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Abstract. This paper presents the replanning capabilities in the SIADEX plan-
ning framework[6], which are based in the chronological order of generation of
actions during the planning stage. This is a local replanning strategy since the
replanning of an action only affects to older actions in the search tree and newer
actions (actions that were generated after the replanned action) are maintained
unaltered. This process is intended to regenerate the plan taking into account the
the chronological steps given to obtain the current plan in a mixed initiative ap-
proach with the collaboration of a human expert.

1 Introduction

Planning for real world problems is becoming a need to bridge the gap between theory
and practice in the AI Planning community. However this task is full of difficulties that
arise from many different sources but one of the most important ones is the uncertainty
of the knowledge being used to obtain plans. In this sense, the available knowledge is
usually faulty so, there may be knowledge that is only partially known (incomplete-
ness), uncertain knowledge about the effects of an action in its environment (nonde-
terminism) or knowledge that may not be perfectly known, mainly different types of
metric knowledge (imprecision).

There are only two approaches to overcome this uncertainty: a preventive one and a
palliative one. Preventive approaches for handling uncertain knowledge in AI planning
frameworks try to foresee this uncertainty during the planning process and before the
execution of the final plan. Therefore one may find different approaches that build alter-
native, conditional, branches to foresee any possible contingency during the execution
of a plan [7, 11, 3], approaches that take into account the probability of every possi-
ble outcome of an action and build different strategies to react upon the detection of
unexpected effects [2] or approaches that bound the imprecision of part of the knowl-
edge and obtain plans adapted to these boundaries [8, 5]. These approaches might be
called “off-line” approaches since they separate the stages of planning and execution as
different, sequential phases of the resolution of a problem like a batch process.
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On the other hand, palliative approaches make a simplifying assumption that every-
thing will go as expected so plans are obtained deterministically and, in the case that
something could go wrong during the execution, the planner might be invoked again to
design a subplan for the new contingency. Therefore, these approaches might be called
“online” approaches since they may interleave several planning and execution stages
during the resolution of the same problem. Basically one may find approaches for con-
tinual planning [9, 10], that interleave the design and execution of pieces of a plan until
the complete problem is solved, or replanning approaches [13, 1] that redesign and re-
place a piece of a plan after a failure has been detected. In these approaches there are
three main issues to be solved. The first one is detecting the source of the failure, the
second one is delimiting the impact of the failure and the third one is redesigning the
part of the plan that has failed.

The framework presented in this paper follows this last replanning approach and
gives a solution for the second and third issues but taking into account that the planner
is continuously being monitored and validated by a human operator. In this sense, the
replanning capabilities of SIADEX must be human centered, that is, they only produce
a local redesign of the part of the plan that has failed maintaining the remaining of
the plan unaltered. Global replanning is only carried out if the impact of the failure is
very deep, and when even the goal of the plan could be put in danger. This replanning
strategy is based on the chronological order of generation of actions and it affects either
older actions or newer actions that causally depend on the part that has failed. The
remaining actions in the plan are maintained unaltered.

2 The SIADEX framework

SIADEX is a planning framework that is being developed under a research contract
with the Andalusian Regional Government (Regional Ministry of Environment) [6]. It
is intended to assist technical staff in the design of forest fire fighting plans but the
ideas presented in this paper are domain independent and they might be applied to any
mixed initiative replanning framework. The core of the SIADEX architecture, Figure
1.a), is a generative planner that obtains extended plans following a classical partial
order causal link based planning algorithm [12] outlined in Figure 1.b). This algorithm
will be explained later. These plans are then executed under the supervision of the mon-
itoring module and a human operator. This is coordinated by the InfoCenter module
that interfaces all of the interactions between SIADEX and the outer world:

– Receives planning requests by the user (through the User Interface).
– Ask the planner for new plans.
– Upon notification of the monitoring module, it launches execution orders to the hu-

man operator (through the User Interface) or to external agents (through the World
Interface)

– Gathers information on the execution of the plan by indirect observation of a human
operator (through the User Interface) or by direct gathering (through the World
Interface) and translates them into the Monitor.

– Raises alerts about possible execution failures upon notification of the Monitor or
upon direct user request.



SIADEX(Π,O, L,A,D)

1. If A is emptyReturn Π,O, L
2. Goal Selection: Extract(l, a, t) fromA
3. Action Selection: Select an actiona′ to solve

(l, a, t) such that either
(a) a′ ∈ Π (Reuse an action)
(b) a′ ∈ D (Insert a new action)
(c) Return FAIL

4. Update
(a) L = L ∪ (a′, l, a,NOW ())
(b) O = O ∪ a′ < a
(c) Π = Π ∪ a′
(d) ∀l ∈ Preconditions(a′),A = A ∪

(l, a′,∞)
5. Solve causal interferences: if an actionat threat-

ens a causal link(ap, l, ac, t) then either
(a) O = O ∪ at < ap

(b) O = O ∪ ac < at

(c) Return FAIL
6. Recursively callSIADEX(Π,O, L,A,D)

(a) (b)

Fig. 1. The architecture of SIADEX and the generation of chronologically extended plans.Π
stands for a set of actions, i.e., the plan,O is an order relation overΠ, L is the plan rationale,A
is the agenda of pending subgoals to be solved, andD is the set of actions schemas in the problem
domain

As may be seen this architecture assumes that the execution of a previously designed
plan in a dynamic world might not go as expected so it includes two different levels of
response to this dynamicity. The first level is the monitoring module, that allows to trace
the execution of the plan, detect possible failures and determine the possible impact
of the failure. This is explained in sections 2.1 and 3. After the failure of an action
has been detected, a mixed-initiative replanning episode is launched. The interaction
is coordinated through InfoCenter and it may be as simple as re-executing the failed
action (if this is feasible taking into account the temporal constraints in the problem) or
as complex as deleting the remaining plan and redesigning a new one. This is explained
in section 5. In any case, the new plan is monitored again in a continuous loop that ends
with the successful execution of a plan.

2.1 Generation of chronologically extended plans

These extended plans obtained in SIADEX (Figure 1.b) contain a temporally ordered
sequence of actionsΠ and the plan rationaleL. The plan rationale records the cause-
effect relationships between actions in the plan as well as the chronological point in the
resolution process at which every relationship was included. Thus, every record inL is
a tuple(ap, l, ac, t) that means that at time stampt, actionap ∈ Π was used to solve



the preconditionl of actionac ∈ Π. These records are namedcausal links. Taking
into account that the planning algorithm follows a backwards search process, the age
of an actiona ∈ Π in the plan, that is, the chronological point at which the action was
included is given byτ(a) = min

(a,l,a′,t)∈L
t.

The agendaA that contains the pending subgoals to be solved is also annotated with
time stamps. A goal(l, a, t) in the agenda is a preconditionl of an actiona that is to be
solved. Ift = ∞ then the goal is being newly generated, otherwiset 6= ∞ means that
it is a goal being replanned and it was originally solved at time stampt.

For monitoring purposes only the planΠ, the temporal constraints defined over the
actionsO and the plan rationaleL are needed. The time stampt in every record of the
plan rationale is only used for replanning.

3 Monitoring in dynamic environments

The monitoring module of SIADEX is based on a temporal scheduling and rescheduling
policy over temporal plans [5] so that actions in a plan are continuously being selected
for execution following the best temporal ordering, their execution is monitored and
possible faults are detected (Figure 2). When a fault is detected its impact is calculated,
and a replanning episode starts in which the user may interact with SIADEX, making
some suggestions (delete or add actions by hand, add or delete goals or literals). These
suggestions are processed by the planning algorithm and new interactions are requested
to the user until a valid plan is obtained, that is scheduled again for its execution and
monitoring.

PLANNER
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PLAN
PATCHING

No failure Failure

End of plan

SUCCESS

Planning
Request
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USER
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extended plan

Fig. 2.The mixed-initiative planning and replanning loop in SIADEX

In order to correctly monitor the execution of a plan, SIADEX is based on two main
constructs, theCurrently Known Horizon(CKH) and theCurrent Planning Horizon
(CPH). CKH Is the current state of the world since the initial state of the problem
along actions have been completely executed. InitiallyCKH is the initial state of the



problem.CPH is a prediction about the next changes to come in the near future. The
monitoring procedure is shown in Figure 3.

1. Let us consider
– X The set of actions already executed
– Π The set of actions that are to be executed
– Q The queue of actions that are currently under execution

2. Initially X = ∅,Q = ∅ andΠ = the plan,CKH = Initial − State, CPH = ∅
3. Loop

(a) Extract fromΠ the next actions to be executed and insert them intoQ
(b) Insert all of their effects inCPH
(c) If a literal inCPH has been achieved in the real world, move it fromCPH toCKH
(d) If an action has achieved all its effects, move it fromQ toX
(e) If an action inQ cannot achieve some of its effects or a literal inCKH has been deleted

then return FAILURE
(f) If Π = Q = ∅ then return SUCCESS

Fig. 3.The monitoring steps

Initially, CPH is empty and every time a action is launched for its execution, all its
effects are included inCPH. Every effect takes a different time to be achieved [4, 5]
so the execution is continuously monitored and, once an effect has been achieved in the
real world, it is moved fromCPH toCKH.

If everything goes well, all of the actions are correctly executed,CKH contains
the description of a goal state andCPH is empty. However, a plan may fail at some
point in its execution. The source of this failure may be either a missing condition, i.e.,
a literal that suddenly dissapears fromCKH, or a missing effect, that is a literal that
cannot be removed fromCPH. A missing condition may be due to an external event
that deletes a previously achieved effect or an initial condition. A missing effect may
be due to the failure of an action (or the agent that executes it) so that part of its effect
cannot be achieved.

Both cases produce a missing literal that, taking into account the plan rationaleL,
might invalidate the causal dependencies of a set of actions. So, after the detection of
the failure, the next step is determining its impact in the causal structure of the plan.
This is done by functionDeleteLiteral(l) shown in Figure 4. Additionally, during the
monitoring of the plan, new unexpected literals might arise. In these cases function
AddLiteral(l) is easily used.

FunctionDeleteLiteral(l) carries out three main activities. On the one hand, it start
to regenerate the part of the plan rationale that had been altered by the deletion ofl.
In order to do so, it includes in the agendaA a new replanning subgoal for every al-
tered causal link. These subgoals are not new subgoals but subgoals to be re-satisfied.
Therefore they will have a time stampt 6= ∞. Secondly, every action with a missing
precondition due to the deletion ofl is labeled asOPEN . These actions cannot be
executed without re-satisfying the missing precondition. And finally, every action that



DeleteLiteral(l) AddLiteral(l)
1. If 6 ∃(a, l, a′, t) ∈ L do nothing
2. Otherwise∀(a, l, a′, t) ∈ L do

(a) Remove(a, l, a′, t) fromL
(b) Add (l, a′, t) toA
(c) Labela′ asOPEN
(d) ∀(a′, l′, a′′) ∈ L

i. Labela′′ asUNSTABLE

1. CKH = CKH ∪ l

Fig. 4.Two functions that may be used after the detection of a failure.

depends directly or indirectly on anOPEN action is labeled asUNSTABLE mean-
ing that their preconditions are fully satisfied but that there may be some supporting
action with a missing precondition.

4 User centered plan patching

This labeling of the action in the plan determines the future impact of the missing
condition detected by the monitoring module. The decision to be taken is not easy, and it
is left to the judgment of the human operator since it may be a very domain dependent
decision. The most conservative decision is to re-execute the failed action. The most
aggressive decision is to purge the plan, that is, the deletion of allOPEN actions and
all UNSTABLE actions and replan them completely. All of these possibilities may be
carried out through InfoCenter in a plan patching stage that is driven under the control
of a human operator (Figure 2). This transition in the loop of planning and replanning
may be carried out in two different ways (depending on the problem domain).

– The execution of the plan is fully stopped. ThenCPH andCKH are immediately
stopped until the plan patching ends and the (possibly new) plan may continue its
execution. This corresponds with a batch replanning system.

– The execution of the plan is not stopped and every action that were not altered by
the failure is continued. ThenCPH andCKH continue changing while there is
any executable action not labeled asOPEN either asUNSTABLE. This schema
corresponds with an asincronous replanning system and requires a very subtle syn-
chronization sinceCKH andCPH might change or new failures might occur.

In any case, these are the suggestions that may be made by the human operator.

DeleteAction(a) This suggestion deletes the desired actiona (only if it has not been
executed yet), it deletes all of its effects in the plan, and recursively deletes all
of the actions that were included explicitly to solve any precondition ofa1. So
this suggestion deletes the causal structure supportinga that is no longer needed,

1 These are actions newer thana in the chronological order that solves a precondition ofa.
Actions older thana are not deleted since they were introduced for other purpose and they
were later reused bya during the planning process.



labels asUNSTABLE the actions that causally depend ona, and generates some
replanning goals.

DeleteAction(a)

1. Only if a ∈ Q ∪Π
2. Removea fromQ orΠ
3. ∀l ∈ effects(a) DeleteLiteral(l)
4. ∀(a′, l, a, t) ∈ L

(a) Remove(a′, l, a, t) fromL
(b) If a′ ∈ Q ∪Π

i. If τ(a′) > τ(a) DeleteAction(a′)

AddAction(a) This suggestion creates a setP of patches of the user that contains ac-
tions explicitly added by the user. These actions will be eventually reused later by
the planner during the replanning stage.

AddAction(a)

1. P = P ∪ a

DeleteGoal(g) This suggestion is very strong. It deletes all of the actions that were ex-
clusively added to solve that goal and generate a replanning subgoal and, possibly,
many replanning subgoals.

DeleteGoal(g)

1. Let (a, g, END, t) the causal link that records the satisfaction of the goalg by
means of the actiona.

2. DeleteAction(a)
3. Insert(g,END, t) in A

Addgoal(g) This action simply adds a new primary goal to the agenda.

AddGoal(g)

1. A = A ∪ (g,END,∞)

5 Local replanning in SIADEX

After the plan patching stage, the plan contains a damaged causal structure, with many
open conditions still to be re-solved, some actions are new and others have dissapeared.
The replanning episode has to regenerate the missing pieces of the plan to obtain a
complete, valid plan. In order to do this, instead of replanning completely the missing
actions, a local replanning procedure is carried out taking into account the time stamps



in the newly generated replanning subgoals. This is a very close procedure to a human
revision of a plan since a global redesign of a plan is only carried out if it is strictly
necessary given that the execution of a completely new plan may be very costly in
terms of reconfiguration of the agents and actuators in the real world. In this sense,
local redesigns of a globally valid plan are more preferred. However, in the case that a
local replanning is infeasible, a global replanning must be carried out.

Instead of using a specialized replanning algorithm, the original algorithm in Figure
1.b) was redesigned so that it is able to work in a purely generative episode and also in
a replanning episode. The main additions are

– It is able to replan over a plan that is being executed, taking into account the exis-
tence of already executed actions andCKH. One of the main difference with the
original algorithm (step 3) is that a subgoal may only be solved by a previously ex-
isting action when the age of the reused action is lower that the age of the subgoal.
For newly generated subgoals there is no difference since their time stamp is∞ and
all of the actions are potentially candidate. For replanned subgoals, actions newer
that the subgoal are not considered since they did not exist in the chonological point
at wich the goal was introduced.

– It reuses and extends the remaining plan rationaleL and reorder chronologically
every newly inserted causal link maintaining the original order (step 4a).

– It is able to include the actions suggested by the user inP although, due to the
search process these actions might be finally rejected (step 3b).

– The role of the time stamp in the causal structure is increased to provide a local
replanning capability. In fact subgoal resolution and causal link generation depends
on the order imposed by existing time stamps.

– In the case of a backtracking during a local replanning (steps 3e and 5c), all of
the actions newer than the current problem being replaned are deleted triggering a
global replanning process.

Therefore, during a generative episodeQ = P = CKH = ∅ and all of the goals in
A are of the form(l, a,∞). On the other hand, during a replanning episodeQ, P and
CKH may be non empty, and goals inA may have a time stamp different than∞

6 Concluding remarks

This paper has shown the replanning capabilities of SIADEX, a system being developed
under a research contract with the Andalusian Regional Government to assist technical
staff in the design of forest fire fighting plans. Although this a very specific domain, the
techniques shown in the paper are domain independent and they might be applied to any
domain. These techniques are based on a local replanning capability with the following
features

– It is a local replanning procedure since it does not produce a global replanning pro-
cess if it is not necessary, so only the neighborhood of the failed action is replanned.

– It is a mixed initiative approach in which the user is informed of the existence and
the impact of the failure and he/she is able to patch the plan by adding/deleting
either actions or goals.



SIADEX-R(Π,Q, P,O, L,A,D, CKH)

1. If A is emptyReturn Π,O, L
2. Goal Selection: Extract(l, a, t) fromA
3. Action Selection: Select an actiona′ to solve(l, a, t) such that either is a new action or a

previously existing action with a time stamp older than the goala.
(a) a′ ∈ X and l ∈ CKH Reuse an already executed action whose effects are still in

CKH
(b) a′ ∈ P Reuse an action suggested by the user
(c) a′ ∈ Q ∪ Π andτ(a′) < t Reuse an action still to be executed. This corresponds to

a delay in the execution ofa that was originally scheduled to be executed before, but,
due to the failure it is still possible to execute it later reusing part of the existing plan
rationale.

(d) a′ ∈ D
(e) Return FAIL and

i. ∀a ∈ Π ∪ Q such thatτ(a) > t DeleteAction(a)
4. Update

(a) if t =∞ (new goal)L = L ∪ (a′, l, a,NOW ())
otherwise (replanning goal)

i. L = L ∪ (a′, l, a, t)
ii. Increase in 1 time unit the time stamp of every goal(l, a, t′) ∈ A and every causal

link (a1, l, a2, t
′) such thatt < t′

(b) O = O ∪ a′ < a
(c) Π = Π ∪ a′
(d) ∀l ∈ Preconditions(a′),A = A ∪ (l, a′, t+ 1)

5. Solve causal interferencesb: if an actionat threatens a causal link(ap, l, ac, t) then either
(a) O = O ∪ at < ap

(b) O = O ∪ ac < at

(c) Return FAIL and
i. ∀a ∈ Π ∪ Q such thatτ(a) > t DeleteAction(a)

6. Recursively callSIADEX-R(Π,Q, P,O, L,A,D, CKH)

a For newly generated goals (with time stamp∞) every action is a possible one. For replanning
goals with a time stampt only actions whose time stamp is lower are considered, that is,
actions that were previously generated in the search tree. Newer actions, i.e., actions that were
generated later in the search tree are not considered.

b This step does not consider time stamps since interferences may appear between actions and
causal links of any age.

Fig. 5.The planning and replanning algorithm of SIADEX



– It might be used to start a planning process either from scratch or from initial sug-
gestions of the user and regenerating a plan over them. This is because this process
is inherently the same to replanning so that the interaction with the user may be
even closer.

On the opposite hand, it must be said that these techniques are not complete since
after a failure in the execution, only the plan rationale is deleted and regenerated. Order-
ing and binding constraints posted by failed actions are not deleted neither regenerated
though they are being studied for a more comprehensive replanning procedure in the
SIADEX project.
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SIADEX: Assisted Design of Forest Fire Fighting Plans by Artificial Intelligence Planning
techniques.http://decsai.ugr.es/siadex , 2003.

7. O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach to
planning with incomplete information. InProc. Third. Int. Conf. on Principles of KRR-92,
pages 115–125, 1992.

8. P. Morris and N. Muscettola. Execution of temporal plans with uncertainty. InAAAI 2000,
pages 491–496, 2000.

9. N. Muscettola, P. Pandurang Nayak, B. Pell, and B. C. Williams. Remote agent: to boldly go
where no AI systems has gone before.Artificial Intelligence, pages 5–48, 1998.

10. K. L. Myers. CPEF: A continuous planning and execution framework.AI Magazine,
20(4):63–69, 1999.

11. M. A. Peot and D. E. Smith. Conditional nonlinear planning. InProc. First Int. Conf. of
AIPS, pages 189–197, 1992.

12. D. Weld. An introduction to least commitment planning.AI Magazine, 15(4):27–61, 1994.
13. D. E. Wilkins. Practical planning: Extending the classical AI planning paradigm. Morgan

Kaufmann, 1988.


