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Abstract. One of the methodologies more used to accomplish prospec-
tive analysis is the scenario method. The first stage of this method is the
so called structural analysis and aims to determine the most important
variables of a system. Despite being widely used, structural analysis still
presents some shortcomings, mainly due to the vagueness of the informa-
tion used in this process. In this sense, the application of Soft Computing
to structural analysis can contribute to reduce the impact of these prob-
lems by providing more interpretable and robust models. With this in
mind, we present a methodology for structural analysis based on com-
puting with words techniques to properly address vagueness and increase
the interpretability. The method has been applied to a real problem with
encouraging results.
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1 Introduction

Prospective analysis is a differentiating factor in innovation management and
decision-making. The competitive advantages of organizations are achieved by
accurately identifying the scenarios they must address. Organizations rely on
systems that perform prospective analysis to be ahead of the changes in the
environment. One of the most widely employed methodologies to accomplish
prospective analysis is the scenario method proposed by Godet [4]. This method
helps to determine the possible futures by means of the definition of scenarios
and establishes five stages to accomplish it: structural analysis, strategies of
the actors, morphological analysis, expert methods and multi-criteria decision
making. In this work we deal with the first one, structural analysis. Concretely
we will focus on the tool provided by Godet to support this stage, the Impact
Matrix Cross-Reference Multiplication Applied to a Classification (MICMAC)
[4, 6].

Structural analysis aims to determine the most important variables of a sys-
tem from a matrix that establishes the relation among them. It has been in-
creasedly used in a number of applications in various domains since the middle



1980’s, within businesses as well as on society-related topics. Qureshi et al. [12]
employed MICMAC to measure the key guidelines of 3PL services providers.
Arya et al. [1] applied it in environmental trend analysis. Shivraj et al. [9] eval-
uated the effectiveness of information systems. Sharma et al. [13] considered
waste management with MICMAC. In [10] the structure of international conflict
is described with the tools of structural analysis to enhance the understand-
ing of multilateral conflict-communication relations and to predict the conflict
structure with existing international relations theories.

Despite being a widely used approach, structural analysis and MICMAC
method still presents some shortcomings. The information used in this process
comes from various experts and is obtained through opinion pools, panels, etc.
Such information is inherently vague due to the subjective character of the data,
imprecision on the opinions, and not enough consensus among experts.

In this sense, the application of Soft Computing to structural analysis can
contribute to reduce the impact of these problems by providing more inter-
pretable and robust models that lead to a better representation of the scenarios
and therefore, of the possible futures [3, 14]. With this idea in mind, we present
a methodology based on fuzzy sets and linguistic labels for structural analy-
sis that extends and improves MICMAC by properly addressing vagueness and
increasing interpretability.

The contribution is structured as follows. Section 2 reviews the MICMAC
method. Section 3 explains the novel approach, and Section 4 shows its applica-
tion to a real problem. Finally, Section 5 is devoted to conclusions and further
work.

2 MICMAC

The MICMAC method for structural analisys is aimed at dermining the most
important variables within a system, among a set of variables specified by an
expert commitee. Basically, MICMAC is composed of the following three steps:

– Define the relevant variables.
– Specify the relations between the variables.
– Identify the key variables among all the variables proposed by the experts.

Define relevant variables. The variables in complex systems are defined with
the opinion of several experts, brainstorming and literature review. An unsorted
list variables is given as an output in this phase. Of course, not all the experts
may agree in the importance of the variables or even in identifying what aspects
should be formalized as a variable or which should not. Let n be the number of
variables identified.

Specify the relations between the variables. The group of experts provide a n x
n integer matrix that states the influence that each variable has over the rest of
variables of the system. This matrix is called theMatrix of Direct Influence, MDI
or, from now, M , and it is created on the basis of the experts’ own knowledge



and expertise. Every cell mij of M denotes to what extent variable i influences
variable j, and this value can be

– 0 if variable i has no influence on variable j.
– 1 if variable i has a weak influence on variable j.
– 2 if variable i has a strong influence on variable j.
– 3 if variable i has a very strong influence on variable j.

The cells mii of the diagonal are all set to 0. According to Godet [4], in real
systems only about 30 % of the cells of the MDI matrix have values different
from 0.

Identify the key variables. This is the main step of the method. Some important
measures that give us a clue of the degree of importance of the variables can
be computed from M after simple operations. The direct method estimates the
overall direct influence and direct dependence of a variable in the system directly
from the MDI matrix, while the indirect method estimates the overall influence
and dependence of a variable through other variables of the system.

a) Direct method. The direct influence of a variable k over the rest is com-
puted as the sum of all the values of row k of M . Similarly, the direct dependence
of a variable k from the rest is computed as the sum of all the values of column
k. Therefore we have two different measures associated with every variable k:

Ik =

n∑
j=1

mkj (k = 1, 2, ..., n) (1) Dk =
n∑

i=1

mik (k = 1, 2, ..., n) (2)

With this information, an influence ranking σM
I and a dependence ranking σM

D

are built by sorting the variables according to their influence and dependence,
respectively. Both rankings serve as a first indicator of the importance of each
variable in the system. These calculations are known as the direct method.

b) Indirect method. The influence and dependence rankings become stable
(i.e. don’t change) when they are built not directly upon matrix M but from
matrix Mδ with δ a low integer (according to Godet [4], 7 or 8 is an usual
value that guarantees ranking convergence). This means that the influence and
dependence rankings built upon M8 are the same as those built upon Mr for
any r > 8. The pow of a fuzzy matrix is defined in the same way that with a
matrix of scalars: Mp =

∏
pM .

It is possible to build other more informative rankings following the so-called
indirect method, which is an iterative process in two steps aimed at finding the
value δ that makes the rankings not change:

1. Initialization step. Let σI and σD be the influence and dependence rankings
obtained with the direct method. Initialize A to be the original MDI matrix
M .

2. Iteration:
– Do A = A x M and compute the new influence and dependence rankings

σA
I and σA

D with the resulting matrix, as explained above.



– Compare σA
I with σI and σA

D with σD.
– If both comparisons match, finalize. Otherwise, update the old rankings:

let σI = σA
I and let σD = σA

D and go to step 2 again.

Now let M ′ = Mδ which is the matrix obtained in the last iteration. M ′ is
known as the Matrix of Indirect Influence (MII). The indirect influence of a
variable k over the rest is computed as the sum of all the values of row k of
M ′. Similarly, the indirect dependence of a variable k from the rest is computed
as the sum of all the values of column k of M ′. Therefore we have another
two different measures computed over M ′ and associated with every variable k:

I ′k =
n∑

j=1

m′
kj (k = 1, 2, ..., n) (3) D′

k =
n∑

i=1

m′
ik (k = 1, 2, ..., n) (4)

3 Fuzzy MICMAC

The main idea to ease the implantation of MICMAC is to enable the user to
give qualitative values instead of quantitative ones in the influence matrix, and
use such qualitative values in all the calculations of the method. Many times,
it is easier for the experts to use linguistic terms when giving an evaluation of
certain aspects within their domains of expertise. Therefore, the use of linguistic
variables is a valid solution. Since Zadeh [17] introduced the concept of fuzzy
set and subsequently went on to extend the notion via the concept of linguis-
tic variables, the popularity and use of fuzzy sets has been extraordinary. We
are particularly interested in the role of linguistic variables as an ordinal scale
and their associated mathematical representation, in this case triangular fuzzy
numbers, to be used in the structural analysis. By a linguistic variable [16] we
mean a variable X whose values are words or sentences in a natural or artificial
language. A strict ordering must exist over the possible values of X so that all
the values are comparable. As mentioned above, it is also necessary to have a
mathematical structure behind such linguistic labels to enable calculations. Ev-
ery linguistic term (value) has an underlying fuzzy set [2, 8] associated to it. Here
we will focus on triangular fuzzy numbers. A triangular fuzzy number (TFN) is
a fuzzy number whose membership function is defined by three real numbers a,
b, c, where a < b < c. Thus a TFN can be mathematically described as [11]:

fA(u) =

 (u− a)/(b− a) a ≤ u ≤ b
(c− u)/(c− b) b < u ≤ c

0 otherwise
(5)

With regard to the fuzzy numbers, we will show only the mathematical op-
erations that will be used throughout the development of the algorithm. Let T1,
T2 be two positive triangular fuzzy numbers defined by the triplets [a1,b1,c1]
and [a2,b2,c2], respectively. Then we can define mathematical operations between
them such as:

– Addition: T1 ⊕ T2 = [a1 + a2, b1 + b2, c1 + c2]



– Multiplication: T1 ⊗ T2 = [a1 × a2, b1 × b2, c1 × c2]
– Distance between TFN’s:

d(T1, T2) =
|a1 − a2|+ 4|b1 − b2|+ |c1 − c2|

6
(6)

– Defuzzification method [5]

c(T1) =
a1 + 4b1 + c1

6
(7)

3.1 Fuzzy Modifications to MICMAC

In general, structural analysis is easier when the influence and dependence are
described in terms of linguistic labels. On the other hand, we also want to calcu-
late an absolute measure of how important a variable is within the system, yet
in an interpretable way. In those cases, the concept of linguistic label is more
suitable than a real number. In our proposal, we use a linguistic computational
model based on membership functions [7]. The experts use linguistic labels to
evaluate the influence between the variables, and all the computations of the
method are done with their underlying fuzzy numbers. We also output a lin-
guistic measure of the influence and dependence of each variable as described
in detail in steps 1 and 2 of the fuzzy direct method, later in this section. The
following aspects should be modified in the original MICMAC method to imple-
ment this new approach.

Define a set of linguistic labels. A set of linguistic labels must be defined by
the experts to evaluate the relations between the variables. A first approach
may use the labels {No influence, Weak influence, Strong influence, Very strong
influence}; we will abide to this division during the remainder of this paper but
any other division and number of labels can be valid as well. We will refer to
these labels as {l0, l1, ..., lN} so in our case N = 3. The universe of discourse and
the shape and parameters of the underlying TFN’s may also be predefined or
customized by the user. This way the original MDI becomes a fuzzy MDI, i.e. a
matrix in which every cell is a linguistic label with a TFN associated to it, as
shown in Table 1. The cells that are set to No influence are ignored (discarded)
for all the computations because No influence is not really a linguistic label but
is equivalent to an empty cell.

Table 1. Linguistic MDI

V1 V2 ... Vn

V1 No influence Weak . . . Very strong

V2 Strong No influence . . . Strong

... . . . . . . . . . . . .

Vn Weak No influence . . . No influence



Compute the direct and indirect dependence and influence. Both the direct and
the indirect method remain unchanged from a high-level perspective. It must
be only taken into account that the sums of the cells indicated in expressions
(2), (3), (4), (5) now turn into sums of TFN’s and the product of fuzzy matrices
should now be defined in terms of sums and products of the TFN’s of the cells as
defined in the previous section. Thus the direct influence and direct dependence
of a variable are now TFN’s, as well as the indirect influence and the indirect
dependence.

However, an additional step should be considered here. Since the direct and
indirect influence and dependence are TFN’s, they should be interpretable also
in linguistic terms: it would be desirable to know for instance if the resulting
direct influence of a variable is Weak, Strong or Very strong because that is more
informative than having only the triplet [a, b, c] of the resulting TFN. Actually
this is a very important point and in the case of the indirect method it requires
adapting the universe of the discourse of the TFN’s obtained as results of the
computations to a new scale in order to assign a linguistic term to every output
TFN. In other words, it is necessary to define the underlying TFN’s for the labels
{No influence, Weak influence, Strong influence, Very strong influence} when
they are referred to the resulting direct/indirect influence/dependence instead
of referring to the influence that one variable has over another variable. Note
that both universes must be different because the TFN’s representing the overall
direct and indirect influences and dependences will have much higher values [a,
b, c] than the original labels, so it is necessary to have a way to map such big
triplets to their corresponding linguistic labels.

a) Fuzzy direct method: in addition to obtaining a ranking of the vari-
ables according to their (fuzzy) influence and dependence, the secondary goal is
to assign linguistic labels to the TFN’s representing such direct influence and
direct dependences to make them more informative. The steps are:

1. Computation of the TFN defining each linguistic term at the output. For
each p = 1, ..., N do:
(a) Take the MDI matrix containing linguistic labels and substitute all the

cells that are different of No influence by the linguistic label lp. Let Mlp

be the matrix after the substitutions, which we will call the p-th ideal
matrix.

(b) For every variable k compute the fuzzy direct influence I
lp
k and fuzzy di-

rect dependence D
lp
k overMlp . As a result, we obtain two lists {[ak, bk, ck],

k = 1, ..., n}lpinf and {[ak, bk, ck], k = 1, ..., n}lpdep of TFN’s.
(c) Compute the minimum of the left-side values of influence and dependence

of all the TFN’s obtained, the maximum of the right-side values and the
median of the central values:

a
lp
inf = min{ak, k = 1, ..., n}lpinf
c
lp
inf = max{ck, k = 1, ..., n}lpinf
b
lp
inf = median{bk, k = 1, ..., n}lpinf

a
lp
dep = min{ak, k = 1, ..., n}lpdep
c
lp
dep = max{ck, k = 1, ..., n}lpdep
b
lp
dep = median{bk, k = 1, ..., n}lpdep



These are, respectively, the left-side, right-side and the central values
of the TFN’s that we will use as references to categorize the TFN’s of
direct influence and direct dependence.

(d) Now we have two new TFN’s δinflp
= [a

lp
inf , b

lp
inf , c

lp
inf ] and δdeplp

= [a
lp
dep,

b
lp
dep, c

lp
dep] that define two linguistic labels whose linguistic term is lp (the

same as the original) but whose underlying TFN’s are different in order
to properly adapt to the new range of values of the fuzzy direct influence
and fuzzy direct dependence.

2. Compute influence and dependence as TFN and assign a linguistic term. Up
to now we have obtained two sets of linguistic labels, one for influence called
∆inf = {δinf1 , ..., δinfN } and one for dependence called ∆dep = {δdep1 , ..., δdepN },
which are the same as the original but have different underlying TFN’s. Now
for each k = 1, ..., n:
(a) Compute the fuzzy direct influence Ik and fuzzy direct dependence Dk

of variable k over the original fuzzy MDI matrix M .
(b) Find the linguistic label in ∆inf that is closest to Ik according to the

distance stated in (6), and assign that label to Ik. Do the same with Dk

and the set of labels ∆dep.
1

3. Build the fuzzy influence and dependence rankings. First, defuzzify the values
Ik and Dk according to (7) to obtain the crisp values Īk and D̄k. Then build
the influence and dependence rankings by sorting the variables according to
such crisp influence and dependence values respectively, Īk and D̄k, i =
1, ..., n.

Notice that after step 2(b), the fuzzy direct influence and fuzzy direct de-
pendence of each variable are much more informative than the integer numbers
of the original MICMAC method, as they have a linguistic term associated.

b) Fuzzy indirect method: the steps are exactly the same as in the direct
method except step 1(a) which should be replaced by the following:

1. (a) Take the MDI matrix containing linguistic labels and substitute all the
cells that are different of No influence by the linguistic label lp. Then,
using the addition and product for TFN’s defined above, compute the 8th
power of this matrix. Let Mlp be the matrix after the power operation,
which we will call the p-th ideal matrix.

Again, indirect influence and dependence rankings are obtained from the
indirect method, together with two linguistic labels per variable describing the
absolute influence and dependence of the variable in a linguistic way. As can
be seen, the main concern of the above algorithms is to define properly the
shape of the TFN’s that underlie the output linguistic terms. If this is achieved,
the TFN obtained at the end representing the overall direct (indirect) influence
(dependence) of a variable can be assigned an interpretable linguistic term. The

1 The TFN’s Ik and Dk computed initially are not replaced; only a linguistic label is
assigned to them.



calculation process itself with TFN’s is basically analogous to that proposed by
Godet for the crisp discrete valuations 1, 2 and 3, but the latter does not output
any interpretable information about such overall dependence or influence.

4 A Real Example

Our fuzzy methodology has been applied to a real case study about the deter-
minants of the rural spaces on the 2010 time horizon. This example comes with
the MICMAC tool included in the software package developed by the LIPSOR
research group2 so the results can be compared. The system has 50 variables.
Some of them are listed below with informational purposes.

1. Metropolization
2. Organization of the international market
3. Food demand
4. Contribution of migration
5. Job market
6. Elderly
7. Social politics

The results are shown in Tables 2, 3, 4 and 5. The ranking obtained with Godet’s
crisp method is shown next to the one obtained with our fuzzy MICMAC pro-
posal for comparison. As can be seen, both rankings are almost identical in the
direct method but also very similar in the indirect method. This represents a
quite remarkable result since the operations involving fuzzy matrix products fol-
lowed by defuzzifications carried out by the indirect method are rather different
from the original crisp operations but lead to similar results, which confirms the
validity of our approach. In addition, we were able to output linguistic labels for
the influence and dependence of the variables in the direct method, which are
more informative than the crisps values as mentioned in previous sections.

5 Conclusions and Further Work

A fuzzy extension has been proposed to the MICMAC method for structural
analysis in the scenario method for prospective studies. It allows to give linguistic
valuations to the influence of a variable over the others, and to get a qualitative
measure at the output representing the overall influence and dependence of a
variable in the system. The results are easier to interpret and the qualitative
information about the absolute overall influence and dependence of a variable
can be understood by the user, which would not occur with the crisp values
of the original MICMAC method. Our proposal has shown good results when
compared with the original crisp MICMAC over a real example. As future work
we will focus on solving the retranslation problem in the indirect method [15] in
order to get more informative labels.

2 http://en.laprospective.fr/methods-of-prospective/downloading-the-
applications.html



Table 2. Prominent variables ranked
according to direct influence with the
crisp and fuzzy MICMAC methods

Variable
Crisp

Label
Crisp Fuzzy

infl. rank rank

37 59 V. strong 1 1
5 49 V. strong 2 2
4 46 V. strong 3 3
32 46 V. strong 4 4
33 43 V. strong 5 6
19 43 V. strong 6 5
18 42 Strong 7 7
14 42 Strong 8 8
23 41 Strong 9 10
25 41 Strong 10 9

Table 3. Prominent variables ranked
according to direct dependence with
the crisp and fuzzy MICMAC methods

Variable
Crisp

Label
Crisp Fuzzy

depend. rank rank

37 59 V.strong 1 1
24 52 V.strong 2 2
32 51 V.strong 3 3
35 51 V.strong 4 4
5 50 V.strong 5 5
14 49 V.strong 6 6
46 48 V.strong 7 7
43 46 V.strong 8 8
20 45 V.strong 9 10
48 45 V.strong 10 9

Table 4. Prominent variables ranked
according to indirect influence with the
crisp and fuzzy MICMAC methods

Variable
Crisp

Label
Crisp Fuzzy

infl. rank rank

37 5.57· 1013 Weak 1 1
19 4.82· 1013 Weak 2 5
5 4.66· 1013 Weak 3 3
25 4.34· 1013 Weak 4 7
32 4.28· 1013 Weak 5 2
4 4.23· 1013 Weak 6 4
23 4.21· 1013 Weak 7 8
18 4.18· 1013 Weak 8 6
14 4.07· 1013 Weak 9 10
24 3.83· 1013 Weak 10 12

Table 5. Prominent variables ranked
according to indirect dependence with
the crisp and fuzzy MICMAC methods

Variable
Crisp

Label
Crisp Fuzzy

depend. rank rank

37 6· 1013 Weak 1 1
35 5.20· 1013 Weak 2 2
43 5.01· 1013 Weak 3 7
14 4.94· 1013 Weak 4 4
24 4.72· 1013 Weak 5 3
32 4.63· 1013 Weak 6 6
46 4.57· 1013 Weak 7 5
5 4.43· 1013 Weak 8 8
4 4.40· 1013 Weak 9 12
48 4.31· 1013 Weak 10 11
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