2008, pp. 895–902.

[7] F. Amigoni, N. Gatti, and A. Ippedico, “A game-theoretic approach to
determining efficient patrolling strategies for mobile robots,” in Proceed-
ings of the International Conference on Web Intelligence and Intelligent
Agent Technology (IAT’08), 2008, pp. 500–503.

[8] D. Fylstra, L. Lasdon, J. Watson, and A. Waren, “Design and use of the
microsoft excel solver,” Interfaces, vol. 28, no. 5, pp. 29–55, 1998.

