Sensitivity analysis in the Scenario Method: a multi-objective approach
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Abstract—Technology foresight deals with the necessity of
anticipating the future to better adapt to new situations regard-
ing innovations that directly affect business world. One widely
spread methodology in technology foresight is Godet’s Scenario
Method, which includes a module (MICMAC) performing the
so-called structural analysis. The goal of the structural analysis
is to identify the most important variables in a system. To this
end, it makes use of an influence matrix that describes the
relations between the variables. This information is usually
given by experts based on their own knowledge and experience.
However, some of the information of the influence matrix may
contain errors due to the subjective nature of the criteria and
opinions of the experts. Here we propose a new analysis that
follows a multi-objective approach and allows to measure the
sensibility of the model versus possible errors at the input. The
well-known NSGA-II algorithm has been used as a solver. The
results are encouraging and deserve further investigation.

Keywords-scenario method; technology foresight; Godet’s
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I. INTRODUCTION

Technology foresight analysis is a differentiating factor in
innovation management and decision-making. The competi-
tive advantages of organizations are achieved by accurately
identifying the scenarios they must address. Organizations
rely on systems that perform prospective analysis to be ahead
of the changes in the environment.

One of the most frequently used methodologies to ac-
complish prospective analysis is the Scenario Method [1],
[2], [3], [4] proposed by M. Godet, from the Laboratory
for Investigation in Prospective Strategy and Organization
(LIPSOR). It has been used in typical forecasting problems
[5] but also in other kinds of contexts such as User Inter-
face Design [6]. This methodology determines the possible
futures by means of the definition of scenarios. A scenario
can be considered a representation of a future state and the
steps that lead to it. These scenarios are usually developed
based on information from various experts which is obtained
through opinion pools, panels, etc.

The Scenario Method carries out the analysis of the
scenarios by means of a set of tools that provide sup-
port to accomplish the structural analysis, strategies of the
actors, morphological analysis, expert methods and multi-
criteria decision. It covers from the analysis of the key
variables to the analysis of the strategic actions that must

be taken. Among the different stages, we have focused on
the structural analysis since it is the first step of the complete
methodology. To be precise, our aim is to measure the
sensibility of the system versus errors in the data. On the
one hand, we want to evaluate how the system is affected by
small errors in the valuations given by the experts as input
and, on the other hand, we want to find out critical valuations
in which a small input error causes a great change at the
output. This can be tackled as a multi-objective optimization
problem where the goal is to find the group of variables that,
with a minimum change, cause the maximum variation at
the output of the model. The results will allow to determine
which variables are of greater relevance for the process.

The contribution is structured as follows. Section II ex-
plains the structural analysis method (MICMAC) proposed
by Godet. Section III reviews the concept of a multi-
objective optimization problem and explains the suitabil-
ity of this approach to study sensibility in the MICMAC
method. All the specific components required to tackle our
concrete problem are described in detail here. Section IV
deals with the experiments conducted and section V with the
results obtained. Finally section VI is devoted to conclusions
and further work.

II. GODET’S STRUCTURAL ANALYSIS

Godet’s structural analysis method, called MICMAC,
defines a series of variables and a matrix describing the
influence relations among them. Through the study of such
relations, the method can uncover which variables are essen-
tial for the system. The method can be used standalone, as
a decision support system, or as a part of a more complex
scenario analysis.

First of all, a list of n variables is given by a group of
experts. These are the variables that in principle could be of
interest for the system being modeled. Then, a matrix with
dimension n x n is defined in which the influence between
any pair of variables are given on the basis of expertise
knowledge. This matrix is known as the Matrix of Direct
Influence (MDI). Each cell of the matrix states the influence
of one variable over some other variable, measured in a 4-
grade scale, as follows. M DI;; represents the influence of
variable ¢ on variable j and its value can be

o 0 if variable 7 has no influence on variable j.



o 1 if variable ¢ has a low influence on variable j.

o 2 if variable ¢ has a medium influence on variable j.
o 3 if variable ¢ has a strong influence on variable j.

o 4 if variable ¢ has a potential relation with variable j.

A potential relation means that the influence is not clear
but may become notorious under some conditions. For that
reason Godet discards such relations during the structural
analysis process. The main diagonal of the matrix is always
0 because a variable does not have influence on itself.

Some important measures can be computed from the
MDI. The direct influence of a variable 7 over the rest is
computed as the sum of all the values of row ¢ of the
MDI. In this sum, the potential influences are ignored and
taken as 0. Similarly, the indirect dependence of a variable
i of the rest is computed as the sum of all the values
of column i. Therefore we have two different measures
associated with every variable. With this information, an
influence ranking and a dependence ranking are built by
sorting the variables according to their influence and to
their dependence, respectively. Both rankings serve as a first
indicator of the importance of each variable in the system.
These calculations are known as the direct method.

Other important measures that can be computed from
the MICMAC are the indirect influence and the indirect
dependence of the variables. They are calculated using the
indirect method, which is an iterative process in two steps:

1) Initialization step. Let Ry and R, be the influence and
dependence rankings obtained with the direct method.
Initialize M to be the original MDI matrix.

2) Iteration:

e Do M = M x MDI and compute the new
influence and dependence rankings Sy and Sy
with the resulting matrix, as explained above.

o Compare Sy with Ry and Sy with Ry.

o If both comparisons match, finalize. Otherwise,
update the old rankings: let Ry = Sy and let Rg =
Sq and go to step 2 again.

It is expected that both rankings converge in about 8
steps, thus the matrix used to compute the final rankings
is MDI®. Ranking convergence means that the rankings
of two consecutive iterations are exactly the same. The
final influence and dependence rankings are also important
measures indicating the importance of every variable.

Notice that all these data allow some interesting plots to
resume the information, such as 2D diagrams of influence-
dependence, where a point in the space represents a variable
as a pair (influence, dependence).

III. SENSITIVITY ANALYSIS FROM A MULTI-OBJECTIVE
APPROACH

Since the values of the MDI matrix are provided by
human experts based on their subjective opinion, they may
contain errors. However there is no method that evaluates

the sensitivity of the conclusions obtained by the MICMAC
method when the input data contain errors. In the rest of
this contribution we explain a novel approach that allows to
measure the sensitivity of the variables and determine which
are more affected by errors in the input data. This issue can
be tackled as a multi-objective optimization problem as we
will explain later. The next section introduces the basics of
multi-objective optimization.

A. Multi-objective optimization

In a classical optimization problem with one single ob-
jective, we are interested in finding the values for a set of
variables that minimize or maximize one objective function
f, usually subject to constraints. A great variety of both
analytical and heuristic techniques have been developed to
solve this task and their performance has been successfully
tested in many situations. However, a much more difficult
problem arises when we want to optimize several functions
fi, ..., fn at the same time. If the objectives are not conflict-
ing, then the problem is not really a multi-objective one since
the optimal solution for one objective is also optimal for the
rest. If, on the other hand, it is impossible to optimize all the
functions at the same time because they run into conflict, the
task becomes really difficult. In such conditions, a solution
that is very good for one objective function may be very
bad for the others. For that reason, all the objectives must
be taken into account at the same time.

First of all, let us introduce the concept of dominance
[7]. Let f1,...,falfi : R™ — R be a set of n objective
functions that have to be minimized simultaneously. Let
X = (z1,..y@m) and Y = (y1,...,ym) be two different
feasible solutions satisfying the additional constraints of the
problem. We say that X dominates Y (for minimization) iff

Vie{1,2,...,n}: fi(X) < fi(Y) A
Jje{1,2,....n}: f;(X) < f;(Y)

This definition states that solution X is better than solu-
tion Y if it is better or equal in all the objective functions
and strictly better in at least one of them. Similarly, when
solving a maximization problem, dominance is expressed
with > .

The goal of multi-objective optimization is to find a set of
solutions (not just one single solution) that is the closest to
the so-called Pareto-optimal front. The Pareto-optimal front
is the set of solutions of the feasible region that dominate
all the others feasible solutions, and that are not dominated
by any other feasible solution. Ideally, a multi-objective
optimization process should return this set as an output.
Since this is a very hard task, we search for good Pareto-
fronts that are as close as possible from the optimal Pareto
front.



B. Sensibility analysis as a multi-objective problem

Focusing again on our problem, we are interested in
finding which cells of the influence matrix cause the max-
imum variaton at the output when affected by minimum
changes. In other words, we search for a matrix with the
smallest variation with respect to the original MDI matrix
that causes the maximum variation at the output of the
MICMAC indirect method. If both the variations in the
influence matrix and the variations at the output can be
numerically quantified, we can say we have two different
conflicting objective functions that must be optimized at the
same time. They are conflicting because the best solution
for one of the objectives (for example a matrix with no
variations in its cells) is the worst for the other one since
it causes no changes at all in the influence and dependence
rankings obtained. Thus we face a bi-objective optimization
problem (with objective functions fi, fo) that is to be
addressed by means of approximate heuristic techniques
since the objective functions do not have a clear analytical
expression but are the result of a computational procedure
(i.e. the indirect method explained in section II).

The variables being optimized are the values of the new
influence matrix M that is to be found in the search space
of influence matrices with dimensions n x n. A scheme
that summarizes the calculation of the values of the two
objective functions is shown in Fig. 1. Since we assume that
the variations in the input matrix come from small errors
of human experts, the search space was restricted to the
matrices whose cells differ from the original MDI matrix in
no more than 1 unit (greater or smaller).

Objective function fi : distance between matrices. We
want to minimize the variation in the MDI matrix or, in
other words, we want to find another n x n influence matrix
M that is the closest to the original MDI matrix. Different
metrics can be employed to compute the distance between
two matrices; the most suitable for our problem is the accu-
mulated difference between the cells. It is a generalization of
the Hamming distance that takes into account the magnitude
of the change in every cell.

fr(M) = d(M, M DI) (D

where the distance function is defined as

d(A,B)=> > " |Aij — Bl
i

Objective function fo : number of changes of the
influence and dependence rankings of the indirect method
with 8 iterations. We want to maximize the number of
differences between the influence and dependence rankings
obtained via the indirect method applied to the original MDI
matrix and those obtained with the indirect method applied
to the matrix being evaluated. In other words, we want to
find another n x n influence matrix which leads to very
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Figure 1.

Computation of the objective functions f; and fa

different influence and dependence rankings. The rankings
corresponding to a matrix M are represented as two integer
vectors v% s and v%p. Each vector contains a permutation
of integers 1 to n in which each number identifies the
variable in that position. If the content of v} [i] is F, it
means the i-th most important variable is k, according to
the influence criterion. The same applies to the dependence

criterion. Then, a measure of “similarity” between v% J?I
M - MDI
and v;, , is computed, and the same for the pair v, " and

vj:,- Finally, the value of the objective function is the sum

of these two values:

fo(M) = simil(v%fj,v%f) + simil(vé\g?l,v% ) (2

The computation of the similarity between two rankings,
represented as two integer vectors, was done using a metric
called the Levenshtein distance [8], [9]. It is widely em-
ployed in information theory to measure the similarity of
two character strings but it is also useful in this case. It is
a measure of the number of permutations required in one
vector to obtain the other vector.

C. The NSGA-II algorithm

A number of multi-objective optimization algorithms have
been proposed in the last decade. They are all able to
find a set of non-dominated solutions in one single run.
Although their performance was acceptable, they have all
been criticized for their computational complexity, for their
non-elitism approach and for the need to specify additional
parameters. Deb et al. [10] proposed an improved version of
their NSGA algorithm and called it NSGAII, which solved
these drawbacks. This paper had an immediate impact and
NSGAII was quickly applied to a great number of problems
in engineering and other areas. It is currently one of the best
performing multi-objective algorithms, and in addition the
author offers a ready-to-use free implementation '. Further

Uhttp://www.iitk.ac.in/kangal/codes.shtml



details about this algorithm can be found in [7].

IV. EXPERIMENTAL FRAMEWORK

We chose a real problem with a real MDI matrix for our
experiments. In order to have results that were comparable,
we picked one of the examples that comes with the LIPSOR
software tools. It is a prospective study about the determi-
nants of the rural spaces in the time horizon of 2010. The
example takes into account 50 variables; for informational
purposes some of them are listed below.

1)
2)
3)
4)
5)
6)
7)
8)
9
10)
1)
12)

Metropolization

International market organization
Food demand

Contribution of migration

Job market

Elderly people

Social politics

Activity diversification
Management of the environment
Ecological claims
Administrative land organisation
Political representation

A. NSGAII settings for sensibility analysis

Since there are 50 variables in total, the chromosome we
are dealing with represents a 50 x 50 matrix so it is 2500
values length, and for the same reason, the influence and the
dependence rankings have 50 elements, so the maximum of
the sum of both Levenshtein distances is 100. Thus this is
the maximum possible value of Objective 2.

Representation: a discrete representation scheme was
used. Since we are interested in the results when small
changes affect the MDI matrix, we want to explore matrices
whose cells only differ in 1 unit (above or below) from the
original matrix. This constraint was implemented by using
a chromosome (representing a matrix) with values -1, 0 and
1 only. The fitness function was computed by previously
adding the chromosome values to the MDI matrix, to obtain
a new matrix M which is the one being evaluated (as
explained in section III-B).

Population size and initialization: all the individuals
were initialized to 0 in all positions, which means the
population is formed by exact copies of the initial MDI
matrix (because all cells present a variation of 0 units). This
was done to assure all the individuals explored are very
near to the original MDI matrix. At the first generations,
the mutation is crucial since it is the only mechanism
that introduces diversity in the population. The number of
individuals of the population was set to 200. It has to be
high because in our test case, the chromosomes are 2500
values length which is very large.

Parameters: the values for the crossover and mutation
rates were the following:

o Crossover rate: 0.9.

o Crossover type: uniform. Preliminary experiments
showed it performs better than one-point crossover.

« Mutation rate: 0.001 per variable. When mutation is to
be applied, a new random value (-1, O or 1, each with
the same probability) replaces the old value.
Additional constraints: the multi-objective problem it-

self does not have additional constraints. However, in a
realistic sensibility analysis, the MDI matrix is not expected
to contain more than 30 errors (out of 2500 cells) and thus,
each individual of our algorithm is not allowed to have more
than 30 cells different from 0. This constraint has to be
checked after every crossover and mutation operation.

V. RESULTS OBTAINED

Five independent runs were made, and a Pareto-front of
200 individuals (i.e. as large as the complete population)
was collected in every run, although it is a bit smaller as
they contain repeated solutions. All the Pareto fronts were
aggregated and sorted. After the aggregation, the dominated
individuals were removed, as well as the repeated ones. The
resulting Pareto-front has 23 individuals (Fig. 2).
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Figure 2. Pareto-fronts obtained in the executions of NSGAII algorithm

The ideal situation would be on the top left-most corner of
the figure because Objective 1 (X axis) must be minimized
while Objective 2 (Y axis) must be maximized. Note that,
as we only allow a variation of 1 in a cell, then the general-
ized Hamming distance is indeed the traditional Hamming
distance that measures the number of cells that are different.
This is important because it can be seen in the figure that
a variation of only 1 cell can cause a big change in the
rankings (about 18 in the Levenshtein distance). We will
later study which variables are affected by the changes but
this situation can be explained as follows. When a variable
that is in position, say, 25 in one ranking, and it is moved to



position, say, 15, it causes a lot of variations: that variable
changes but in addition, it makes variables in positions 15
to 24 move one position each (24 moves to 25, 23 moves
to 24 and so on), and these changes increase quite a lot the
Levenshtein distance.

Recall that the goal of our analysis is to determine which
variables seem more affected by small variations in the
MDI matrix. A way to discover this is to summarize the
information of the Pareto-front and see if the individuals
share common values in the same variables or they present
a lot of variation between individuals. This is depicted in Fig.
3. Every bar has two parts, one on the left and one on the
right, to show separately the contribution of the individuals
with -1 and the individuals with +1 to the total number
of variations in each position of the influence matrices
represented by the individuals.
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Figure 3. Number of individuals (without repetitions) of the Pareto-front

containing a variation (+1 or -1) in each position of the individual

As can be seen, some cells are different from 0O in a great
number (12 out of 23) of individuals of the Pareto-front, and
this happens even in different independent runs. This is an
important clue about the variables that are more responsive
to variations. Another important conclusion can be drawn
from Fig. 2 that is related to the former. Observe that there
are solutions in the Pareto-front that achieve a Levenshtein
distance of more than 30 (which in average is 15 in both
rankings) by changing less than 4 cells. This is an important
fact that deserves a thorought analysis. The figure does not
inform of the importance of the changes in the rankings, i.e.
if the positions that have changed were mostly on the top
of the rankings, corresponding to more relevant variables,
or on the bottom, corresponding to variables that are not
really relevant and could be eliminated from the model if
the prospective process is to be continued with more phases.
For that reason, it is necessary to study what happens in
such cases. We have used the MICMAC in order to test the
solutions found by our method. Concretely, we have take the
solution in which there is only one change in initial MDI

matrix. The cell modified (from O to 1) corresponds to the
influence of the variable 3 (food demand) on the variable
11 (administrative organisation of the territory). Evaluating
this small change in the MDI matrix (1 cell out of 2500) the
following variations in the original rankings were observed:

o Direct influence ranking:
— Variable 3 goes from position 29th to 27th.
o Indirect influence ranking:

— Variables 33 and 21 swap positions 11th and 12th.
— Variables 17 and 17 swap positions 26th and 28th
— Variable 3 goes from position 29th to 27th.

« Direct dependence ranking:

— Variables 13 and 45 swap positions 23rd and 24th.
« Indirect dependence ranking:

— Variable 11 goes from position 49th to 45th.

In this way, we see that a small change in a position of
the matrix leads to six alterations of different importance in
the original rankings, so this information is quite valuable
to establish which relations are critical and therefore should
receive greater attention. Although in this case the variables
affected by a change in cell (3, 11) were not at the top of
the rankings, this fact does not invalidate the foundations of
our novel multi-objective approach.

VI. CONCLUSIONS AND FURTHER WORK

In this contribution, a multi-objective approach for the
evaluation of the impact of a small change on some vari-
ables of a system under study with technology foresight
techniques has been presented. This will allow to determine
which values are critical and thus which variables are of
greater relevance for the process. Some insights have been
given on the interpretation of the results obtained, which is
an advantage of this method. The solutions of the Pareto-
front can be traced and analysed in relation to the meaning
of each variable in our concrete problem. The results of our
approach are encouraging and deserve further investigation.

As future work, some enhancements such as introduc-
ing expert knowledge on the optimization process could
be useful. An immediate improvement is to consider not
only how many changes we see in the rankings but also
which variables are affected by the rank changes, i.e. if the
variables that change their positions were originally on the
top of the ranking or not. This may be achieved by using a
penalty factor when computing the Levenshtein distance of
the fitness function for that objective.

ACKNOWLEDGMENT

This work has been partially funded by the project TSI-
020513-2009-74 from the Spanish Ministry of Industry,
Tourism and Commerce, the project TIN2008-01948 from
the Spanish Ministry of Science and Innovation and PO7-
TIC-02970 from the Andalusian Government.



(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

M. Godet, “How to be rigorous with scenario planning,”
Prospective, vol. 2, no. 1, pp. 5-9, 2000.

P. Durance and M. Godet, “Scenario building: uses and
abuses,” Technological Forecasting and Social Science,
vol. 77, no. 9, pp. 1488 — 1492, 2010.

M. Godet, Scenarios and Strategic
Butterworth-Heinemann, 1987.

Management.

——, Creating Futures: Scenario Planning as Strategic Man-
agement Tool. Economica, 2006.

R. Bettencourt, “Strategic prospective for the implementation
of employment policies in the Azores,” Technological Fore-
casting and Social Change, vol. 77, no. 9, pp. 1566 — 1574,
2010.

Y.-C. Lee, Y. H. Chao, and S.-B. Lin, “Structural approach to
design user interface,” Computers in Industry, vol. 61, no. 7,
pp. 613 — 623, 2010.

(7]

(8]

(9]

[10]

K. Deb, Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley and Sons, 2001.

V. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics, Doklady, vol. 10,
no. 8, pp. 707 — 710, 1966.

R. A. Wagner and M. J. Fischer, “The string-to-string correc-
tion problem,” Journal of the ACM, vol. 21, no. 1, pp. 168 —
173, 1974.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast
Elitist Non-dominated Sorting Genetic Algorithm for Multi-
objective Optimization: NSGA-II, ser. Lecture Notes in Com-
puter Science, M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. Merelo, and H.-P. Schwefel, Eds.  Springer
Berlin / Heidelberg, 2000, vol. 1917.



