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Abstract—A repeated conflicting situation between two agents
is presented in the context of adversarial decision making. The
agents simultaneously choose an action as a response to an
external event, and accumulate some payoff for their decisions.
The next event statistically depends on the last choices of the
agents. The objective of the first agent, called the imitator, is to
imitate the behaviour of the other. The second agent tries not to
be properly predicted while, at the same time, choosing actions
that report a high payoff. When the situation is repeated through
time, the imitator has the opportunity to learn the adversary’s
behaviour. In this work, we present a way to automatically
design a sequence of deterministic decisions for one of the agents
maximizing the expected payoff while keeping his choices difficult
to predict. Determinism provides some practical advantages over
partially randomized strategies investigated in previous works,
mainly the reduction of the variance of the payoff when using
the strategy.

I. INTRODUCTION

Adversarial decision is largely about understanding the
minds and actions of one’s opponent [1], [2]. It is relevant
to a broad range of problems where the actors are aware of
each other, and they know they are contesting at least some
of the other’s objectives. Clear examples are terrorism and
other applications in Defense [3], along with less dramatic
applications in computer games where the user is the adversary
and the computer characters are provided with adversarial
reasoning features in order to enhance the quality, difficulty
and adaptivity of the game. The development of intelligent
training systems and the business field (competing firms)
represent interesting potential applications as well, in which
the agents are required to construct a model of the opponent
that includes the opponent’s model of the agent.

A brief survey of techniques including the combination
of game theory with other approaches, such as planning,
probabilistic risk analysis and stochastic games is presented
in [2]. Other direct examples that demonstrate in which sense
adversarial reasoning (and game theory in particular) can be
fully used in real problems are the so-called security games.
A particular case of security games is represented by the
development of patrolling models for autonomous robots. The
aim is to design routes for patrolling trying to minimize the
chance that an enemy enters a security border. A lot of research
is being done in this area, and several abstract models with
their respective algorithmic solutions have been proposed so
far [4], [5], [6]. Although this topic is not the focus of our
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particular work, such models bear a clear resemblance to the
adversarial reasoning model analyzed in the next section

A special case of adversarial situation is the model presented
in [7] and reviewed here. It involves two participants, S and T ,
each of which chooses an action as a response to an external
input, without knowing the choice of the other. As a result
of these choices, a payoff is assigned to the participants.
When this scenario is repeated many times, i.e. situations
of repeated conflicting encounters arise, then the situation
becomes complex as the participants have the possibility to
learn the other’s strategy. We can see this as a repeated
imitation game, where the imitator T learns from the actions
taken by S in the past. The more times T imitates S correctly,
the smaller the reward of S.

Imitation games have been recently studied from a formal
perspective in works by McLennan and Tourky [8], [9], [10].
They have proven as complex as a general game and some
computational problems, and game-theoretic insights can be
shown in them in a simple way, specially those related with
time complexity of equilibrium computation, and with the
equivalence of some mathematical problems with the problem
of computing the Nash equilibrium of a two-personal game
[9]. Nevertheless, these works focus on theoretical complexity
issues and analogies with other formal problems. Further, none
of them explicitly considers repeated imitation games.

Here we expose a strategic situation in which, differently
from many other studies, the agents do not have perfect knowl-
edge of the game being played. This makes our situation more
realistic than traditional equilibrium-based approaches since
we are not looking for the most rational strategy in a perfect-
knowledge situation but in one that is based on repeated
empirical observations which are likely to be deceptive.

When an agent S knows he is being observed by another
agent T trying to learn his behaviour, he should adopt some
counter-measure to avoid this fact. A defense against T is
to make decisions that are intended to confuse him, by
forcing the presence of uncertainty while its payoff is as less
affected as possible, using for instance randomized strategies
[7], [11], [12], [13], [4]. However, it is also possible to use
deterministic sequences of actions along the simulation for the
same purpose.

The aim of this contribution is to present deterministic
sequences of actions for S as an alternative to previously
investigated randomized strategies. An automatic technique
to design such strategies will be explained as well, and their
performance will be compared with other strategies presented
in previous works. The motivation behind this proposal is



Algorithm 1 Sequence of steps in the model.
for t = 1 to L do

A new input ei arises.
Agent T “guesses” an action ag
Agent S determines an action aj
Calculate payoff for S
Agent T records the pair ei, aj

end for

the hypothesis that deterministic sequences of actions will
decrease the variability of the results on particular runs in
relation to usual randomized strategies, which can be highly
beneficial, while keeping the agent difficult to predict.

The remainder of the work is structured as follows. Sec-
tion II reviews the model and summarizes existing research.
Section III explains the motivation of deterministic strategies
and gives an analytic solution to find the optimal strategy
under certain assumptions. The problem is then presented as
a combinatorial optimization task in Section IV, and the need
for heuristic techniques to solve it is introduced. Section V
deals with the experiments and discusses the results. Finally,
Section VI is devoted to conclusions and further work.

II. MODEL DESCRIPTION

The model we are dealing with was first presented in [7]
and consists of two agents S and T (the adversary), a set
of possible inputs or events E = {e1, e2, . . . , en} issued by
the external environment (represented as a third agent R), and
a set of potential responses or actions A = {a1, a2, . . . , am}
that can be chosen as a response to an event. There is a payoff
function P : E × A→ R such that we will note P (ei, aj) =
pij as the payoff associated with action aj as a response to the
event ei. These payoffs can be collected into a payoff matrix
P with dimensions n×m.

Agent S must decide which action to take, given a particular
input ei and with a perfect knowledge of the payoff function
P . His aim is to maximize the sum of the profits or rewards
given a sequence of inputs. These are issued one at a time
and they come from an external environment, represented by
agent R. The inputs of the sequence are generated randomly
as explained in section II-B.

Agent T does not know the payoff function P but is
watching agent S in order to learn from his actions. His aim is
to reduce agent S payoff by guessing which action he will take
as a response to each input of the sequence. The payoff for
T can be assumed as 1 when he was successful in predicting
S’s action and 0 otherwise. Algorithm 1 describes the steps
of the model, being L the length of the sequence of inputs.
We assume L is known by the agents. Note that the repetition
of the conflicting encounter is what motivates both agents to
avoid easily learnable behaviour patterns.

Given a new input ei, S and T issue responses aj and ag
respectively. At the moment of the response, neither of the
agents knows which action the adversary will choose. The
payoff for S is computed as a function of both responses and

the value pij . After the payoff has been calculated, agent T is
informed of what S had chosen, and then T “records” the pair
(ei, aj) in his own memory. This information can be used in
the future by T to make his predictions. The memory in which
agent T keeps records of the actions taken by S is modeled as
an observation matrix O, with dimensions n×m. Oij stores
the number of times that, in the past, agent S took action aj
when the input was ei. The payoff attained by S at every step
is given by:

p(ei, aj , ag) =

{
pij if aj ̸= ag
0 otherwise (1)

This means that S gets no payoff each time T matches his
response.

A. Behaviour of the Agents

The behaviour pattern of the agents can be diverse. Focusing
on S as we will do in the remainder of the work, he could
behave in a totally deterministic way that always chooses the
action with the highest payoff for the given event. This would
be very easy to learn for T after a few observations. On the
other hand, he could behave in a totally random way, which
would be completely unpredictable but may cause actions with
low payoff to be chosen too frequently, resulting in a lowering
in the payoff. In between, many different strategies are possi-
ble. Randomized strategies have been traditionally employed
in adversarial situations to keep the adversary guessing. The
most common approach is to compute the optimal probability
distribution over the available actions, so that the average
payoff taking into account such distribution is maximized.
In two-player strategic situations, Nash equilibrium to mixed
strategies computes a probability distribution such that a player
cannot do better than using the randomization over his actions
prescribed by his Nash equilibrium strategy. Unfortunately,
this computation requires knowing the payoff function of the
adversary, which is not the case here.

Agent T can use the information of the observation matrix
in many ways. He could always predict using the action most
frequently (MF) observed in the past. This is a deterministic
behaviour that S could easily detect and avoid. For that reason,
T is also expected to behave in a randomized way. Although
the use of learning techniques will be investigated in future
works, in what follows we will consider that T employs a
so-called Proportional-to-Frequency (PF) strategy [7]. In this
strategy, the probability that T selects action aj as a prediction
to event ei is Oij/

∑m
k=1 Oik, with O being the observation

matrix at the moment of the prediction.

B. Dependency Between the Current Action and the Next
Event

The events coming from an external environment arise in
a random way. The original model [7] considered a uniform
distribution that was not influenced by the decisions of the
agents, while a more recent work [14] presented an extension
of the model in which the decisions of agent S do have
an influence over the next event to arise. In the present



contribution we will deal with the latter. The dependency is
modeled by a dependency matrix C that states the conditional
probability distributions of the next event to arise, given the
action taken by agent S in the present step:

C(m× n) =
P [X = e1|Y = a1] . . . P [X = en|Y = a1]
P [X = e1|Y = a2] . . . P [X = en|Y = a2]

...
. . .

...
P [X = e1|Y = am] . . . P [X = en|Y = am]


The value Cij stands for the conditional probability P [X =

ej |Y = ai], so
∑

j P [X = ej |Y = ai] = 1 for every row
i = 1, ...,M . In this expression, X is a discrete random
variable representing the next event arising, and Y is a discrete
random variable representing the current action taken by agent
S that, as will be explained, is based on a randomized
behaviour rule. Finally, let (π1, ..., πn) be the probabilities of
each event to arise at the first step of the simulation. We
cannot give conditional probabilities in this case as there is
no previous action. For our experiments, we will take such
probabilites as uniform, πi = 1/n for i = 1, ..., n. With
dependency in mind, now a good action for S is not one that
just provides a high immediate payoff but that also causes
events with high payoffs (on average) to be likely to arise in
the next turn.

III. DETERMINISTIC SEQUENCES OF DECISIONS

In a repeated situation like this, the only information an
agent has about the strategy of the adversary is his own
intepretation of the sequences of decisions observed in the
past. This opens the door to deception-oriented decisions. In
particular, such sequence does not have to necessarily follow a
true probability distribution. An alternating strategy for S may
be perceived over the time as a randomized one since S does
not always take the same action for a given event, although
the behaviour rule used by S may be deterministic.

In general, the approach followed in previous works re-
garding novel strategies had the following steps: (i) provide
a theoretical function (if possible) describing the expected
payoff for S with a proposal of a novel strategy; (ii) apply
an optimization process to that function in order to find the
optimal strategy under the given assumptions, and (iii) evaluate
the results empirically in order to test the variability of the
results with respect to the expected ones, and the improvement
with respect to other, simpler strategies.

In such works [12], [11], the strategies analyzed always
contained some degree of randomization. Therefore, the payoff
they provide can be computed theoretically only by consider-
ing the probability that each possible outcome of the game (i.e.
each combination of actions from both players in response to
each event) eventually occurs. The value obtained is called
the expected payoff and it represents the average payoff that
can be attained by S after several independent runs in the
same conditions when applying the strategy being evaluated.
Nevertheless, the payoff in one particular run is subject to
fluctuations that sometimes are very severe.

The idea of having a deterministic strategy contrasts with
such randomized strategies. In principle, yet not looking at
their performance on average, they present some practical
advantages. Firstly, they do not introduce more randomness in
the model: the two only sources of uncertainty when applying
a deterministic sequence of actions are the stochastic nature
of the sequence of events, and the stochastic nature of agent
T ’s strategy PF. There is no additional degree of randomness
due to randomized strategies as happened in previous works,
and this may reduce the variability of the results on particular
runs. Secondly, having total certainty of which the action will
be at a certain point of the sequence may be relevant for S,
depending on the circumstances. If the actions represent, for
instance, the movement of a patrolling robot belonging to a
security enterprise, then it can be beneficial to know in advance
which the position will be at every moment in order to plan
on-line adjustments and reparations, or to know for sure which
areas will be less secure in every period.

A. Dynamic Programming Approach

Under the assumption of PF strategy for agent T , dynamic
programming gives us an exact solution to the problem of
computing the optimal sequence of decisions, in terms of
payoff for S, for a given matrix of conditional probabilities C
and a payoff matrix P , and assuming the number of steps L
of the game is known by both agents.

The key to build a solution is to consider that, when
choosing an action a

(t)
j at step t, we are giving a response

to an unknown event. However, we know the probability that
such event is e1, or e2,... or en, since those probabilities
only depend on the previous action a(t−1). After choosing the
action a

(t)
j , and since we are uncertain about the event to which

we have just given a response, we cannot increase in one unit
any particular cell of T ’s observations matrix. The solution is
to increase all the cells of column j. The magnitude of the
increase for each row i = 1, ..., n is exactly the conditional
probability of the current event ei given the previous action
a(t−1), P [X = ei|Y = a(t−1)]. Such updating operation over
the observation matrix is carried by the updateColumn(O,
a(t−1), aj) function in the equations that follow. When the
second argument is null, meaning there is no previous action,
the prior probabilities are used instead of the conditional
probability matrix.

Solving the problem for a given length L can be easily
decomposed into problems of length L − 1 of the same
nature for which an optimal solution is required in order to
have an optimal solution of the bigger one. Following this
idea, Bellman’s optimality principle holds for this problem,
as explained next. The problem has the key ingredients to be
solved by dynamic programming:

a) Structure of the nested problems: The problem at
any step can be described as finding the optimal sequence
of actions for the remaining steps, given (i) the observation
matrix at current step, (ii) the action taken in the previous
step, and (iii) the number of steps remaining after current
decision has been made. The optimal payoff should consider



the summation of the immediate payoff for choosing an action
in the current event plus the optimal payoff that can be
attained in the rest of the sequence, which is the solution to
the subproblem constitued by the new state (i.e. modify the
observation matrix according to the immediate action taken in
the current step and decrease the remaining number of steps
in one). The solution to the overall problem is given by the
sequence of decisions that provide the optimal payoff with an
empty observation matrix when no previous actions has been
taken and the number of steps remaining after the first decision
equals L− 1.

b) Bellman’s optimality principle: This principle is re-
quired in order to apply dynamic programming. It will be
proven by contradiction. Let (a(1), ..., a(L)) be an optimal
sequence of L decisions that begins with an empty observation
matrix, such that the observation matrix after the last decision
is O(L). For any 1 < k < L, let O(k) be the observation
matrix before the k-th decision of that sequence. Then

(i) The subsequence (a(1), ..., a(k−1)) must be the best
subsequence of k− 1 decisions that reaches step k with
an observation matrix that is identical to O(k) when the
initial observation matrix is empty, and

(ii) The subsequence (a(k), ..., a(L)) must be the best subse-
quence of L−k+1 decisions when the initial observation
matrix is O(k), no matter which the contents of the final
observation matrix are.

(iii) If any of the above two statements does not hold, i.e.
the corresponding subsequence is not optimal, then it
could be substituted by the optimal one, and thus the
new overall decision sequence (a′(1), ..., a′(L)) would
be better than the original. Since the original sequence
was optimal by hypothesis, we reach a contradiction.
Therefore Bellman’s optimality principle holds.

(iv) Further, since the principle holds, the final contents
of the observation matrix of the optimal subsequence
(a(k), ..., a(L)) should necessarily equal those of the final
observation matrix after the optimal original sequence
(a(1), ..., a(L)).

c) Recurrence equation: A recurrence equation to de-
scribe the optimal payoff of the process when the observation
matrix before solving step t is O, the previous action at step
t− 1 was ak and there are still n steps remaining in addition
to the current step, is the following:

g(O, ak, n) = max
aj∈A

{
n∑

i=1

Cki

(
1− Oij∑m

s=1 Ois

)
pij+

g(updateColumn(O, ak, aj), aj , n− 1)

}
, 0 < n < L− 1

(2)
Base case:

g(O, ak, 0) = max
aj∈A

{
n∑

i=1

Cki

(
1− Oij∑m

s=1 Ois

)
pij

}
(3)

Starting equation for the whole sequence of length L (in this
case O is assumed to be empty):

g(O,null, L− 1) = max
aj∈A

{
n∑

i=1

πi (1− 1/m) pij+ (4)

g(updateColumn(O, null, aj), aj , L− 1)

}
In the above expressions, the payoff pij attained by S is

weighted by the product of (i) the probability that event ei
arises, which depends on the previous action as expressed in
the conditional probability matrix C, and (ii) the probability
of not being guessed correctly assuming T uses strategy PF.
Only when the two events occur, S attains payoff pij . Since
they are both independent, the probability that they occur
simultaneously is the product of them happening separately.

Finally, note a call to g generates m recursive calls. Because
all the possible combinations of actions are thus exhaustively
examined, and this number, mL, is huge, this approach is
computationally unfeasible. However, the same idea employed
in this simplified method, i.e. increasing a column of the
observations matrix by the conditional probabilities of each
event given the previous action, can be applied to obtain an
analytical expression of the expected payoff of a deterministic
sequence of actions. This is explained in the next section.

IV. DESIGN OF SEQUENCES AS A COMBINATORIAL
OPTIMIZATION PROBLEM

Due to the unfeasibility of the dynamic programming ap-
proaches, we propose using a different technique to find a
good (not necessarily optimal) sequence of decisions. The
task can be tackled as a combinatorial optimization problem,
in which finding a good sequence of decisions for S of a
known length can be viewed as finding the combination of L
integer values (each value representing an action from 1 to m)
that maximizes S’s expected payoff when using that sequence
against T . As we will explain in the experiment section, L is
usually a large value such as 500.

a) Objective function: The function to be maximized
is the following. Given a sequence of L decisions or ac-
tions (a(1), ..., a(L)) expressed as a sequence of integers
(d1..., dL) ∈ {1, ...,m}L, the expected payoff for S if agent
T uses strategy PF is given by function f : {1, ...,m}L → R:

f(d1, ..., dL) =
n∑

i=1

πi(1− 1/m)pi,d1 + (5)

L∑
t=2

n∑
i=1

Cdt−1,i

(
1−

O
(t)
i,dt∑m

k=1 O
(t)
i,k

)
pi,dt

Here O(t) represents the observation matrix of agent T after
the first t− 1 decisions.

This function can be expressed in a procedural way as
shown in Algorithm 2. It shows how to measure the expected
payoff of a deterministic sequence of decisions, and will be
employed as the objective function to be maximized to find the



Algorithm 2 Pseudo-code of the objective function.
poff ←

∑n
i=1 πi(1− 1/m)p[i, d1]

O[i, d1]← πi i = 1, ..., n
for t = 2 to L do

for i = 1 to n do
poff ← poff + C[dt−1, i]

(
1− O[i,dt]∑m

k=1 O[i,k]

)
p[i, dt]

O[i, dt]← O[i, dt] + C[dt−1, i]
end for

end for
return poff

Algorithm 3 Steps of the model when S plays a deterministic
sequence (d1, ..., dL) and T plays Proportional to Frequency

payoff ← 0; O ← 0n×m

for t = 1 to L do
A new event ei arises stochastically as follows:
if t > 1 then

ei arises according to distribution (C[dt−1, i])1≤i≤n

else
ei arises according to distribution (πi)1≤i≤n

end if
T randomly selects ag accord. to (Oig/

∑
j Oij)1≤g≤m

S deterministically selects action adt

payoff ← payoff + p(ei, ag, adt) # see equation (1)
O[i, dt]← O[i, dt] + 1 # Agent T records pair (ei, adt )

end for

best sequence. Among the several heuristics for combinatorial
optimization, preliminary experiments with three of them were
conducted: Ant Colony Optimization (MAX-MIN Ant System
variant), a variant of Differential Evolution that discretizes
before evaluating the fitness, and a Generational Genetic
Algorithm (GGA) with integer coding. They all showed very
similar results in the deterministic sequence design problem,
so we chose the GGA simplest algorithm, which is also the
fastest. More details on the setup of the algorithm can be found
in the next section.

Finally, in order to clarify how the model is applied
when S plays a given deterministic sequence of L decisions
(d1, ..., dL) and T plays Proportional to Frequency, we provide
Algorithm 3 as a particular case of Algorithm 1 under such
conditions. under such conditions.

V. EXPERIMENTS AND RESULTS

The experiments are aimed at answering the following
questions:

(i) Does the theoretical expected payoff of a deterministic
sequence (Eq. (5)) match the average peformance when
evaluating the sequence empirically, after several inde-
pendent runs of algorithm 1?

(ii) Do deterministic sequences peform better (in any way)
than static/dynamic mixed strategies investigated in pre-
vious work?

A. Model Configuration
The parameter configuration of the model instance that has

been used in the empirical evaluation of strategies was the
following:

• Number of different inputs and different actions: n = m
= 5

• Length of the input sequences: L = 500.
• Matrix of conditional probabilities:

C =


0.2 0.5 0.15 0.1 0.05
0.4 0.1 0.25 0.05 0.2
0.15 0.2 0.4 0.1 0.15
0.1 0.1 0.2 0.5 0.1
0.3 0.4 0.3 0 0


a) Payoff matrices: 15 different matrices were tested. For

each matrix, a set of m payoffs is defined, and every row of
the matrix has a permutation of the same set, summarized
in Table I. The rest of the rows of each matrix are different
permutations of the set displayed in the table. We also display
the maximum total payoff attainable by S after 500 events if
he always chooses the action with the largest payoff and is
never gussed correctly. This is the ideal situation that would
only occur when there is no adversary. This table is the same
used in [14] since we will compare the results with those in
that work. The same happens with the conditional probability
matrix shown above.

TABLE I
SET OF PAYOFFS ASSOCIATED TO EACH PAYOFF MATRIX

Payoff First row Max. reward
matrix after 500 ev.
M1 1 0,9 0,95 0,8 0,85 500
M2 0,8 0,9 0,6 0,7 1 500
M3 1 0,85 0,7 0,4 0,55 500
M4 1 0,6 0,8 0,4 0,2 500
M5 0,25 0,01 0,5 1 0,75 500
M6 1,1 0,95 0,9 1,05 1 550
M7 1,2 1 1,1 0,9 0,8 600
M8 1,3 1 1,15 0,85 0,7 650
M9 1,2 1,4 1 0,8 0,6 700
M10 1,5 1 0,75 1,25 0,5 750
M11 0,8 0,6 0,4 1,5 1 750
M12 0,8 0,6 0,4 1,75 1 875
M13 0,8 0,6 0,4 2 1 1000
M14 0,8 0,6 0,4 2,25 1 1125
M15 0,8 0,6 0,4 2,5 1 1250

B. Optimization Settings
a) Optimization algorithm: After the preliminary exper-

iments already mentioned, we selected a GGA with elitism
[15], [16] for finding good sequences of decisions. The imple-
mentation is part of the Eva2 free software for evolutionary
optimization [17]. No formal study has been carried at this
step of the research to tune the parameters, although some
experiments showed small differences in the performance
when changing the parameters. The specific parameters and
operators employed were the following:

• Representation scheme: a solution is represented as a
vector of length L whose values at each position are
positive integers between 0 and 4 (integer coding).
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Fig. 1. Expected payoff and average, minimum and maximum empirical
payoff over 1000 independent runs of the best solutions found after 5 runs of
the GGA for each payoff matrix

• Fitness function: algorithm 2.
• Crossover operator: three-point crossover.
• Crossover probability: 0.85
• Mutation operator: nominal mutation (a value in a posi-

tion is replaced by other integer value randomly chosen
in {0, 1, 2, 3, 4}).

• Mutation probability: 0.25
• Population size: 100 individuals.
• Stopping criterion: performing 500.000 fitness evalua-

tions.
• Parent selection operator: perform ten 4-individual tour-

naments.
b) Empirical evaluation of a strategy: After the op-

timization algorithm ends, the best solution found is post-
evaluated empirically. Algorithm 1 is run 1000 independent
times and the payoff attained by S at each run (a ”sample”)
is annotated. This value is transformed into a percentage over
the maximum payoff attainable in a 500-event execution (see
Table I). The average of such percentages is taken as the
empirical payoff of the strategy, but all the 1000 samples
are also stored in order to display box-plots to compare their
variability, as explained below.

C. Results

The procedure to answer the first question was the fol-
lowing. Five independent runs of the GGA were done for
each payoff matrix, and the best solution of the 5 executions
was annotated. The expected payoff of those solutions is
exactly the fitness value as given by the GGA because it is
using the expected payoff expression (5) as fitness function.
The empirical payoff is computed as explained above. The
results are depicted in Fig. 1 and show an almost perfect
matching. The maximum and minimum performance over the
1000 empirical evaluations has been depicted too, in order to
illustrate the variability to which a deterministic sequence is
subject. This will be analysed in detail later.

The answer to the second question can be found in Fig. 2.
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Fig. 2. Boxplots of the 1000 empirical evaluations of deterministic sequences
obtained by the GA and static and dynamic mixed strategies obtained by
SADE as explained in [14]. All differences are statistically significative
except in M3 between deterministic and dynamic mixed, and M12 between
deterministic and static mixed, according to 1-way ANOVA.



Here, the performance of the deterministic sequences has been
compared with that of static mixed strategies and dynamic
mixed strategies automatically designed using a different evo-
lutionary optimization technique called SADE (Self-Adaptive
Differential Evolution [18]). Such strategies were proposed in
a previous work [14] in which further details on the design
technique employed can be found. Basically, it consists in
the application of a heuristic for continuous optimization to
find a probability distribution (set of weights) over the actions
available, using the average of 100 empirical simulations of
the model as the fitness function. Agent S uses this distribution
to select an action.

Static mixed strategies consist on a separate probability
distribution for each event. This distribution does not change
for a given event during all the simulation. On the other
hand, dynamic mixed strategies consist on several different
probability distributions for a given event. The probability
distribution used for that event changes after the event has
arisen for a number of times, with this (integer) number
also being a parameter of the strategy. The best performing
strategies used 4 different probability distributions along the
simulation for a given event.

The nature of the strategies is quite different from that of
a deterministic sequence of actions, specially in the case of
dynamic mixed strategies since they take into account the
number of times each specific event has arisen in the past
to search for a sequence of probability distributions (usually
3 or 4). For each event, agent S applies a set of weights
until that event has arisen a certain number of times, and then
switches to a different one. This kind of temporal information
cannot be stored in a deterministic sequence of actions unless
it is parameterized in any way, which is not being done
here. In addition, static mixed strategies, despite being simpler
than dynamic mixed strategies, also store a different set of
weights for each event of the model (although not taking into
account the number of times each event has arisen). This also
represents an extra degree of flexibility that is lacking in the
deterministic sequences of actions proposed here.

D. On the Relation of Dynamic Strategies with Deterministic
Sequences

Nevertheless, it can be seen in the figure that deterministic
sequences of actions clearly outperform static mixed strategies
in all the payoff matrices tested. Further, they present a slightly
smaller variability, specially in the most difficult payoff matri-
ces M11 to M15, in which the difference between the payoff
of the best action and that of the rest of the actions is large.
Dynamic mixed strategies still provide a better performance
in almost all cases. Results were validated with a 1-way
ANOVA since each batch of 1000 independent simulations are
normally distributed, with the factor being the kind of strategy
(deterministic, static mixed, dynamic mixed).

In order to check if this phenomenon is due to the inef-
fectiveness of the GGA that searchs for a good deterministic
sequence or to the nature of the strategies itself, an additional
set of experiments has been conducted. The experiment is

aimed at uncovering if the sequence of decisions is good
”per se”, or if the reason of the good performance is the
more flexibility of the philosophy of a dynamic strategy.
We hypothesize that changing the behaviour depending on
the number of times each event has arisen leads to a better
performance, together with using different strategies for each
event. The sequences of actions generated by the randomized
dynamic strategy are only a result of this philosophy, because
they are generated just in the appropiate way considering what
has happened in the past with each kind of event.

The experiment designed was the following. Among the
1000 samples collected for each payoff matrix when empiri-
cally evaluating the dynamic mixed strategy found by SADE
for that matrix, the best sample was annotated apart, together
with the 500-decision sequence made by S within that con-
crete sample. Then, such sequence of actions was empirically
evaluated with 1000 independent runs of Algorithm 1. This
process was repeated for each payoff matrix. The resulting
samples are depicted in Fig. 3 together with the samples
coming from the evaluation of the deterministic sequences
found by the GGA mentioned in the previous section. As
can be seen, the deterministic sequences found by the GGA
clearly outperform those coming from the best evaluation
of a dynamic strategy found by SADE. This confirms our
hypothesis as those sequences, which provided a very good
performance (the best among 1000 evaluations indeed), are
not good per se, but only in relation of what had happened
in the past in that simulation. In other words, the sequence
was generated as a result of a more intelligent analysis of the
situation at each step, namely which is the current event and
how many times it has arisen in the past. It is this analysis
that makes them perform well, and not the sequence of actions
itself and independently of the situation.

The concluding remark is that better performance with
deterministic sequences of decisions can only be achieved
by allowing more flexible strategies and by searching in a
different search space that allows independent sequence of
decisions for each event, rather than employing more sophis-
ticated combinatorial optimization algorithms over the current
mL search space. However, the fitness function for this process
possibly becomes more complicated than expression (5), so a
careful theoretical study should be done first.

VI. CONCLUSIONS AND FURTHER WORK

A repeated imitation game between two agents has been
presented. The game to be played at each turn is different
and depends on the choice of one of the agents. Deterministic
sequences of actions for agent S have been succesfully de-
signed by tackling the problem as a combinatorial optimization
problem. The obtained strategies show improvement only with
respect to static mixed strategies proposed in previous work.
The reasons that make dynamic mixed strategies perform
better have been analysed, and insights have been provided
on the nature of both kinds of strategies.

Further research on this model will focus on the design
of more flexible deterministic sequences of strategies. A very



Payoff matrix

M15M14M13M12M11M10M9M8M7M6M5M4M3M2M1

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r 

m
a
x
im

u
m

)

80

70

60

50

40

30

Deterministic sequences from dynamic 
mixed strategy

Deterministic sequences from GA

Provenance of the sequences

Página 1

Fig. 3. Comparison of the empirical payoff of deterministic sequences designed by the GGA and sequences arisen during the best evaluation of a dynamic
mixed strategy obtained by SADE

interesting work can also consider a finite horizon analysis, in
which the players do not know exactly the number of steps
of the simulation. The application of learning techniques for
agent T is also a natural extension of this study, as well as
strategies that take into account the real state of the game
and thus, they cannot be totally designed before the game but
have to be designed or tuned on-line. Finally, the application of
some of these ideas to real domains, specially those related to
autonomous robotic patrolling, are to be investigated as well.
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