
Evolutionary design and statistical assessment of strategies in an
adversarial domain

Pablo J. Villacorta and David A. Pelta

Abstract— Adversarial decision making is aimed at finding
strategies for dealing with an adversary who observes our deci-
sions and tries to learn our behaviour pattern. Departing from
a simple mathematical model, the present contribution extends
it with strategies that vary along time, and motivates the use of
heuristic search procedures to address the problem of finding
good strategies within this new search space. Evaluation of this
new class of strategies requires running a stochastic simulation
so the comparison of strategies should be properly addressed.
A new statistics-based technique for comparison of strategies is
also proposed and tested in this context when coupled with a
Genetic Algorithm. Computational experiments showed that the
new strategies are better than previous ones, and that the results
obtained with this new comparison technique are encouraging.

I. INTRODUCTION

Adversarial decision making is aimed at determining op-
timal strategies against an adversarial enemy who observes
our actions and learns from them. This situation arises in
many areas of real life, with particular (but not the only one)
interest in counter-terrorist combat and crime prevention [1],
[2].

The field is also known as decision making in the presence
of adversaries and we may talk about problems within an
adversarial domain where an ”adversary” exists. Essentially,
the focus is on technologies for opponent strategy prediction,
plan recognition, deception discovery and planning, and
strategy formulation that not only applies to security issues
but also to game industry, business, transactions, etc. [3].
For example, patrolling strategies can be viewed as another
application of adversarial decision making: the aim is to
design routes for patrolling trying to minimize the chance
that an enemy enters a security border.

Given two agents or entities S and T (the adversary), both
want to maximize their rewards that are inversely related.
One defense for S is to make decisions that are intended to
confuse T , although this will affect the ability of getting a
more optimal reward. The question for S is how to define
his decision strategies. Manually designed strategies could
be good, but the designer may omit interesting alternatives
due to its inherent limited ability to search in the space of
strategies.

In the last years, automatic design by means of evolution-
ary techniques is gaining increasing attention. For example,
in the design of self-assembly systems [4], certain kind of

Pablo J. Villacorta and David A. Pelta are with the Models of Deci-
sion and Optimization Research Group, Department of Computer Science
and AI, University of Granada, Spain (phone: +34 958242376; email:
dpelta@decsai.ugr.es, olbapjo@correo.ugr.es).

neural networks [5], controllers for collective robotics [6],
oriented-tree networks [7], just to cite a few.

In order to automatically design such decision strategies,
three important features should be taken into account: how to
represent a strategy, how two strategies should be compared,
and how the space of the strategies should be searched.

In this contribution we mainly focus on the second fea-
ture and we slightly discuss the first and third ones. In
this context, our aims are: (a) to propose a new way of
systematically describing strategies for an adversarial model,
(b) to propose a statistics-based methodology to the pairwise
comparison of strategies, and (c) to analyze the behaviour of
an evolutionary algorithm when coupled with such pairwise
comparison technique.

This contribution is organized as follows: in section II,
the model explained in [8] is briefly summarized. Section III
explains a new way of describing strategies. In section IV,
the use of a search algorithm in this new context of automatic
design of tactics is introduced, and the need of a fast,
yet reliable comparison technique for tactics is motivated.
The feasibility of a statistical approach is also discussed
here. Section V is devoted to computational experiments and
analysis of results. Finally, conclusions and further work are
discussed in Section VI.

II. ADVERSARIAL REASONING MODEL

The model we are dealing with is based on two agents
S and T (the adversary), a set of possible inputs or events
I = {i1, i2, . . . , in} issued by a third agent R, and a set
of potential responses or actions Ai = {a1, a2, . . . , am}
associated with every event. We have a payoff or rewards
matrix P :

P (n×m) =

p11 p12 . . . p1m

p21 p22 . . . p2m

p31 p32 . . . p3m

pn1 pn2 . . . pnm

where pij ∈ [0, 1] is the reward or profit associated with
action j to respond to the event i.

Agent S must decide which action to take given a par-
ticular input ik and with a perfect knowledge of the payoff
function P . His aim is to maximize the sum of the profits
or rewards given a sequence of inputs. These are issued
one at a time and they come from an external environment,
represented by agent R. For the experiments, the inputs of
the sequence are independent and generated randomly.

Fig. 1. Graphical representation of the model. Events ij are issued by
agent R while response or actions ak are taken by agent W .

Algorithm 1 Sequence of steps in the model.
for j = 1 to E do

A new input ij arises.
Agent T “guesses” an action ag

Agent S determines an action ak

Calculate payoff for S
Agent T records the pair ij , ak

end for

Agent T does not know the payoff function P but is
watching agent S in order to learn from his actions. His
aim is to reduce agent S payoff by guessing which action
he will take as a response to each input of the sequence.
Algorithm 1 describes the steps of the model, being E the
length of the sequence of inputs.

Given a new input ij , S and T issue responses ak and ag

respectively. Agent T keeps records of the actions taken by
S using an observation matrix, O, with dimensions M ×N .
Oij stores the number of times that, in the past, agent S
decided to take action i when the input was j.

The reward calculation for S at stage c is defined as:

p′ = pjk × F (ag, ak) (1)

where F is:

F (a, b) =
{

0 if a = b
1 otherwise (2)

This means that agent S gets no reward at all when agent
T has predicted his response properly.

The behaviour pattern of both agents can vary from a
totally deterministic way to a totally random one. Agent
T can use his observation matrix to make predictions in
several manners, such as always choosing the most frequently
observed action in the past, or a random action with a
probability that is proportional to the number of times that
action was observed in the past, etc. Agent S can always
choose the action with the highest reward, but this behaviour
is very easy to learn for an observer when repeated along
time. He can also choose randomly or with a probability
that is proportional to the payoff, or randomly among some
of the actions with higher payoff. There exist many other
patterns that try to balance payoff and confusion.

In this contribution, agent T applies a simple frequency-
based decision strategy: the probability of selecting an action
ai for responding to event ej is proportional to Oij . Despite
its simplicity, this strategy is one of the hardest for agent S
as it was shown in [8].

III. A NEW SCHEME FOR STRATEGIES REPRESENTATION

In this section we describe one of the proposals of this
work. We provide a novel and general way to define strate-
gies, that also allows to model those strategies presented in
[8]. The basic idea is to define a tactic or plan as a sequence
of simpler decision strategies.

A strategy is described as a process with two stages. In the
first stage, a number of different candidate actions are chosen
into a ”candidate set” according to certain criterion. The
cardinal of the candidate set is a specific integer parameter
k ∈ [1, kmax]. In the second stage, one single action is
finally selected from the candidate set according to another
different criterion. Therefore a strategy can be fully described
in terms of three components: < k >, < criterion >, <
criterion >.

The values available for criterion are:
• BEST: picks the k best actions as a candidate set,

according to their payoff indicated in the payoff matrix.
• RANDOM: picks k different actions in a totally random

way.
• PROP-PAYOFF: picks k different actions randomly with

a probability proportional to the payoff indicated in the
payoff matrix for each action.

An example of strategy can be 4 | RANDOM | PROP-
PAYOFF. It means that 4 different candidate actions are
chosen randomly, and afterwards, one of them is chosen with
a probability that is proportional to the payoff. Assuming, for
instance, that our model has 5 different states, an extreme
strategy would be 1- | BEST | BEST, which always selects
the best action in response to any stimulus. The opposite
extreme would be 5 | RANDOM | RANDOM which always
selects one action totally randomly. In this case, the first
stage of the strategy is useless because all the 5 available
actions are chosen as candidate ones. In the middle of these
extremes we have a great variety of strategies.

It should be noticed that this strategy’s representation has
one disadvantage: several strategies that seem to be different
are in fact the same. Consider, for instance, all the strategies
in the form Kmax | ANY | RANDOM, with Kmax being
the number of states of our model, and ANY representing
any of the three criteria. All these strategies select one action
totally randomly among a candidate set that contains all the
available actions, no matter which the first criterion is. The
same occurs for 1 | RANDOM | ANY, and some others.

The number of truly different strategies in a model with
Kmax different states can be calculated as

]STRATEGIES = 8× (Kmax − 2) + 3 (3)

The constant value 8 is the number of different com-
binations of the three explained criteria, considering that

the combination BEST | BEST is not considered because it
leads to many equivalent strategies that do not even depend
on k. Factor (Kmax - 2) means that any k value can be
used except the extremes 1 and Kmax because they lead
to extreme strategies that also represent several equivalent
strategies, such as 1 |BEST |RANDOM, 1 |BEST |BEST, etc.
These extreme strategies represent in fact just three different
strategies - that is why we have added the value 3.

In the original model, the strategy is fixed during all the
simulation so the same strategy is used in every decision
stage. A new approach is now proposed, consisting in varying
the strategy every time we have to make a decision.

One way to do this is to have a predefined succession
of strategies that can be used in a cyclic way. We call this
succession of strategies a tactic. For instance, consider the
tactic 3 | PROP-PAYOFF | RANDOM, 4 | BEST | PROP-
PAYOFF, 2 | RANDOM | RANDOM, 2 | PROP-PAYOFF |
PROP-PAYOFF.

We define the length L of a tactic as the number of
strategies it contains. The previous example has length 4
as it is composed by 4 different strategies. When using the
tactic in a simulation that consists in a succession of several
inputs (most likely more than 4), the tactic is considered to
be cyclic: agent S will response to the n-th input by using
the (n mod L) strategy.

Considering expression (3) and given a tactic with length
L, it is clear that the number of possible tactics is

]TACTICSL = (8× (Kmax − 2) + 3)L (4)

In a simple model instance with just 5 different states
(Kmax = 5) and taking into account only tactics with L = 5,
the above formula yields to 531.441 possible tactics.

In the experiments section we will show that different re-
sults are obtained when L > 1, thus verifying the usefulness
of this proposal.

IV. ON THE COMPARISON OF TACTICS

Whatever search method is going to be used, it is necessary
to have a fast, yet reliable method to compare two tactics.

Let’s consider a, b as the tactics to be compared. We eval-
uate each one h times to obtain two vectors or populations
of samples Va = {o1, o2, . . . , oh} and Vb = {o1, o2, . . . , oh}

The most simple way to compare a and b consists on just
comparing the means

∑
Va[i]
h vs.

∑
Vb[i]
h and choosing the

one with the lower value as the best one. Another alternative
is very similar but the comparison is based on the median of
the two vectors. In this way, the comparison could be less
affected by extremal values.

The problem of comparing two sets of samples is very
common in the field of statistics, which provides powerful
methods that do not require a high number of samples to
work properly. Once the challenge of reliably comparing
two tactics has been solved, we can consider that the non-
determinism in the objective function is properly addressed.

In this work, we hypothesize that parametric tests can
be applied to the problem of comparing two tactics, which

in statistical terms can be viewed as that of comparing
the means of two different populations. The most widely
employed parametric test is the t-Student test for means
comparison, but it requires some previous conditions to be
verified. As it is a parametric test, data must be normally
distributed and must have similar variance. These well known
conditions are called normality and homoscedasticity, and
there also exist specific tests to check both of them, namely
the Lilliefors and the Levene test, respectively.

If these two conditions hold, then the comparison of tactics
during the execution of any metaheuristic can be done on the
basis of a parametric t-Student test.

Later on, we will prove that both conditions are met so
we describe here how the comparison can be made. The idea
is to build a confidence interval for the difference of the
means of the two populations (two sets of samples) being
compared. If the interval does not contain zero, then the result
of the comparison is obvious. If the interval does contain
zero, then more samples are needed to try to make a certain
decision about which one is better. More simulations are run,
their results are added to those already available and the
test is repeated with the now larger populations. As can be
seen, the number of simulations employed can vary from one
comparison to another, so this is really a ”redistribution” of
the available simulations. All the extra samples obtained in
a comparison are stored with the existing ones, attached to
the individual, so in a comparison where more samples are
needed, only the individual with fewer samples is re-sampled.

We start collecting 30 samples for each tactic. If the null
hypothesis could not be rejected, another 30 simulations can
be added, and even another 30 if necessary, until a maximum
of 90 simulations are reached. If the confidence interval
contains zero after 90 simulations, we decide that the tactic
with lower mean is the better one. Of course, this decision
has no statistical basis but, after doing 90 simulations, it
is far more convincing than a decision taken using just 30
simulations.

A. Use of Genetic Algorithms as search heuristic

As we stated in the introduction, evolutionary algorithms
have been shown as a good alternative for doing “automatic
design”.

In this work, we will use a basic Generational Genetic
Algorithm (GGA) to explore the space of cyclic tactics and
evaluate the role of statistics-based comparison. The main
characteristics of the GGA are described next.

Representation scheme: an individual models a tactic
that is represented as a vector (succession) of strategies. The
length of the vector equals the length of the tactic. A strategy
can be described in terms of three components, i.e. the k-
value, the first selection criterion and the second selection
criterion. This can be represented as an integer with three
digits where we encode each criterion with a fixed digit. For
example, strategy 3-RANDOM-BEST can be encoded as 312
where the first 3 means K value is 3, 1 means first criterion
is RANDOM and 2 means second criterion is BEST. Thus, a
tactic is represented by a vector of 3-digit integers (discrete

representation scheme). The problem of having two strategies
that are really the same has been overcame by using “special”
integers.

Fitness function: the evaluation of an individual (a tactic)
involves running a simulation several times. Given a set
of random input sequences, the simulation is run and the
gap values are recorded. As a consequence, a vector of
values is returned. In order to evaluate all tactics in the same
conditions, the set of input sequences is randomly generated
before the metaheuristic starts.

Crossover operator: traditional one-point crossover is
used. There are no extra restrictions after the crossover.

Mutation operator: it randomly selects one gene (strat-
egy) and replaces it with a new randomly generated strategy.

Parents selection scheme: binary tournament. Notice that
any p-ary tournament is also possible because it just requires
sorting the p candidate individuals to tell which is the winner,
and this operation can be described in terms of binary
comparisons of individuals.

Population initialization: Given a specified length L for
the individuals, each one of the single strategies composing
the tactic is randomly selected.

Replacement scheme: as the GA is generational, the
whole population is replaced in each generation. Elitism
was also used to keep the best solution of each generation
replacing the worst solution of the next generation.

Unless otherwise stated all the experiments were per-
formed with the following parameters: (a) population size:
50 individuals, (b) crossover probability: 0.8, (c) mutation
probability: 0.2, (c) stopping criterion: 150.000 simulations
(provided the evaluation of an individual requires, at least,
30 simulations, and the comparison of individuals may spend
extra simulations), (d) length of the tactics explored: L = 4.

The reader should note that no specific study was con-
ducted to determine a set of “best” parameters.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

Experiments are divided in three parts. First one is devoted
to show that using cyclic strategies is beneficial. Second part
shows that that parametric tests can be applied to the problem
of comparing tactics. The third part analyze the performance
of the GGA when using this comparison methodology during
its execution.

The adversarial model parameters used in each simulation
were fixed as follows: length of the input sequences: 500,
number of states: 5, payoff matrix: the same matrix was used
in all simulations. The payoffs were randomly generated in
the real interval [0, 1] using the function f(x) = log10(x)
with x being a random integer in [1, 10].

A. Suitability of cyclic strategies

In this part, we will show that using tactics where L > 1
leads to different results than those obtained with L = 1.

The experiment is quite simple: we did an exhaustive
enumeration of all the tactics with L = {1, 2, 3} and the
results obtained are shown in table I.

ht

TABLE I
PERFORMANCE (GAP) OF TACTICS WITH L = 1, 2, 3

L = 1 L = 2 L = 3
N. Tactics 27 272 273

Mean 48,733 45,09 43,891
Std. dev. 15,240 7,710 5,396

Best 39,658 39,55 39,520
Worst 99,205 99,20 99,202

Fig. 2. Number of tactics of each length per gap value. Results are shown
as percentages the total number of tactics available per length.

One can clearly observe that using different values for L
lead to different results. On average, as L increases, the mean
gap decreases.

The “best” existing tactic of length 2 is better that the best
one with period 1. Also the whole set of tactics with period 2
is better, on average, than the set of tactics with period 1. The
same holds for the comparison of periods 3 and 2. Although
numeric differences seem small, pairwise non-parametric U
Mann-Whitney tests indicate that the differences are signifi-
cant from a statistical point of view.

The “Worst” tactics, having an almost 100% of gap,
correspond to behaviours where agent S always take the best
action in terms of payoff. As a consequence, the observation
matrix of agent T has just one non-zero value per row, that
is the one selected.

The distribution of the tactics per gap value is shown in
Fig. 2. The curves represent the corresponding histograms for
each L value and percentages are used for better visualiza-
tion. The reader should be aware that the number of available
strategies for each L is different so the highest peak at the
beginning for L = 1 does not mean that there were more
strategies for L = 1 than for L = 3.

B. Feasibility study on the use of parametric tests

In order to check that parametric tests can be applied
for tactics comparison, the Kolmogorov-Smirnov test with
Lilliefors correction was used to test normality and the
Levene test was used to test variance similarity. The tests
were run with SPSS statistical software.

The sample of tactics used to evaluate both factors were
not generated randomly, but during the execution of the
genetic algorithm itself. The genetic algorithm was run once,
and every new individual generated, either in the initial
population or as a result of crossover or mutation, was
annotated in a separate file and evaluated using exactly 100
simulations. Hence, 100 samples were obtained as a result of
the evaluation of each tactic. The experiment was designed
this way, and not just with independent, randomly generated
tactics, because this environment reproduces the conditions
where the statistical comparisons will be done. At the end,
we collected 1034 tactics/individuals.

In order to verify if the samples follow a normal distribu-
tion, we run 1034 Kolmogorov-Smirnov tests with Lilliefors
correction. The results are clear: up to 95% of the tactics
follow a normal distribution (see table II).

In order to test homoscedasticity, we randomly selected 42
individuals from this original 1034-element set. Then each
individual was compared with all the others running a Levene
test for assessing the equality of variance. A total of 861
comparisons were done. The results are shown in table III.
Again, in a very high percentage of cases (85%) the equality
of variances holds.

So, the results allows to conclude that the two conditions
required for a parametric t-test are met by our set of strategies
in a very high percentage of the cases. This means the next
experiments, which try to evaluate the benefits of using a t-
test during the genetic algorithm, make sense and are correct
from a theoretical point of view.

TABLE II
RESULTS OF THE NORMALITY TEST FOR 1034 TACTICS. SIGNIFICANCE

THRESHOLD: 0.05

Quantity Percentage
Non-normal 57 5,51 %

Normal 977 94,49 %
Total 1034 100 %

TABLE III
RESULTS OF THE LEVENE TEST FOR 861 COMPARISONS. SIGNIFICANCE

THRESHOLD: 0.05

Variance Quantity Percentage
Different 125 14,52 %

Equal 736 85,48 %
Total 861 100 %

C. On the behaviour of GGA with statistics-based compari-
son

In the previous section, we verified the theoretical feasi-
bility of using parametric tests for tactics comparison.

Now, we will analyze three different versions of GGA that
differs on how the individuals are compared
• GGAmean: two individuals are compared using the

mean of 30 simulation results
• GGAmedian: two individuals are compared using the

median of 30 simulation results

39
.4

39
.6

39
.8

40
.0

40
.2

40
.4

40
.6

GGA_mean GGA_ci GGA_median

39
.4

39
.6

39
.8

40
.0

40
.2

40
.4

40
.6

G
ap

Fig. 3. Distribution of the best 100 gap values of every GGA. Together
with the boxplots, an estimation of the distribution density is plotted behind,
in light-gray color

• GGAci: two individuals are compared using statistical
testing from 30,60 or 90 simulation results as needed.

Each algorithm was allowed 100 independent runs. As the
third algorithm uses the evaluations available in a different
way, a generation based analysis is not possible.

In order to compare the algorithms’ performance, the best
solutions obtained by all the executions must be evaluated in
the same conditions. So, we took again these solutions and
we evaluated them once again with 8000 simulations. After
this, we had three sets of 100 samples each, corresponding
to the three different algorithms.

The obtained results are shown first in Figure 3, where a
boxplot for each algorithm is shown together with an esti-
mation of the values’ density distribution. One can observe
that GGAci box and density are slightly compact with no
noticeable outliers. In the contrary, GGAmedian is clearly
the worst alternative while GGAmean looks quite similar to
GGAci (although it has a higher number of outliers).

Table IV shows a summary of relevant values where results
from the exhaustive enumeration of tactics with L = 3 are
repeated for comparison purposes. The first point to notice is
that any version of GGA can consistently find good solutions
in a larger search space (with L = 4) and this is also a
confirmation of the role of parameter L in the quality of the
tactics.

Also, one can observe that GGAmean and GGAci are able
to obtain (on average) better tactics than GGAmedian. An U
Mann-Whitney test for the comparison of GGAmean and
GGAci states that they are different with a confidence level
of 90% (p-value=0.736).

Results can also be seen from another point of view. We
took those 300 best solutions (every method provide 100
solutions) and we sort them in increasing order of gap. Next,

ht

TABLE IV
VALUES OF GAP FOR THE TACTICS OBTAINED BY EVERY ALGORITHM.
L = 3 CORRESPONDS TO VALUES COMING FROM THE EXHAUSTIVE

ENUMERATION.

L = 3 GGAmean GGAci GGAmedian

Mean 43,891 39,617 39,604 39,761
Std. dev. 5,396 0,049 0,046 0,207

Best 39,520 39,539 39,515 39,540
Worst 99,202 39,768 39,771 40,569

(a)

(b)
Fig. 4. Distribution of the best 300 tactics obtained by all the algorithms.
In (a), each bar indicates the number of solutions in each quartile obtained
by every method. In (b), the top strand shows the first 150 solutions while
the bottom the remaining ones. The color represents the algorithm which
obtained it and the color code is the same as in (a).

we count the number of solutions from each algorithm that
appear in every inter-quartile segment and the result is shown
in Figure 4(a). Every bar shows the number of solutions in
each quartile provided by every method. One can observe
that GGAci provided the highest number of solutions to
the first and second segment. In the third one, most of the
solutions were obtained by GGAmean while the fourth one
is plenty of solutions obtained by GGAmedian. 4(b) shows
two coloured strands representing the 300 best solutions
(from 1 to 150 in the top strand, 150 to 300 in the bottom
one) and their position when ordered. The color represents
the algorithm who obtained such solution (GGAci: white,
GGAmean:dark grey, GGAmedian: light gray). From this
plot, one can observe the distribution of solutions within
each segment. Clearly, there are more white blocks in the
upper strand, specially at the beginning, thus indicating that
the quality of such solutions is better than the other ones.

Now, we will try to provide insights on the behaviour
of GGAci. One interesting aspect to analyze is how many
comparisons had a clear “winner” after 30, 60, 90 or more
simulations. A clear winner means that the gap of one tactic

Fig. 5. Percentage of comparisons that required 30, 60, 90 or more
simulations. Average results taken from 30 executions of the GGA.

is different from the one of another from a statistical point
of view. If after sampling 90 simulations, no clear winner
arise, then we took the one with lower gap but we consider
such comparison as “ambiguous”.

The results in Fig. 5 shows that 22% percent of the com-
parisons are reliable with just 30 simulations. Adding more
samples, allows to increase the detection of the “winner”
tactics slightly. It is interesting to note that the number of
comparisons that remain ambiguous after 90 simulations is
still very high (66%). However, comparing the means after
90 simulations in these doubtful cases seems to be more
reliable than doing the same with just 30 simulations.

Given two tactics a and b, the difference between
GGAmean and GGAci will come from comparisons where
a was better than b using 30 samples, but then, after more
sampling, occurred that b was better than a (this would
only be possible with GGAci). We analyze the number of
times on which the “best” tactic changed after additional
sampling. We have run GGAci and we recorded the number
of comparisons per generation (in percentage) where the best
tactic changed. The results averaging 100 independent runs,
are presented in Fig. 6 and indicate that such value rapidly
increases in the initial generations, while reaching an almost
constant value around 25% in the rest of the run. In Fig. 5
we observed that just 22% of comparisons were significant
with 30 simulations. In turn, 78% were not significant and it
is from this percentage where the 25% previously mentioned
should be considered. For example, in 1000 comparisons
the additional sampling would change the initial result in
around 200 cases. Without doubt, this is a pretty high value
and reveals a weakness of mean-based comparisons. One can
argue that this could be overcome if more samples are added
from the beginning to the mean calculation, but this would
potentially waste simulations when they are not needed.

VI. CONCLUSIONS

A new kind of strategies for an adversarial model has
been proposed and successfully tested. The performance of
cyclic strategies that vary along time showed to be better
than that of simpler strategies. To be precise, cyclic tactics
with length 2 and 3 performed better, on average, than the

Fig. 6. Comparisons where the corresponding best solution changed
after additional sampling (percentage over the number of comparisons per
generation). Average results from 100 executions of the GGAci.

original static strategies. Also, the feasibility of a parametric,
t-test-based comparison technique for this class of tactics has
been successfully demonstrated from a theoretical point of
view in our adversarial domain. Finally, this new comparison
technique has been studied when coupled with a Generational
Genetic Algorithm (GGA) exploring the space of tactics with
length 4. A comparison with other two simple techniques like
mean-based and median-based has been done as well. Results
show that the proposal is beneficial: GGAci obtained better
quality solutions than the other alternatives.

An important finding was that using resampling if needed
in our method, make that the results of comparisons between
solutions changed in more than 20% of the cases. This
confirms that the t-test-based technique deserves further
investigation because it can help metaheuristics to guide the
search in a more reliable, yet efficient way. We envisage
that this comparison technique could be useful in dealing
with noisy fitness functions. Moreover, if t-test could not
be applied due to absence of normality in the data samples,
non-parametric tests could be applied.

ACKNOWLEDGMENT

This work was supported in part by the project TIN2008-
01948 from the Spanish Ministry of Science and Innovation
and P07-TIC-02970 from the Andalusian Government.

REFERENCES

[1] A. Kott and M. Ownby, “Tools for real-time anticipation of enemy
actions in tactical ground operations,” in Proceedings of the 10th Inter-
national Command and Control Research and Technology Symposium,
2005.

[2] R. Popp and J. Yen, Emergent Information Technologies and Enabling
Policies for Counter-Terrorism. John Wiley and Sons Hoboken, NJ,
2006.

[3] A. Kott and W. M. McEneany, Adversarial Reasoning: Computational
Approaches to Reading the Opponents Mind. Chapman and Hall/ CRC
Boca Raton, 2007.

[4] N. Krasnogor, G. Terrazas, D. Pelta, and G. Ochoa, “A critical view
of evolutionary design of self-assembly system,” in Proceedings of
the Conference on Artificial Evolution (EA’05), ser. Lecture Notes in
Computer Science, vol. 3871. Springer, 2005, pp. 179–188.

[5] H.-S. Park, W. Pedrycz, and S.-K. Oh, “Evolutionary design of hybrid
self-organizing fuzzy polynomial neural networks with the aid of
information granulation,” Expert Systems with Applications, vol. 33,
no. 4, pp. 830–846, 2007.

[6] G. Baldassarre and S. Nolfi, “Strengths and synergies of evolved and
designed controllers: A study within collective robotics,” Artificial
Intelligence, vol. 173, no. 7-8, pp. 857–875, 2009.

[7] S. Salcedo-Sanz, M. Naldi, A. M. Perez-Bellido, A. Portilla-Figueras,
and E. G. Ortiz-Garcia, “Evolutionary design of oriented-tree networks
using cayley-type encodings,” Information Sciences, vol. 179, no. 20,
pp. 3461–3472, 2009.

[8] D. Pelta and R. Yager, “On the conflict between inducing confusion and
attaining payoff in adversarial decision making,” Information Science,
vol. 179, pp. 33–40, 2009.

