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Abstract—Companies that want to be competitive must make
use of good practices to anticipate the future by analyzing the
possible effects of today’s decisions on their own long-term
development. Scenario planning is among the most extended
approaches to accomplish this. One of the techniques often
used in scenario planning is Morphological Analysis, which
aims to explore the space of feasible futures in a systematic
way by analyzing all the combinations of the possible states
of the variable that compose the system under study. Each
of this combinations represent a possible future scenario. This
work focuses on a particular variant known as the MORPHOL
method, in which every scenario is evaluated in terms of the
probability it eventually arises. This is computed using the
marginal probability estimates of the hypothetical variables’
states involved in the scenario, which are given by human experts.
This method presents two drawbacks: first, the probabilities have
to be expressed by numerical values which makes difficult its
estimation by humans and does not capture its uncertainty; and
second, it examines the scenarios basing only on their probability,
thus it may ignore scenarios that are interesting but not the very
probable. In order to ease the experts’ task and capture their
opinions in a better way, we introduce Computing with Words
techniques. For solving the second shortcoming, we apply Multi-
criteria Decision Making to uncover good scenarios according
to several criteria jointly including probability. The result is a
novel linguistic multi-criteria method for morphological analysis
that has been successfully applied to a real problem and thus
deserves further research.

I. INTRODUCTION

Nowadays, business markets are in constant change. Com-
panies competing for a place in them are aware of the need of
specific tools to face complex decisions that may have a great
impact in the future, especially those concerning innovation.
The use of good practices is a must in order to anticipate
the future by analyzing how their present decisions can affect
their own long-term development. One of the most widely
employed techniques for this purpose is Scenario planning [1],
[2], [3], which consists of a set of tools that emphasize the
systematization of creative thinking to uncover possible future
scenarios.

Although the definition varies depending of the author, a
scenario can be defined as a future situation together with
the steps that lead from the current state to it. The main
strength of scenario planning methodologies is their systematic
basis, assisted by computerized tools which take into account
possibilities that may have escaped to ad-hoc human studies

and highlight implications and impact of present decisions.
Many proposals have been presented in the Scenario plan-

ning literature [3]. One of them is Morphological Analysis
(MA) [4], originally conceived as a more general problem
solving technique that has been successfully applied to the
scenario planning field. The key aspect of MA is the sys-
tematic generation of all possible combinations of values that
the variables involved in a problem can take, so that every
possibility is taken into account, even those that are unfeasible
due to physical, logical, social or material reasons, which are
later discarded.

The present contribution focuses on the MORPHOL method
[5], an adaptation of MA proposed by M. Godet as part of
a general toolbox1 in which morphological analysis is one
of the stages of a prospective study. The particularity of
MORPHOL is the evaluation of every combination in terms of
the probability of its constituents, in order to obtain a general
picture of what the future may look like. This evaluation is
based on the subjective opinions of a panel of experts. Hence
the result is vague and imprecise – something inherent to the
human language and judgments. However such vagueness is
not properly addressed by MORPHOL since the experts have
to express the probabilities as crisp numbers.

To overcome these issues and ease the task of the experts to
evaluate the alternatives in a more natural way and according
to more criteria apart from probability, we propose the use
of soft-computing techniques such as Computing with Words
(CW) and linguistic Multi-Criteria Decision Making (MCDM)
into the morphological analysis stage. This work presents
a novel procedure for morphological analysis in scenario
planning that incorporates these elements. It is intended as a
continuation of the research on scenario planning tools carried
by the authors [6].

The contribution is structured as follows. Morphological
analysis and the MORPHOL method are reviewed in Section
II. Our model is presented in Section III together with the
fundamentals of the techniques employed, mainly linguistic
labels and MCDM. Section IV contains a sample problem
where we apply our method together with a discussion of the
results. Section V is devoted to conclusions and further work.

1The software tools can be found at http://en.laprospective.fr /methods-of-
prospective/downloading-the-applications.html



II. MORPHOLOGICAL ANALYSIS

General Morphological Analysis [4] was first proposed as a
technique to tackle complex problems with non-quantifiable
variables. Despite being originally applied to a number of
problems of different nature, mainly modular system design
[7], in the last decade Ritchey [8], [9], [10], [11] used MA in
scenario planning. The steps of the method are listed below
(to better illustrate them we used the example of a simplistic
car design problem):

1) Identify the variables of interest in the problem. Car
design problem: Gear, Engine and Energy Source.

2) Identify the possible (categorical, non-numeric) values
each variable can take: Gear={Manual (M), Automatic
(A)}, Engine={Combustion (C), Electric (E), Hybrid
(H)} and Energy Source={Gasoline (G), Diesel fuel (D),
Electricity (L)}.

3) Identify inconsistencies between values of different vari-
ables, and summarize them in a cross-consistency ma-
trix. For instance, an electric engine is not compatible
with gasoline or diesel fuel as energy source.

4) Generate all feasible combinations or alternative solu-
tions for the problem, in a combinatorial manner. A
solution is a situation in which each variable takes
one value in its corresponding domain, e.g. (Manual,
Combustion, Diesel fuel), (Automatic, Hybrid, Diesel
fuel), etc.

Steps 1 and 2 are very important from the point of view of
the success of the method, but no specific formal procedure is
indicated for them. This knowledge is usually extracted from
domain experts, who also provide a cross-consistency matrix
(step 3) containing a degree of consistency or compatibility for
every pair of values between two different variables. The cross-
consistency matrix of our car design example may look like
Table I. A consistency degree of 1 indicates an incompatible
pair of values, for instance Electricity as Energy Source and
Combustion as Engine type: a totally electric car cannot
have a combustion engine. This means that combinations
of the form (·, Combustion, Electricity) cannot arise (are
unfeasible), no matter the value of the Gear (“·” represents
an indifference), because variables Engine and Energy source
cannot take the values Combustion and Electricity within the
same combination. A consistency degree of 2 means partial
compatibility, and 3 is total compatibility. Although three
different compatibility degrees have been employed in the
example, any other scale is also possible.

As conceived by Ritchey, MA is a computerized interactive
decision support tool. After providing the cross-consistency
matrix to the program, the user fixes the values of several
variables involved in the problem, and then launches a com-
binatorial analysis that generates and displays all the feasible
combinations of the remaining variables, where feasibility is
expressed in terms of mutual consistency of the values taken
by all the variables. This way, it provides an overview of all
the situations that may happen because they are compatible
with the values fixed by the user.

TABLE I
EXAMPLE OF A CROSS-CONSISTENCY MATRIX IN THE CAR DESIGN

PROBLEM WITH THREE DIFFERENT CONSISTENCY GRADES 1,2,3

Gear Engine
M A C E H

Engine
C 3 3
E 2 3
H 2 3

Energy source G 3 3 3 1 2
D 3 3 3 1 3
L 3 3 1 3 3

The method does not evaluate the generated combinations
using numerical values apart from the internal consistency of
the values involved in each alternative.

A. MA with MORPHOL

As aforementioned, MORPHOL can be seen as an adapta-
tion of MA to scenario planning. In MORPHOL terminology,
every value that a variable can take is called an hypothesis. For
instance, in an economic study, a variable could be “most fre-
quent type of business in the city”, and its possible hypotheses
would be {Traditional familiar businesses, Technological mid-
sized businesses, Large multinationals}. The program does
not make use of a cross-consistency matrix but the user can
manually introduce the groups of incompatible hypotheses of
two or more variables, which will be used to discard unfeasible
combinations (scenarios), i.e. those containing some of the
forbidden groups indicated.

Before generating the scenarios, the user can also specify
the probability that a variable takes each of its hypotheses,
i.e. he/she provides a probability distribution over the hy-
potheses of the variable. Then, the overall probability that the
scenario eventually arises is the joint probability that every
variable takes the corresponding hypothesis of the scenario.
Assuming that the variables are all mutually independent,
this is computed as the product of the marginal probabilities
of occurrence of every hypothesis involved. Turning to our
example, a feasible scenario, say (Manual, Hybrid, Electricity)
has a joint probability of:

p(Gear =M,Engine = H,Energy source = L) =

p(Gear =M) · p(Engine = H) · p(Energy source = L)

These marginal probabilities must be provided by the user.
The output of the system is a list with all feasible scenarios

and their joint probability.
Beyond the validity of the variable independence assump-

tion, which is clearly unrealistic in most real problems, some
issues arise when following this approach. They are pointed
in the next section.

III. FUZZY LINGUISTIC MULTI-CRITERIA
MORPHOLOGICAL ANALYSIS

A. Motivation

As stated in [12], experts are unwilling to give precise
numerical estimates of their opinions or thoughts, and even
more when the result should be a probability distribution. Such



numbers are usually inaccurate and do not capture the inherent
uncertainty of their estimates, thus it is more reasonable to
allow them providing their valuations in natural language. In
this sense, the use of a linguistic variable Probability whose
values are linguistic terms may be helpful, for two reasons:
firstly, it eases the experts’ task in evaluating the probability
of every hypothesis by allowing them to just give linguistic
assessments, such as unlikely, very likely, it may, etc; and
secondly, it can capture the uncertainty associated to the
subjective character of these terms.

Another aspect that could be improved in MA is the way
a scenario is evaluated. MORPHOL only uses the proba-
bility criterion, but many other are possible. In addition, it
would also be desirable an overall measure that takes into
account several criteria simultaneously, so that scenarios can
be compared in a more reliable and robust way. This could be
accomplished by introducing MCDM models that deal with
distinct evaluation criteria. Moreover, such techniques also
allow for the aggregation of the opinions of several experts,
which was not possible in conventional MORPHOL or MA.
However, at this preliminary stage of research we will restrict
to only one expert .

In what follows, a new MA proposal is presented to cope
with these shortcomings.

B. Linguistic Probabilities

In our approach, the probability of a hypothesis is a lin-
guistic variable. In order to capture and handle the vagueness
of linguistically expressed probabilities, we consider more
suited a computational model based on membership func-
tions of the labels [13], [14]. We employ trapezoidal fuzzy
numbers (TrFN) represented as four-tuples of real numbers,
Ã = (a, b, c, d), a ≤ b ≤ c ≤ d as the mathematical
structure that enables computations with linguistic labels.
For the linguistic probabilities we employ the same values
suggested in [12], which were elicited after psychological
studies to determine which ranges of probability are generally
considered by humans as most likely, meaningful chance, etc.
(Fig. 1). Note some terms carry more uncertainty than others.

It must be noticed that the introduction of the linguistic
variable Probability poses specific difficulties not found in
other linguistic variables, since the constraint of being a well-
defined probability distribution must still be met. To properly
deal with this, we follow the approach suggested in [15].
Assume we define a linguistic probability distribution over
the possible hypotheses a variable of our problem can take.
Let I be the set of these values. Then for each i ∈ I we use
a linguistic term to describe the probability that the variable
eventually takes such value. Let πi be the fuzzy number
underlying the linguistic probability label assigned to value
i. In order for the linguistic probability to be well-defined
[15], it must hold that the sum of all the fuzzy numbers
associated to the labels contains2 the singleton fuzzy number
1χ, defined as µ1χ(x) = 1 if x = 1, and 0 otherwise. Formally,

2Ã ⊇ B̃ ↔ µÃ(x) ≥ µB̃(x)∀x ∈ R

0,0

0,5

1,0

0 0,2 0,4 0,6 0,8 1

Extremely unlikely (EU) Very low chance (VLC) Small chance (SC)
It may (IM) Meaningful chance (MC) Most likely (ML)
Extremely likely (EL)

Fig. 1. Membership functions of the possible labels for the linguistic variable
probability

∑
i∈I πi ⊇ 1χ. This condition should be checked when the

experts evaluate the probability of the hypotheses of a variable
using linguistic labels.

According to [15], Zadeh’s extension principle [13] should
be applied to operate with the underlying fuzzy numbers of
probability labels. Although this is simple for the addition of
TrFNs, the product and division do not yield another TrFN and
hence the usual approximation has been taken, i.e. computing
the 0-cut and the 1-cut and approximating a TrFN with them.
Operations with TrFNs have been defined as follows. Let Ã =
(a1, a2, a3, a4), B̃ = (b1, b2, b3, b4) be two TrFNs, then
• Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4).
• Ã⊗ B̃ = (a1· b1, a2· b2, a3· b3, a4· b4).
• Ã� B̃ = (a1/b4, a2/b3, a3/b2, a4/b1).
• α· Ã = (α· a1, α· a2, α· a3, α· a4), α ∈ R.
• Defuzzification: defuzz(Ã) = (a1 + 3a2 + 3a3 + a4)/6.
• Distance: d(Ã, B̃) = (|a1−b1|+3|a2−b2|+3|a3−b3|+
|a4 − b4|)/6.

To compute the overall linguistic probability of a sce-
nario, the TrFNs underlying the linguistic probability labels
assigned to its constituent hypotheses are multiplied using
the fuzzy multiplication operator ⊗. If the problem involves
n variables and we have assigned linguistic probabilities
to the hypotheses that constitute the scenario we want to
evaluate, whose underlying TrFNs are (Ã1, ..., Ãn), then the
linguistic joint probability of the scenario is P̃ = ⊗ni=1Ãi =
(
∏
i ai,

∏
i bi,

∏
i ci,

∏
i di).

C. Multiple Criteria in Scenario Evaluation

Although probability is an important criterion, there exist
other criteria that may help us uncover interesting scenarios
despite not being among the most probable. We suggest three
evaluation criteria in addition to probability:

1) Compatibility: although totally unfeasible scenarios are
discarded, the remaining ones should also be evaluated ac-
cording to partial or total compatibility. A scenario that is
partially compatible will most likely be less feasible, and thus
less relevant, than other with total compatibility.



2) Desirability: most desirable scenarios are those that we
should try to reach, as they represent situations that are very
favorable for our interests [16].

3) Catastrophicity: this criterion is helpful to indicate dan-
gerous scenarios that should be avoided since involve serious
risks. This criterion is not opposite to desirability, since while
a scenario could be undesirable, this may not represent a threat
for our interests [16].

For analogous reasons as those explained for the probability,
we model these criteria as linguistic variables to allow the ex-
perts expressing their viewpoints in a linguistic manner. Since
they are not probabilities, they can be evaluated using any
suitable term set, possibly different from Fig. 1. We propose
the next three linguistic labels [9] to describe the compatibility
degree: {Not compatible(N), Partially compatible(P), Totally
compatible(T)}; and the next five for desirability and catas-
trophicity: {Very low(VL), Low(L), Moderate(M), High(H),
Very high(VH)}. The underlying TrFNs are given below. They
are actually Triangular FNs as the two central values match:

Compatibility: Desirability and catastrophicity:
- N = (0,0,0,1); - VL = (1,1,1,2); - H = (3,4,4,5);
- P = (0,1,1,2); - L = (1,2,2,3); - VH = (4,5,5,5);
- T = (1,2,2,2); - M = (2,3,3,4);

In a problem with n variables, the aggregated fuzzy desir-
ability and catastrophicity of a scenario s are calculated as:

Desirs =
1

n

(
⊕nj=1D̃esir

j
s

)
; Catasts =

1

n

(
⊕nj=1C̃atast

j
s

)
;

where D̃esirjs and C̃atastjs are the desirability and catas-
trophicity TrFNs of the hypothesis taken by variable j in s.
The aggregated fuzzy compatibility is computed as

Compats =
r

√(
⊗i<j C̃ompatijs

)
where C̃ompatijs is the compatibility of the hypotheses taken
by the variables i and j, and r =

(
n
2

)
indicates the number

of mutual hypothesis compatibilities that must be checked in
a scenario. The aggregated compatibility value is also used to
discard scenarios in which this value matches (0, 0, 0, · ). In
that case the scenario is discarded since it means one or more
of the mutual compatibilities involved were Not compatible.

D. Fuzzy TOPSIS for Scenario Ranking

The introduction of several criteria requires a MCDM
method to rank the scenarios according to multiple criteria
simultaneously. MCDM tools enable the user to assign dif-
ferent weights to the criteria in order to fit his/her particular
views about their relative importance within the problem. They
also allow for sensitivity studies. In this sense, our method
uses a linguistic variant of the TOPSIS method (Technique for
Order Preference by Similarity to Ideal Solution) [17] to rank
the scenarios according to the criteria considered. Although
MCDM had been suggested before for morphological design
[7], unlike our method, it was not a linguistic proposal and

did not fit the particularities of scenario planning. First, we
introduce two operations employed during the algorithm:
• Normalization: let Ãi = (ai, bi, ci, di), i = 1, ..., n be a

collection of n TrFNs we have to normalize, and let t =
maxi{di : i = 1, ..., n}. Then the normalized TrFNs are
computed like Ã′i = (1/t)· Ãi = (ai/t, bi/t, ci/t, di/t).

• Ideal-max and Ideal-min of a collection of TrFNs:
Imax(Ã1, ..., Ãn)=(max{ai},max{bi},max{ci},max{di})
Imin(Ã1, ..., Ãn)=(min{ai},min{bi},min{ci},min{di})

The main steps of TOPSIS are summarized below.
1) Identify the n criteria (we propose n = 4 as mentioned

above), generate the m alternatives (scenarios) and eval-
uate them according to each criterion. Let J be the
subset of criteria to be maximized, and J ′ the subset
of criteria to be minimized, so |J |+ |J ′| = n.

2) Identify the (linguistic) weights of the criteria w̃1, ..., w̃n
and normalize them, w̃′j = w̃j/

∑n
t=1 w̃t.

3) Discard those scenarios whose constituent hypotheses
are incompatible.

4) Normalize the TrFNs of every column separately to
obtain the normalized matrix (ñij)

j=1,...,n
i=1,...m .

5) Build the weighted normalized matrix (ṽij)
j=1,...,n
i=1,...m as

ṽij = w̃i ⊗ ñij .
6) Determine the ideal positive and ideal negative scenar-

ios, A+ = (ã+1 , ..., ã
+
n ) and A− = (ã−1 , ..., ã

−
n ). Each

component is computed as

ã+j =

{
Imax(ṽ1j , ..., ṽmj) if j ∈ J
Imin(ṽ1j , ..., ṽmj) if j ∈ J ′

(1)

ã−j =

{
Imin(ṽ1j , ..., ṽmj) if j ∈ J
Imax(ṽ1j , ..., ṽmj) if j ∈ J ′

(2)

7) Compute the (crisp) distance between each scenario i
and the ideal positive and negative scenarios:

d+i =

n∑
j=1

d(ṽij , ṽ
+
j ); d−i =

n∑
j=1

d(ṽij , ṽ
−
j ) (3)

8) Compute the relative proximity index for each scenario,
Ri =

d−i
d+i +d−i

. The closer to 1, the better the scenario.
9) Sort the scenarios decreasingly according to their Ri.

IV. EXAMPLE OF APPLICATION

A. Problem Description

In order to illustrate how the method is applied, we have
selected the real example studied in [18]. It is aimed at
generating global scenarios that may arise taking into account
the evolution of some global economic, social and political
factors. The six variables involved and the probabilities of
their hypotheses are listed in Table II. An asterisk indicates
the probability of a dummy (meaningless) hypothesis used
by MORPHOL to make sure probabilities add to 1. This
dummy hypothesis would represent all the possible states of
the variable except those specified in their hypotheses. For
details on the semantics of the hypotheses, refer to [18].



TABLE II
CRISP MARGINAL PROBABILITIES GIVEN BY EXPERTS

Variable H1 H2 H3 H4 H5
V1 (Demography) 0.45 0.35 0.1 0.1 (*)
V2 (Geopolitical context) 0.3 0.3 0.15 0.25 (*)
V3 (Global. of economy) 0.3 0.4 0.15 0.15 (*)
V4 (European integration) 0.3 0.4 0.1 0.2 (*)
V5 (Average GDP in EU) 0.15 0.3 0.1 0.1 0.35(*)
V6 (Unemployment) 0.15 0.3 0.3 0.15 0.1(*)

TABLE III
LINGUISTIC EVALUATION ACCORDING TO PROBABILITY (TOP OF EACH

CELL), DESIRABILITY (CENTER) AND CATASTROPHICITY (BOTTOM)

Variable H1 H2 H3 H4 H5

V1
IM SC VLC VLC*

(Demography) VL L H -
M L VL -

V2
SC SC VLC SC*

(Geopolitical context) VL L VH -
M L VL -

V3
SC IM VLC VLC*

(Globalization of economy) L L H -
M VL VL -

V4
SC IM VLC VLC*

(European integration) L M VH -
L VL VL -

V5
VLC SC VLC VLC SC*

(Average GDP in the UE) L M H VH -
M L VL VL -

V6
VLC SC SC VLC VLC*

(Unemployment) VH H L VL -
VL VL L H -

For translating crisp probabilities into linguistic ones, we
simply select the label of Fig. 1 for which the crisp probability
has the highest membership degree. The evaluation according
to compatibility, desirability and catastrophicity was done by
one of the authors who, playing the role of a domain expert,
gave his opinion for every hypothesis separately (Table III).
The dummy hypothesis was not evaluated for any variable
(except for the probability criterion in order to check the
linguistic probability distribution is well formed for each
variable) nor used in scenario generation, since it does not
make sense to give a value for the compatibility, desirabil-
ity or catastrophicity of a hypothesis that represents all the
possible states of a variable except those already specified.
The linguistic cross-consistency matrix is not shown due to
space constraints. In a good scenario, probability, desirability
and compatibility should be maximized while catastrophicity
should be minimized.

B. Experiments and Results

The number of scenarios generated initially was 3 × 3 ×
3 × 3 × 4 × 4 = 1296. After computing the aggregated
compatibility for every scenario, only 248 scenarios were
finally retained. The rest were found unfeasible because their
aggregated compatibility TrFN was of the form (0, 0, 0, · ).
Hence m = 248 alternatives were passed to the TOPSIS
method, considering n = 4 criteria.

Our first aim is to compare our ranking with the one
obtained by MORPHOL, to be sure the results make sense.

TABLE IV
RANKING COMPARISON TAKING PROBABILITY AS THE SINGLE CRITERION

Scenario P/Mean RankG RankL Prox. index Ri

1 2 2 2 2 3 12.44 1 1 1
1 1 2 2 2 3 12.44 1 1 1
2 1 2 2 2 3 9.68 3 3 0.625
2 2 2 2 2 3 9.68 3 3 0.625
1 1 1 2 2 3 9.33 5 3 0.625
1 2 1 2 2 3 9.33 5 3 0.625
1 1 2 1 2 3 9.33 5 3 0.625
1 2 2 1 2 3 9.33 5 3 0.625

Table IV shows how scenarios are sorted according to Godet’s
MORPHOL (RankG) and to our Linguistic method (RankL)
when a (crisp) weight of 1.0 is assigned to probability and 0 to
the other criteria. Godet uses the P/Mean measure, defined as
the ratio between the probability of a scenario and the average
probability of all scenarios, while we use the proximity index
Ri defined previously. Both rankings are very similar, as
expected. Further, the table shows a lot of ties in the ranking,
specially in our method. Although this could be seen as a
drawback of our proposal, it is indeed an advantage as it
is indicating that all those scenarios with RankL = 3 are
indistinguishable in practice, whenever a bit of uncertainty
is present in the probabilities. That is the reason why several
crisp probabilities very closed to each other were translated to
the same linguistic label, which in turn produced this result.
In other words, the distinction made by MORPHOL between
scenarios with P/Mean = 9.68 and those with 9.33 is not real,
since the difference between both values is very small and
therefore, in practice, it can be interpreted as no difference
at all when the experts’ marginal probability estimates are
affected by uncertainty to a certain extent.

Note, in addition, that our method was not conceived to con-
sider a single criterion isolately but in conjunction with other
ones, which makes the alternatives much easier to distinguish
since ties in the proximity index are almost impossible in those
cases. Moreover, in a real environment, experts are expected
to use linguistic labels directly, hence no transformation from
numerical to linguistic values has to be done.

Our second aim is to show the usefulness of our method
in finding interesting scenarios beyond their probability, and
to study the effect of the weights given to criteria. In order
to do this, we have tested different sets of weights. Although
TOPSIS admits fuzzy weights of a linguistic weight evalua-
tion, crips values (represented as singleton TrFNs) have been
used at this (preliminary) stage of research. Set of weights (1)
gives a weight of 0.25 to every criterion; set (2) gives a weight
of 0.7 to the probability and 0.1 to the rest; and set (3) gives
1 to the probability and 0 to the rest.

The results are summarized in Table V. For each set of
weights (1), (2) and (3), the proximity index and the rank of a
scenario are shown. Table V(a) is sorted by Rank(1), thus only
the best scenarios according to set of weights (1) are shown.
Next to each scenario, we also display information of how the
scenario would be rated according to sets of weights (2) and
(3). This way, we can see that the best alternatives according



TABLE V
RANKING COMPARISON OF TWO CRITERION WEIGHT BALANCES

Scenario R
(1)
i Rank(1) R

(2)
i Rank(2) R

(3)
i Rank(3)

3 3 3 3 4 1 0.811 1 0.380 29 0 248
3 3 3 3 4 2 0.794 2 0.375 34 0.004 243
3 3 3 2 4 1 0.775 3 0.369 37 0.010 242
3 3 3 2 4 2 0.759 4 0.369 36 0.024 222
3 3 3 3 3 2 0.697 5 0.329 58 0.004 243
3 2 3 3 4 1 0.671 6 0.317 68 0.004 243
3 2 2 2 4 1 0.666 7 0.356 45 0.083 153
3 2 2 2 4 2 0.663 8 0.398 25 0.164 88
3 3 3 2 3 2 0.662 9 0.323 64 0.024 222
(a) Best scenarios according to set of weights (1): (0.25/0.25/0.25/0.25)

Scenario R
(1)
i Rank(1) R

(2)
i Rank(2) R

(3)
i Rank(3)

1 2 2 2 2 3 0.58918 25 0.80717 1 1 1
1 1 2 2 2 3 0.54553 36 0.78668 2 1 1
2 2 2 2 2 3 0.50282 55 0.56773 3 0.625 3
1 2 2 1 2 3 0.47555 76 0.55493 4 0.625 3
1 2 1 2 2 3 0.47041 80 0.55252 5 0.625 3
2 1 2 2 2 3 0.45917 90 0.54725 6 0.625 3
1 1 2 1 2 3 0.43190 104 0.53445 7 0.625 3
1 1 1 2 2 3 0.42676 108 0.53204 8 0.625 3
1 2 2 2 4 2 0.54284 37 0.52757 9 0.514 9

(b) Best scenarios according to set of weights (2): (0.7/0.1/0.1/0.1)

to (1) are ranked in a notably worse position in (2) and, more
interestingly, they are among the worst if we only consider the
effect of the probability alone, as done in (3). The reason is
that such scenarios, despite being improbable, are very good in
all the other criteria and hence they still get a high proximity
index according to set of weights (1).

Table V(b) is sorted by Rank(2), hence probability has much
more importance than the other criteria. The ranking obtained
in this case is very different from Table V(a), and is now
very similar to a strict ordering of the probabilities. Notice,
however, that taking into account more criteria allows to break
the ties generated when considering probability alone (as done
by set of weights (3)). Possibly this weighting scheme is more
suitable for our interests, since all probable scenarios will get
a good rank, and the information of the other criteria will be
used to discriminate among them. In addition, it is unlikely
that very improbable scenarios get a good rank, even though
they may perform very well in the other criteria, because the
weight given to probability is very high and cannot be easily
compensated by the rest of criteria.

The behaviour exhibited by other balances of the criteria
such as 0.4 for probability and 0.2 for the rest, not shown here
due to space constraints, was in between: very probable and
very improbable scenarios were intermixed on top positions of
the proximity index ranking. This demonstrates that a MCDM
approach is able to find scenarios that are interesting beyond
their probability, thus deserves further research.

V. CONCLUSIONS AND FURTHER WORK

We have proposed a linguistic method for the morphological
analysis stage of scenario planning, extending existing a crisp
method with CW and MCDM techniques. Our approach
eases the task of the experts when evaluating hypotheses that
compose an scenario by allowing them to express their views

in linguistic terms, and helps in uncovering scenarios that
may be worth considering, despite not being among the most
probable. We have employed linguistic probabilities as well as
other criteria to judge scenarios, and MCDM to obtain a final
ranking. The results confirm that taking into account several
criteria can be useful to discover promising scenarios as more
information is taken into account in the process.

Further work may include a formal sensitivity analysis
regarding both different linguistic weights for the criteria and
different degrees of uncertainty in their opinions, as well
as the incorporation of judgments from several experts and
experimentation with other MCDM techniques.
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