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Abstract. In this paper, we propose the use of two relational learning
systems, HAMLET and EVOCK, for acquiring useful search control heuris-
tics in the context of automated task planning. In particular, we discuss
the influence of different ways of providing prior background knowledge
to such systems. We compare the results of providing initial informa-
tion by means of a human-centered approach against two automated
approaches. The first automated one consists of using the output of HAM-
LET as input to the learning process of EVOCK, and viceversa. The sec-
ond automated approach consists of using another planner for providing
guidance towards solutions of problems.

1 Introduction

Planning in non-trivial applications is an exponential process, that has to be
guided by human or machine generated knowledge. In the context of machine
learning, several approaches have been used to supply that guidance, but vary-
ing from Case-Based Reasoning, as in [13,22], to pure EBL-macrooperators as
in [10, 14,16, 18]. More recent approaches combine techniques, as reinforcement
learning with 1LP [7]. Other approaches combine deductive and inductive meth-
ods that rely one way or another on relational learning techniques, as in the use
of FOIL [19] integrated with different planners [9, 12].

One of the first approaches that combined deductive learning techniques, as
EBL, with inductive learning techniques based on relational learning, was HAM-
LET [6]. We presented in [5] a relational learning description of the learning
technique, as well as a comparison with using FOIL and PROGOL [17]. Later,
we developed another learning technique that could be considered as relational
learning, and used a genetic programming approach, EVOCK [3]. We showed
that the behaviour of this new learning technique depends very much on the
prior (background) knowledge that we provided to it, in the form of an initial
population, or an auxiliary population that could be used for the crossover oper-
ators [2]. Both approaches generated control knowledge in terms of control rules
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to be used by the PRODIGY planner [23]. We have also explored in the past the
usefulness of a mixed initiative approach (collaborative work of a human and an
automated system) to control knowledge (heuristics) generation in the context
of planning [1].

In the context of non-linear planning, many relational based learning sys-
tems have opted to provide prior knowledge for learning one way or another.
For instance, Q-RRL [7] uses predicates such as numberofblockson to learn con-
trol knowledge for the blocksworld domain. SCOPE, that modified FOIL to learn
control rules for UCPOP, also required human supplied prior knowledge [8]. The
reason for this is that it is very difficult for a machine learning system to find the
right conditions that have to appear in the left hand side of control rules. These
conditions (called meta-predicates in our case) vary from checks on the literals
that are true in the current state of the planning process, to checks on the things
that are true in the meta-state of the search process: on which goal the planner
is working, which operator it has selected to set as true a given literal, or what
is the initial goal that introduced a given sub-goal in the search tree.

There has already been some work on the effect of prior knowledge in some
ILP learning tasks, as in [20,21], but it has been for more classical ILP tasks.
In this paper, we wanted to study the effect of providing prior knowledge for
learning in planning. We have selected for this study the two relational learning
systems, HAMLET and EVOCK, and have supplied prior knowledge by means of
three different strategies: a human provides the prior knowledge in terms of a set
of control rules; one relational learning system provides the set of control rules as
prior knowledge to the other; and another planner provides knowledge on how to
solve a given planning problem by generating one solution to the problem. The
experiments compare the three different approaches in two relatively difficult
domains for machine learning in planning: logistics and depots.

Section 2 overviews the planner, and the machine learning techniques that we
have used for the experiments (they have been extensively covered in previous
works). Section 3 describes how to incorporate prior knowledge into each machine
learning technique. Section 4 presents the experiments that we have performed
and their outcome. And, finally, Section 5 draws some conclusions from the work.

2 Planner and machine learning techniques used

In this paper, we intend to study the effects of using prior knowledge on planning
control knowledge learners. First, the planner itself (PRODIGY) will be introduced
and then each one of the two machine learning techniques: HAMLET and EVOCK.

2.1 PRODIGY

PRODICY is a nonlinear planning system that follows a means-ends analysis. The
inputs to the problem solver algorithm are:

— Domain theory, D (or, for short, domain), that includes the set of operators
specifying the task knowledge and the object types hierarchy;



— Problem, specified in terms of an initial configuration of the world (initial
state, §) and a set of goals to be achieved (G); and

— Control knowledge, C, described as a set of control rules, that guides the
decision-making process.

A planning operator is the specification of an action that informs how the
world changes when the operator is applied. PRODIGY uses a specific domain
description language whose representation capabilities are better, in some issues,
than the current standard PDDL2.1, but very similar to the base ideas.

PRODIGY planning/reasoning cycle, involves several decision points. The types
of decisions made are:

— select a goal from the set of pending goals and subgoals;

— choose an operator to achieve a particular goal;

— choose the bindings to instantiate the chosen operator;

— apply an instantiated operator whose preconditions are satisfied or continue
subgoaling on another unsolved goal.

We refer the reader to [23] for more details about PRODIGY. In this paper it
is enough to see the planner as a program with several decision points that can
be guided by control knowledge. If no control knowledge is given, backtracking
might be required, thus reducing planning efficiency.

2.2 HAMLET

HAMLET is an incremental learning method based on EBL (Explanation Based
Learning) and inductive refinement of relational formulae (control rules) [6, 5].
The inputs to HAMLET are a task domain (D), a set of training problems (P), a
quality measure (Q)! and other learning-related parameters. The output is a set
of control rules (C). HAMLET has two main modules: the Bounded Explanation
module, and the Refinement module.

The Bounded Explanation module generates control rules from a PRODIGY
search tree by finding examples of right decisions (lead to a good solution instead
of a failure path). Once a right decision is found, the rule is generated by extract-
ing the meta-state, and performing a goal regression for finding which literals
from the state were needed to be true to make this decision (the details can be
found in [6]). The EBL rules might be overly specific or overly general. HAMLET
Refinement module solves the problem of being overly specific by generalising
rules when analysing new positive examples. It also replaces overly general rules
with more specific ones when it finds situations in which the learned rules lead
to wrong decisions. HAMLET gradually learns and refines control rules, in an at-
tempt to converge to a concise set of correct control rules (i.e., rules that are
individually neither overly general, nor overly specific).

HAMLETDbe considered as a relational learner as it learns relational control
rules.

1 A quality metric measures the quality of a plan in terms of number of operators in

the plan, execution time (makespan), economic cost of the planning operators in the
plan or any other user defined criteria.



2.3 EVOCK

We only intend to provide a summary of EVOCK and refer to [3] for details.
EVOCK is a machine learning system for learning control rules based on Genetic
Programming (GP) [15]. GP is an evolutionary computation method that has
been used for program induction. Instead of complete programs, EVOCK tries
to induce control knowledge. EVOCK starts from a population of sets of control
rules (called individuals) that can be either randomly generated, or initialised
with some prior knowledge.

Then, it follows a kind of heuristic beam search to find a good enough set of
control rules. During the search process, individuals are modified by the so called
genetic operators. Only syntactically correct control rules are always generated
by means of a grammar. EVOCK genetic operators can grow (components of)
rules, remove (components of) rules and cross parts of rules with parts of other
rules, just like the GP crossover operator does. EVOCK also includes some tailor
made operators for modifying control rules. EVOCK search is guided by the fit-
ness function, which measures individuals according to the number of planning
problems from the learning set they are able to solve, the number of nodes ex-
panded, and the size of the individual (smaller individuals are preferred). EVOCK
can be considered also as a relational learner as it learns relational control rules.

3 Introduction of prior knowledge

The goal of this paper is an empirical study of the effect of providing prior
knowledge to a relational learning system in the planning framework. We will
describe in this section the different options that we have used to supply such
knowledge for the HAMLET and EVOCK systems.

3.1 Providing prior knowledge to HAMLET

We have devised two different ways of providing prior knowledge to HAMLET for
this work. The first one consists of providing HAMLET an initial set of control
rules. This set can be generated by a human, or by a previous learning process of
another learning technique. In this case, HAMLET can use this initial set of control
rules to generalise some of them, if it thinks it is needed, or remove some of them
if negative examples of their use are found. They cannot be specialised given that
they do not come from a bounded explanation, but were given directly as they
are by an external source. Therefore, it would not know what meta-predicates
(conditions) to add to the control rule.

The second method for incorporating knowledge into HAMLET consists of
receiving a solution to a planning problem by another planner. The reason that
lead us to use this approach was that, in some domains, it might be the case
that the planner we were using, could not solve some planning problems. HAMLET
assumes that the planner is able to solve planning problems, in order to provide
positive and negative examples of decisions that were made in the search tree.



If the planner cannot generate even one solution, the learning system cannot
generate those instances. Therefore, we used another planner, FF [11] in the case
of these experiments, when our planner could not solve a problem in a reasonable
learning time. The approach is general and any other planner could have been
used. The generation of instances to learn from is performed in two steps:

— In the first step, FF is given the same planning problem, and it generates
a solution to the problem. If it finds a solution, this solution does not have
to be the best one in terms of plan length or solution quality, but when the
domain is a difficult one, generating one solution might be enough. Then,
the problem consists of how the solution to a problem can help PRODIGY to
generate instances to learn from, since HAMLET needs a search tree in which
there is, at least, one solution path, and, possibly, several dead ends.

— So, the second step consists of artificially generating a search tree from the
FF solution. This is not a trivial task, given that a solution to a planning
problem does not incorporate all the needed rationale to reproduce a problem
solving episode. It provides, basically, the order on which a set of instantiated
operators have to be executed. But, there are potentially many search trees
that can generate this order. We have opted to use a set of control rules
(independent of the ones that are being learned, and of the problem within
a domain), that select as valid search nodes, the ones that use any of the
instantiated operators in the solution. There are two types of control rules
in this set:

+ Select operator: one control rule selects those operator names that are
member of the FF solution. If the solution incorporates all operators in
the domain, then this control rule does not help in following the solution
provided by FF given that, for each goal, it would select all relevant
operators (those that can achieve that goal).

+ Select bindings of an operator: there is one control rule for each operator
in the domain. The bindings control rule for an operator O would select
all bindings for its variables that correspond to instantiations of O in the
solution. As an example, if a solution in the logistics domain is:

load-airplane(packagel,airplanel,airport1)
fly-airplane(airplanel,cityl,city2)
unload-airplane(packagel,airplanel,airport2)
fly-airplane(airplanel,city2,city3)
the bindings control rule for the fly-airplane operator would select in
all bindings selection nodes of the search tree in which the fly-airplane
operator has been previously selected the following bindings (substitu-
tion):
((<airplane . airplanel) (<city-from> . cityl) (<city-to> . city2))
((<airplane . airplanel) (<city-from> . city2) (<city-to> . city3))
Using this new set of rules, it generates a solution path corresponding to the
solution provided by the other planner. Afterward we let PRODIGY continue
searching for different solutions, so that HAMLET can generate control rules
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Fig. 1. Providing prior knowledge to HAMLET by using another planner, FF.

from the decisions that led to better solutions. Figure 1 shows a schema of
the approach.

In some cases, even with this guided process the planner is not able to
generate a solution. This is so, because in those cases the set of possible
search paths that can be generated out of this scheme is very large, and the
solution path might not be found. We will explore better ways of generating
a solution path out of a solution provided by another planner (or even a
human) in the future.

A third way of providing knowledge into HAMLET that we have not explored
in this paper, and it might be interesting to study in the future, consists of the
definition of a set of domain-dependent functions that could be used by HAMLET
for generating the control rules conditions. This would be equivalent to standard
definition of background knowledge in other ILP systems.

3.2 Providing prior knowledge to EVOCK

Instead of starting from a random population, EVOCK can accept prior knowledge
from different sources. In particular, it is possible to seed EVOCK initial popula-
tion with control rules generated by either a human or other machine learning
techniques. These rules provide a starting point, that might be difficult to get at
by purely evolutionary means. These seeding rules also focus the search in the
set of control rules space. EVOCK can also use EBL rules (or HAMLET Bounded
Explanation module) by means of the Instance Based Crossover [2], although we
will not experiment with it in this paper.

Figure 2 shows how HAMLET rules are used as prior knowledge by EVOCK.
First, HAMLET is run to learn from a set of randomly generated training prob-
lems. HAMLET uses the search trees returned by PRODIGY after solving each of
the training problems. Then, HAMLET control rules are used to seed EVOCK initial
population, along with other randomly generated individuals. Control rules are
evaluated by EVOCK by loading them into PRODIGY. Then, the PRODIGY-+control



rules system is run and performance data such as whether the learning problems
were solved or not, or the time required to solve them, is returned to EVOCK, so
that the fitness of individuals can be determined.
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Fig. 2. Prior knowledge for EVOCK.

4 Experiments and results

For the experiments, we have used two commonly used domains in previous
planning competitions: logistics [4] and depots (from the 2002 competition).
The depots domain is a specially hard one.

In both domains, we trained separately both HAMLET and EVOCK with 400
randomly generated training problems of 1 and 2 goals in the logistics, and 200
randomly generated training problems also of 1 and 2 goals in the depots domain.
Then, we provided prior knowledge in the different forms that we explained in
previous section to each learning system, and tested against randomly generated
test problems. In the logistics, we used 120 problems ranging from 1 to 5 goals.
In the depots, we used 60 problems also ranging from 1 to 5 goals.

Table 1 displays the results for all the systems working autonomously. Results
for human (an expert on planning and control knowledge definition) generated
control rules are also shown. The main conclusion is that both domains are quite
hard for PRODIGY and for the learners. The human gets mixed results: 100%
problems solved in the logistics domain, but only 55% in the depots domain. It
is also noticeable that HAMLET cannot solve any problem in the depots domain.
The reason is that PRODIGY cannot fully expand the search tree for any of the
training problems, which is required for HAMLET to learn rules. In any case, none
of the learners does too well. Thus, it seems that prior knowledge is needed if
results are to be improved.

Table 2 shows the results of providing prior knowledge to each one of the
learners in terms of test problems solved in the logistics and depots domains. In
the first column, we have shown where the prior knowledge (PK) comes from:
EVOCK control rules, HAMLET control rules, FF solutions, and Human control



Table 1. Results for PRODIGY, EVOCK, and HAMLET with no prior knowledge.

[ Logistics [ Depots ‘
System |Solved Number of rules|Solved Number of rules
PRODIGY| 21% 12%
EVOCK | 33% 7 52% 2
HAMLET | 36% 32 0% 4
Human | 100% 37 55% 5

rules. In the case of providing the output of EVOCK to HAMLET as prior knowl-
edge, since they use different representation languages for control rules, it is not
always easy for HAMLET to use those rules. HAMLET requires that input rules
follow a template that cannot always be guaranteed by EVOCK.

Table 2. Results for EVOCK, HAMLET, and Human with prior knowledge in the Logistics
and Depots domain. Results are percentage of problems solved.

‘ Logistics ‘ Depots ‘
PK source EVOCK HAMLET Human EVOCK HAMLET Human
No PK 33% 36% 100% 52% 0% 55%
EVOCK |[33% - - - 152% - 57% -
HAMLET |36% 33% - 98% | 0% 43% - 55%
FF - - 48% - - - 43% -
Human [100% 83% 88% - 55% 55% 55% -

In the table we see that in the logistic domain, providing prior knowledge
to both EVOCK and HAMLET improves the individual results, with any of the
alternatives to supply such knowledge except when HAMLET provides the prior
knowledge. EVOCK goes from 33% without prior knowledge, up to 83% when
knowledge is supplied by human, and HAMLET goes from 36% up to 48% and
88%. However, we also see that the behaviour of the control rules after the
learning process is worse or equal to each prior knowledge. For instance, the
human rules solve 100%2 and, after learning with that prior knowledge, EVOCK
solves only 83%, and HAMLET 88%. This shows that the overall learning task
is a hard one, even for sophisticated systems. It is also possible that the prior
knowledge is by itself a local maxima, or close to, in the space of prior knowledge.

Another issue that we have elaborated further at [1] is the fact that even
if the human achieves a 100% of solved problems, the effort of obtaining such
set of control rules was much bigger than the effort of polishing the rules that

2 Actually, we tested the human rules in some harder problems (10 to 50 goals) and
it solved 198 out of 210.



HAMLET generated before (even if the percentage of solved problems was less,
88%).

In the depots domain, we see again that using prior knowledge allows HAMLET
to improve its behaviour from 0% to 57% (EvOCK), 43% (FF), and 55% (human).
However, in the last case, the human PK knowledge does all the work and
HAMLET cannot improve his results. In the case of EVOCK it is not always the
case. EVOCK does not benefit much from using PK: with no PK it solves 52%
problems, whereas with HAMLET as PK source it decreases to 43% and with the
human, it increases slightly to 55%. FF cannot serve as PK source for EVOCK.

5 Conclusions

We have presented in this paper three ways of providing prior knowledge to rela-
tional learning systems in planning tasks: using another learning system output
as initial seed of the learning task; using a human to supply also an initial state
for the search of sets of control rules; and using another planner for providing
knowledge in terms of a solution, instead of an initial description of the target
concept. We have compared these three approaches with not using prior knowl-
edge, and we have seen that in most cases, prior knowledge in the form of an
initial target concept definition (set of control rules) or another type of infor-
mation (solution to a planning problem) can indeed improve the behavior of the
learning system. However, prior knowledge itself is not usually improved, which
shows that the learning task is very hard.
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