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Abstract: This paper present a novel technique for constructing autonomous 
agents using a case-based reasoning system. The reasoning model 
incorporates a K-SIM algorithm for the identification of the appropriate 
information to construct the agent plan, in execution time, using variational 
calculus. The proposed methodology has been used to create several agent 
based systems. The paper describes the methodology and outlines a case 
study. 

1 Introduction 

Interesting case-based reasoning (CBR) models have been presented, over the last few 
years, for constructing deliberative agents. This paper presents a novel architecture 
that has been developed for constructing deliberative agents which can generate their 
plans using the framework of a case-based reasoning (CBR) system, that incorporate a 
Kernel Maximum Likelihood Hebbian Learning Scale Invariant Map (K-SIM) [1] for 
the identification of the information that later may be used to create a plan using 
variational calculus [2]. The robust analytical notation introduced in [3] is used to 
present the proposal.  

Agents must be able to respond to events that take place in their environment, take 
the initiative according to their goals, interact with other agents (even human) and use 
past experiences to achieve current goals. The deliberative agent with BDI (Belief, 
Desire and Intention) architecture, uses the three attitudes in order to make decisions 
on what to do and how to achieve it [4, 5, 6]: their beliefs represent their information 
state  (what the agents know about themselves and their environment); their desires 
are their motivation state (what they are trying to achieve); and the intentions 
represent the agents’ deliberative state. These mental attitudes determine the 
deliberative agent’s behaviour and are critical if a proper performance is to be 
produced when information about a problem is scarce [7, 8]. BDI architecture has the 
advantage that it is intuitive, it is relatively easy to recognize the process of decision-
making and how to perform it. Moreover, it is easy to understand the notions of 
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belief, desires and intentions. For several year we have been working on a mechanism 
to facilitate the effective implementation of autonomous agents using CBR systems 
[9]. A robust analytical formalism for the definition of computationally efficient 
agents, which solves the first of the previously mentioned problems has been 
identifies and presented in [2, 3]. This paper presents an improved version of our 
approach in which a Kernel Maximum Likelihood Hebbian Learning Scale Invariant 
Map (K-SIM) is used for the identification of the cases required to construct the agent 
plan.  

The analytical notation is reviewed and it is outlined how a CBR system is used to 
operate the mental attitudes of a deliberative BDI agent. Te K-SIM technique is 
introduced and an agent based system for the e-tourism domain that uses the 
methodology presented in the paper.  

2 Constructing agents with case-based reasoning systems 

A novel methodology for constructing deliberative agent has been presented in [2, 3], 
this section outlines it and explains why it has to be improved. This section identifies 
the relationships that can be established between deliberative agents and CBR 
systems, and shows how an agent can reason with the help of a case-based reasoning 
system. Case-based reasoning is used to solve new problems by adapting solutions 
that were used to solve similar previous problems [9, 10]. The operation of a CBR 
system involves the adaptation of old solutions to match new experiences, using past 
cases to explain new situations, using previous experience to formulate new solutions, 
or reasoning from precedents to interpret a similar situation.  

The reasoning cycle of a typical CBR system includes four steps that are 
cyclically carried out in a sequenced way: retrieve, reuse, revise, and retain [9]. 
During the retrieval phase, those cases that are most similar to the problem case are 
recovered from the case-base.  The recovered cases are adapted to generate a possible 
solution during the reuse stage. The solution is then reviewed and, if appropriate, a 
new case is created and stored during the retention stage, within the memory. 
Therefore CBR systems update their case-bases and consequently evolve with their 
environment. Each of the reasoning steps of a CBR system can be automated, which 
implies that the whole reasoning process could be automated to a certain extent 
[9,10]. This assumption has led us to the hypothesis that agents implemented using 
CBR systems could be able to reason autonomously and therefore to adapt themselves 
to environmental changes. Agents may then use the reasoning cycle of CBR systems 
to generate their plans. 

The proposed model has identified a direct mapping between the agents and 
the reasoning model has been established, in such a way that the mapping 
between the agents and the reasoning model should allow a direct 
implementation of the agent and the final agents should be capable of learning 
and adapting to environmental changes.  

 2

The notation and the relationship between the components that characterise 
a BDI agent is defined as following. Let Θ be the set that describes the agent 
environment. If Τ(Θ) is the set of attributes {τ1, τ2,…,τn } in which the 
world’s beliefs are expressed, then we define a belief on Θ, that is denoted “e”, 



as an m-tuple of some attributes of Τ(Θ) denoted by e = (τ1, τ2,…,τm) with m≤ 
n.  

We call set of beliefs on Θ and denote ζ(Θ) to the set: 
ζ(Θ) = { e=(τ1, τ2,…,τj ) /  where j =(1,2,…, m ≤ n )} 
The operator "Λ of accessibility" between m beliefs (e1,e2,e3,…,em), where we 

denote: Λ(e1, e2, e3,…,em) = (e1 ∧ e2 ∧ … ∧ em) indicates that exists compatibility 
among the set of beliefs (e1, e2, e3,…, em). If any of the belief (e1, e2, e3,…, em) is not 
accessible, or if there exists a contradiction, it will be denoted by:Λ(e1,e2, e3,…,em) = 
Ø. Moreover, an intention i on Θ is defined as an s-tuple of compatible beliefs, i = (e1, 
e2,…,es)  with s∈ IN and Λ( ei, ej )≠ 0. Then, we call set of intentions on Θ and denote 
Ι(Θ)={(e1, e2, …, ek) where k∈IN}. Now a set of parameters will be associated to the 
space Ι(Θ) that characterises the elements of that set. The set of necessary and 
sufficient variables to describe the system may be obtained experimentally. We call 
canonical variables of a set Ι(Θ) any set of linearly independent parameters ℵ =(A1, 
A2,..., Av) that characterise the elements i ∈ Ι(Θ). 

In the same way, a desire d on Θ is defined as a mapping between  
         d : I(Θ)→ Ω (ℵ )    
            i =(e1 ∧ … ∧ er,)      F(A1, A2,...., Av)  

where Ω (ℵ ) is the set of mappings on ℵ . 
A desire d may be achieved constructing an intention i using some of the available 

beliefs, whose output could be evaluated in terms of the desired goals. We denote 
D(Θ) the set of desires on Θ: D(Θ)={d: I(Θ)  Ω (ℵ ) / with I(Θ) set of intentions and 
Ω (ℵ ) set of mappings on ℵ } 

Now, after presenting our definition of the agent’s beliefs, desires and intentions, it 
is reviewed the proposed analytical formalism for the CBR system. The necessary 
notation to characterise a CBR system is introduced as follows. Let us consider a 
problem P, for which it is desired to obtain the solution S(P). The goal of a case-based 
reasoning system is to associate a solution S(P) to a new problem P, by reusing the 
solution S(P´) of a memorised problem P´. P is denoted as P=(Si,{ θj }, Sf ) with  
Si=initial state, Sf=final state and j=(1,…,m). S(P) is defined as S(P)= { S1, θl, S2, 
θ2,..., θn, Sn+1 }={Sk, θh} where k=(1,..,n+1) and h=(1,..,n ≤ m) , S1=Si   and  Sn+1= Sf. 

The state Sk and the operator θj are defined as:  

Sk = 
           θ
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where{ } and{ } are coordinates in which a state SprrO ,...,1= qssR ,...,1= k is expressed.  

The coordinates type {Or }r=1,…,p are introduced to express the objectives achieved. 
The coordinates type {Rs }s=1,…,q are introduced to express the resources used. Through 
these definitions, the parameter effectiveness,ℑ, between two states S and S’ can be 
defined, as a vector ℑ (S, S’) = (ℑx, ℑy) which takes the form 
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The definition implies that ( 0≤ℑx≤1 ) and ( 0≤ℑy≤1 ). In particular, if S=Si  and  
S’=Sf , it is denoted  (Sℑ i, Sf)=ℑ [S(P)] and we call it “effectiveness of a solution”. In 
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order to evaluate the rate of objectives achieved and resources used, between S and S’, 
it is necessary to normalise every component of {Or}r=(1,…,p), {Rs}s=(1,…,q) . Then the 
expressions that have been defined to sum different objectives are: 

If {Or (S)}= ( O1, O2,..., OP ) and {Or (S’)}= ( O’1, O’2,..., O’P ) 
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As {Rs (S)}= ( R1, R2,..., Rq ) and {Rs (S’)}= ( R’1, R’2,..., R’q ) it is defined 
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A new parameter is also introduced - efficiency - that measures how many 

resources are needed to achieve an objective. Given a target problem P, and a solution 
S(P), we define [S(P)]= ς ℑ x / ℑ y , as the efficiency of the solution S(P). The 

definition implies that (S,S’)ς ),0( ∞∈ . The meaning of this new parameter is 
explained later. In this domain, a case C is a 3-tuple {P, S(P), ℑ[S(P)]} where P is a 
problem description, S(P) the solution of P and ℑ[S(P)] the effectiveness parameter of 
the solution, and a CBR´s case base CB, denoted as: CB={Ck / k=(1,...,q) and q∈IR} 
that is a finite set of cases memorised by the system. Finally the relationship between 
CBR systems and BDI agents can be established, associating the beliefs, desires and 
intentions with cases. Using this relationship we can implement agents (conceptual 
level) using CBR systems (implementation level). So once the beliefs, desires and 
intentions of an agent are identified, they can be mapped onto a CBR system. First, a 
mapping is introduced that associates an index to a given case Ck. 

idx:CB  I(CB) 
       C   idx(C)= idx{P, S(P), ℑ[S(P)]}= { idx (Si), idx (Sf) }= 
    = { [Si =(O1,a1), (O2,a2),...,(Op, ap), (R1,b1), (R2,b2),...., (Rq, bq)], 
       [Sf=(O’1,c1),(O’2,c2),..,(O’p, cp),(R’1,d1),(R’2,d2),..,(R’q,dq)] } 
with Oj, Rk∈Τ(CB) ,ai, bj, ck, dl ∈IR and p, q ∈IN 

where the set I(CB) is the set of indices of a case base CB that is represented by 
frames composed of conjunction of attributes of T(CB) and values of the domain. The 
abstraction realized through the indexing process allows the introduction of an order 
relation R in the CB that can be used to compare cases. Indices are organized in the 
form of a Subsumption Hierarchy. 
(CB, R)={ [Ck / k=(1,..,q) and q ∈IN ], R}={(C1 , .., Cq )/ idx(C1) ⊆ .. ⊆  idx(Cq)} 

Let us say that two cases C and C’∈CB fulfill the relation  

)'()( CidxCidx ⊆   if    idx  
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Let us say that S(P’) is a possible CBR solution of the target P,  
 ∀ C’= ( P’ , S(P’), ℑ[S(P’)] ) / idx(C’) ⊇ P 

Given a canonical coordinate system ℵ =(A1, A2,…,Av) on I(Θ), the set may be 
reordered, differentiating between:  

{Fm}= {Aj with j≤ v / Aj  growing} and {Gn}= {Ak  with k≤ v / Ak  decreasing} so,  
 ℵ= {Fm} {G∪ n} and m+n=v 
Then, giving an i∈ I(Θ), a functional dependency relationship may be obtained in 

terms of the attributes  i= i [e1(τ1, τ2,…,τj), e2(τ1, τ2,…,τk),…,es(τ1, τ2,…,τq )] =         
= i(τ1, τ2,…,τn ) and in terms of its canonical or state variables: 
 i= i (A1, A2,…,Av)= i (F1, F2,…,Fm, G1, G2,…,Gn ) which determines a 

functional relationship of the type Aj = Aj(τ1, τ2,…,τn). 
Now the fundamental relationship between the BDI agents and the CBR systems 

can be introduced.  We define “state ς of an intentional process” and we denote as ς 
={e1 ∧ e2 ∧ … ∧ es-1 ∧ es } to describe any of the situations intermediate to the solution 
i={e1 ∧ e2 ∧ … e∧ r, with r ≤ s} that admits a representation over ℵ . Moreover, the 
solution S(P) for a given problem P=(SI,{θj},SF) can be seen as a sequence of states 
Sk=({Or}r=1, …,p , {Rs}s=1,…,q ) interrelated by operators {θh}. 

Given a BDI agent over Θ with a canonical system, ℵ=( A1, A2,..., Av) in the set 
I(Θ) that may be reordered as ℵ =(F1, F2,…,Fm, G1, G2,…,Gn ), we establish the 
relationship between the set of parameters: 

{Fm} ←→ {Or}  {Gn} ←→ {Rs} 
The identification criteria may be established among 
• the intentional states, ςi∈ I(Θ), and the CBR states, Sk∈T(BC).  
• and a relationship may be established among the agents desires I(Θ) and the 

effectiveness operatorℑ[S(P)] of the CBR system. 
Then the mathematical formalisation proposed can be used as a common language 

between agents and CBR system and solves the integration problem. The relationship 
presented here shows how deliberative agents with a BDI architecture may use the 
reasoning cycle of a CBR system to generate solutions S(P). 

The relationship, presented here, shows how deliberative agents with a BDI 
architecture may use the reasoning cycle of a CBR system to generate solutions S(P). 
When the agent needs to solve a problem, it uses its beliefs, desires and intentions to 
obtain a solution. Previous desires, beliefs and intentions are stored taking the form of 
cases and are retrieved depending on the current desire. Cases are then adapted to 
generate a proposed solution, which is the agent action plan.  
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3  Planning in execution time 

The proposed agents have the ability to plan their actions, to learn and to evolve with 
the environment, since they use the reasoning process provided by the CBR systems. 
CBR systems may be implemented and automated in different ways depending on the 
problem which must be solved. Several strategies may be implemented in the 
framework of CBR systems to automate the planning tasks [9, 10]. A variational 
calculus strategy has been proposed in [2] for the adaptation stage of CBR systems 
embedded in the agent. We have experimented with several planning strategies and 
observed that the Variational Calculus Based Planer (VCBP) by [2, 3] provides 
excellent results and can be compared very favorably with other planning strategies 
[3]. Variational Calculus allows re-planning at execution time, even in changing 
environments, where goals are to be achieved successfully in real-time.  

Variational calculus allows the agents to plan and replan at execution-time because 
this formalism is used to model the cases during the reuse phase of the reasoning 
process to solve a given problem. Assuming that potentially significant changes can 
be determined after executing a primitive action, it is possible to control the 
dynamism of the new events of the domain and thus achieve an appropriate 
reconsideration of the problem [11]. When the plan proposed by the agent is stopped 
for any reason, variational calculus calculates a new plan. In this case the new initial 
state is the point at which the initial proposed route has stopped. If it is accepted that 
the environment may change, it is also necessary to define a reasoning mechanism 
capable of dealing with such changes by modifying the initial desires and intentions.  

Nevertheless the reasoning process may be maintained since the general 
description problem remain constant. If at t0, the function V(X, Y, Z) takes the form 
denoted by V0(X,Y,Z), at t1, V is denoted by V1 (X, Y, Z), with the associated surface 
Π1 (X, Y, Z) = 0 on the phase space, upon which it is possible to obtain the optimal 
curve between two new points, Si and Sf where Si = S1

(0)
, and S1

(0)
 is the second state 

of  ψ0 = { Si = S0
(0) 

 , S1
(0),....., Ss

(0) = Sf } and Sf  is the final state or solution state of the 
global problem. Solving the Euler´s equations, χ1 = χ1(X, Y, Z) is obtained, which 
may be used to calculate an expression for ψ1, denoted as ψ1 = { Si = S1

(0)
, S1

(1)
, S2

(1)
, 

S3
(1)

, S4
(1)

,...., Sm
(1)

,  ......, Ss
(1)= Sf } and the same can be done for any tj. From the 

previous equations, and based on variational calculus tools, an expression can be 
determined to identify the final solution of the agent. This expression, which 
represents the agent plan, can be obtained in execution-time and takes the following 
form: 
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3.1 K-SIM data processing strategy 

The performance of the variational calculus strategy used in the reuse stage relies on 
the effectiveness of the retrieval algorithm. The more consistence and adequate the 
outlines cases, the better the performance of the planning strategy. This paper presents 
an algorithm, that has been developed for case indexing and retrieval and that has 
been presented in [1]. Kernel Maximum Likelihood Hebbian Learning Scale Invariant 
Map (K-SIM) is based on a modification of a new type of topology preserving map 
that can be used for scale invariant classification [12]. Kernel models were first 
developed within the context of Support Vector Machines [13]. Support Vector 
Machines attempt to identify a small number of data points (the support vectors) 
which are necessary to solve a particular problem to the required accuracy. Kernels 
have been successfully used in the unsupervised investigation of structure in data sets 
[11, 14, 15].  

Kernel methods map a data set into a feature space using a nonlinear mapping. 
Then typically a linear operation is performed in the feature space; this is equivalent 
to performing a nonlinear operation on the original data set. The Scale Invariant Map 
is an implementation of the negative feedback network to form a topology preserving 
mapping. A kernel method is applied to an extension of the Scale Invariant Map 
(SIM) which is based on the application of the Maximum Likelihood Hebbian 
Learning (MLHL) method [16]. This method automates the organisation of cases and 
the retrieval stage of case-based reasoning systems. The proposed methodology 
groups cases with similar structure, identifying clusters automatically in a data set in 
an unsupervised mode. The features that characterize Kernel models can be used to 
cluster cases, to identify cases that are similar to a given one and to reuse cases. Then, 
the VCBP can generate a smoother representation of the problem and identify a more 
consistent plan. 

4  Initial evaluation and conclusion 

The proposed system has been used to improve an agent based system developed for 
guiding tourist around a city. The initial system has been presented in [2, 3]. Basically 
the assistant agent can be contacted via Internet or wireless devices such as mobile 
phones, PDAs, etc. The initial advising agent has been improved using the 
methodology presented in the previous section. The agent shares information with 
other agents that maintain uptodate information about Salamanca, its monuments, 
restaurants, spectacles, etc. The agent interact with the user and provides them with a 
plan. The tourist may use a mobile device to contact the agent, and then introduces 
his/her login and password, and indicates to the agent his/her preferences (monuments 
to visit, visits duration, time for dinner, amount of money to spend, etc.). The agent 
then generates a plan for the user according to his/her preferences and sends it back to 
the visitor.  

Once the agent is contacted and knows what are the interest of the tourist, it stars it 
reasoning process. First identifies what cases should be retrieved to create the model 
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of the problem using the K-SIM algorithm and then to identify the plan using the 
VCBP algorithm. If at any point the tourist decides to change his mind, the agent may 
run the K-SIM algorithm, and the VCBP planner to modify the initial plan in 
execution time, taking into consideration the initial constraints together with new 
ones.   

The initial system, was tested from the 1st of June to the 15th of September 2002. 
The case base was initially filled with information collected from the 1st of February 
to the 25th of May 2002. Local tourist guides provided the agent with a number of 
standard routes and distributed among his clients Mobile phones, from which they 
could contact the agent and inform it about the progress of their plans: routes, times, 
evaluations, etc. As reported in [2], during this period the agent stored in its memory 
540 instances. Which covered a wide range of all the possible options that offers the 
City of Salamanca. The system was tested during 115 days and the results obtained 
were very encourages. Three hotels of the City offered the option to their 4216 guests 
to use the help of the agent or a professional tourist guide, 7% of them decided to use 
to agent based system and 28% of them used the help of a tourist guide. The rest of 
the tourists visited the city by themselves. In this initial experiment the agent 
intentions were related to a one-day route (a maximum of 12). The degree of 
satisfaction of the tourist that used the help of the agent based tourist guide was very 
high. The new methodology has tested on bench, and we only have preliminary 
results, which can not be compared with the previously obtained and reported in [2], 
never the less we have observed that plans obtained with the improved system are 
more efficient in terms of the reduction of times spent between visits, identification of 
more convenient restaurants and  monuments to visit with respect to the location and 
distance. The system will be operational in January 2004 and will be tested for a four 
month period.  
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