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Abstract: This paper introduces a robust mathematical formalism for the 
definition of deliberative agents implemented using a case-based reasoning 
system. The concept behind deliberative agents is introduced and the case-based 
reasoning model is described using this analytical formalism. Variational 
calculus is used during the reasoning process to identify the problem solution. 
The agent may use variational calculus to generate plans and modify them at 
execution time, so they can react to environmental changes in real time.  

1. Introduction 

Technological evolution in today’s world is fast and constant. Successful 
systems should have the capacity to adapt to it and should be provided with 
mechanisms that allow them to decide what to do according to their objectives. 
Such systems are known as autonomous or intelligent agents [5]. This paper 
shows how a deliberative agent with a BDI (Belief, Desire and Intention) 
architecture can use a case-based reasoning (CBR) system to generate its plans. 
A robust analytical notation is introduced to facilitate the definition and 
integration of BDI agents with CBR systems. The paper also shows how 
variational calculus can be used to automate the planning and replanning process 
of such agents at execution time.  

To begin with, the paper will review the concepts of CBR systems and 
deliberative agents using an analytical notation. Then it will be shown how a 
CBR system is used to operate the mental attitudes of a deliberative BDI agent. 
This section also shows the relationship between BDI agents and CBR systems. 
Then variational calculus will be introduced, and it will be shown how it can be 
used to define agents with the afore-mentioned characteristics. Finally, together 
with the conclusions it is shown how it is possible to define an agent for the e-
tourism domain using the methodology presented.  

2. Implementing Deliberative Agents using CBR Systems 

This section identifies the relationships that can be established between BDI 
agents and CBR systems, and shows how an agent can reason with the help of a 
case-based reasoning system. The notation used in the referenced works [1] do 
not have the required degree of expressivity and complexity to introduce 
differential calculus tools. 
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2.1 BDI Agents 

The notation and the relationship between the components that characterise a 
BDI agent are first introduced:  
Let Θ be the set that describes the agent environment. If Τ(Θ) is the set of 
attributes {τ1, τ2,…,τn } in which the world’s beliefs are expressed, then we 
define a belief on Θ, that is denoted “e”, as an m-tuple of some attributes of 
Τ(Θ) denoted by e = (ττττ1, ττττ2,…,ττττm) with m≤ n   
We call set of beliefs on Θ and denote ζ(Θ) to the set: 
ζ(Θ) = { e=(τ1, τ2,…,τj ) /  where j =(1,2,…, m ≤ n )} 

We introduce the operator "Λ of accessibility" between m beliefs (e1,e2,e3,…,em), 
where we denote: Λ(e1, e2, e3,…,em) = (e1 ∧ e2 ∧ … ∧ em) that indicates that exists 
compatibility among the set of beliefs (e1, e2, e3,…, em). If any of the belief (e1, 
e2, e3,…, em) is not accessible,or if there exists a contradiction,it will be denoted 
by:Λ(e1,e2, e3,…,em) = Ø. 
 

Example: It is 12:00h. p.m. and the agent believes M1, M2 and D(A,A) - 
which are described in Table 1 - where M1 and M2 are monuments that may be 
visited and D(A,A) represents the travel from one monument to the other. Both 
monuments M1 and M2 are in the area A, and going from one to the other by 
taxi costs 12 Euros. With these believes and given that it is 12:00 o'clock, it is 
impossible to visit M1 and M2, and therefore the path (M1 ∧ D(A,A) ∧ M2) 
can not be constructed and Λ (M1,D(A,A), M2 )= Ø. 

Table 1. Values of beliefs M1, M2, M3 and D(A,A). 
Attribute Value  Attribute Value  Attribute Value  Attribute value 
Entity M1  Entity M2  Entity M3  Entity D(A,A) 
Class monument  Class monument  Class monument  Class travel by taxi 
Visiting Time  10-13 hrs.  Visiting Time 10-13 hrs.  Visiting Time 10-14 hrs.  Time 1 hr. 
Visiting Cost 6 €  Visiting Cost 6 €  Visiting Cost 6 €  Cost 12 € 
Time for a visit 1 hr.  Time for a visit 1 hr.  Time for a visit 1 hr.  
Zone or  place A  Zone or  place A  Zone or  place A  

 

If M2 is substituted by M3 (see Table 1) then (M1 ∧ D(A,A) ∧ M3) is possible, 
and Λ (M1,D(A,A),M3)≠ Ø, which means that the agent has identified that we 
can visit the monument M1 and M3, taking into consideration that the time to 
go from the first to the second monument is given by D(A,A).  

Moreover, an intention i on Θ is defined as an s-tuple of compatible beliefs, 
i = (e1, e2,…,es)  with s∈ IN and Λ( ei, ej )≠ 0  
Then, we call set of intentions on Θ and denote Ι(Θ)  
Ι(Θ)= { (e1, e2, …, ek) where k∈IN } 

Now a set of parameters will be associated to the space Ι(Θ) that characterises 
the elements of that set. The set of necessary and sufficient variables to describe 
the system may be obtained experimentally. We call canonical variables of a set 
Ι(Θ) any set of linearly independent parameters ℵ =(A1, A2,..., Av) that 
characterise the elements i ∈ Ι(Θ). 

Example: If the agent identifies a visiting route through the number of 
monuments to visit (N) and a maximum associated cost (C), then we express it 
as ℵ =(A1,A2)=(N, C). In this coordenates system the following intention: 



 

 i1= M1 ∧  D(A,A) ∧  M2 ∧  D(A,A) ∧  R1 ∧  D(A,B) ∧  M3 ∧  D(B,B) ∧ R2 
 is represented in Table 2. It also has the values for P (number of monuments 
visited) and C (total cost of the tour) indicated. Again M1, M2, M3 are 
monuments, R1 and R2 are restaurants and D(A,A), D(A,B) and D(B,B) 
represent the journeys between the visited places. 

Table 2. Values of the believes that constitute intention i1 and values for (P,C) associated. 
Schedule(hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22 attributes  
intention  M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2 N 3 
Costs(€) 6 0 6 0 12 0 0 0 12 C(€) 36 
Time (hr) 1 1 1 1 2 2 2 1 1 
Evaluation 1 -- 2 -- 1 -- 2 -- 2 

 

 

In the same way, a desire d on Θ is defined as a mapping between  
         d : I(Θ)→ Ω (ℵ )    
            i =(e1 ∧ … ∧ er,)   �   F(A1, A2,...., Av)  
where Ω (ℵ ) is the set of mappings on ℵ . 

A desire d may be achieved constructing an intention i using some of the 
available beliefs, whose output could be evaluated in terms of the desired goals. 
We denote D(Θ) the set of desires on Θ:  
D(Θ)={d: I(Θ)� Ω (ℵ ) / with I(Θ) set of intentions and Ω (ℵ ) set of mappings 
on ℵ } 

Now, after presenting our definition of the agent’s beliefs, desires and intentions, 
section 2.2 defines the proposed analytical formalism for the CBR system. 

2.2 Analytical formalism for Case-based Reasoning systems 

The necessary notation to characterise a CBR system is introduced as follows. 
Let us consider a problem P, for which it is desired to obtain the solution S(P). 
The goal of a case-based reasoning system is to associate a solution S(P) to a 
new problem P, by reusing the solution S(P´) of a memorised problem P´.  
P is denoted as P=(Si,{ θj }, Sf ) with  Si=initial state, and Sf=final state.  
The state Sk and the operator θj are defined as:  
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where{ } prrO ,...,1= and{ } qssR ,...,1= are coordinates in which a state Sk is expressed 

The coordinates type {Or }r=1,…,p are introduced to express the objectives 
achieved. The coordinates type {Rs }s=1,…,q are introduced to express the 
resources used. Through these definitions, the parameter effectiveness, ℑ, 
between two states S and S’ can be defined, as a vector ℑ (S, S’) = ( ℑx, ℑy) 
which takes the form 
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The definition implies that ( 0≤ℑx≤1 ) and ( 0≤ℑy≤1 ). 



 

In particular, if S=Si  and  S’=Sf , it is denoted ℑ (Si, Sf)= ℑ [S(P)] and we call it 
“effectiveness of a solution”. In this domain, a case C is a 3-tuple {P, S(P), 
ℑ[S(P)]} where P is a problem description, S(P) the solution of P and ℑ[S(P)] 
the effectiveness parameter of the solution, and a CBR´s case base CB, denoted 
as: CB={Ck / k=(1,...,q) and q∈IR} that is a finite set of cases memorised by the 
system. 

2.3 Integration of the CBR system within the BDI Agent 

The relationship between CBR systems and BDI agents can be established, 
associating the beliefs, desires and intentions with cases. Using this relationship 
we can implement agents (conceptual level) using CBR systems (implementation 
level). So once the beliefs, desires and intentions of an agent are identified, they 
can be mapped onto a CBR system.  
First, a mapping is introduced that associates an index to a given case Ck. The 
abstraction realized through the indexing process allows the introduction of an 
order relation R in the CB that can be used to compare cases. Indices are 
organized in the form of a Subsumption Hierarchy. 

Then, it is said that S(P’) is a possible CBR solution of the target P, if 
 ∀ C’= ( P’ , S(P’), ℑ[S(P’)] ) / idx(C’) ⊇ P 

Given a canonical coordinate system ℵ =(A1, A2,…,Av) on I(Θ), the set may be 
reordered, differentiating between:  
{Fm}= {Aj with j≤ v / Aj  growing} and {Gn}= {Ak  with k≤ v / Ak  decreasing} so,  
  ℵ= {Fm} ∪ {Gn} and m+n=v 

Then, giving an i∈ I(Θ), a functional dependency relationship may be obtained 
in terms of the attributes  i= i [e1(τ1, τ2,…,τj), e2(τ1, τ2,…,τk),…,es(τ1, τ2,…,τq )] =        
= i(τ1, τ2,…,τn ) and in terms of its canonical or state variables: 
 i= i (A1, A2,…,Av)= i (F1, F2,…,Fm, G1, G2,…,Gn ) which determines a functional 
relationship of the type Aj = Aj(τ1, τ2,…,τn). 
 
Now the fundamental relationship between the BDI agents and the CBR systems 
can be introduced.  We define “state ς of an intentional process” and we denote 
as ς ={e1 ∧ e2 ∧ … ∧ es-1 ∧ es } to describe any of the situations intermediate to 
the solution i={e1 ∧ e2 ∧ … ∧ er, with r ≤ s} that admits a representation over ℵ . 
Moreover, the solution S(P) for a given problem P=(SI,{θj},SF) can be seen as a 
sequence of states Sk=({Or}r=1, …,p , {Rs}s=1,…,q ) interrelated by operators {θh}. 
 
Given a BDI agent over Θ with a canonical system, ℵ=( A1, A2,..., Av) in the set 
I(Θ) that may be reordered as ℵ =(F1, F2,…,Fm, G1, G2,…,Gn ), we establish the 
relationship between the set of parameters: 

{Fm} ←→ {Or}  {Gn} ←→ {Rs} 
 
The identification criteria may be established among 
- the intentional states, ςi∈ I(Θ), and the CBR states, Sk∈T(BC).  
- and a relationship may be established among the agents desires I(Θ) and the 

effectiveness operator ℑ[S(P)] of the CBR system. 



 

Then the mathematical formalisation proposed can be used as a common 
language between agents and CBR system and solves the integration problem. 
The relationship presented here shows how deliberative agents with a BDI 
architecture may use the reasoning cycle of a CBR system to generate solutions 
S(P). When the agent needs to solve a problem, it uses its beliefs, desires and 
intentions to obtain a solution. Previous desires, beliefs and intentions are stored 
taking the form of cases and are retrieved depending on the current desire. Cases 
are then adapted to generate a proposed solution, which is the agent action plan.  

3 Modelling dynamic CBR-BDI agents 

The proposed analytical notation allows the definition of “CBR-BDI” agents. 
Such agents have the ability to plan their actions, to learn and to evolve with the 
environment, since they use the reasoning process provided by the CBR system. 
CBR systems may be implemented and automated in different ways [6] 
depending on the problem which must be solved. This section shows how 
variational calculus is used in the framework of the CBR system to automate the 
retrieval stage, which gives the agents more autonomy [3, 4].  

3.1 Formalization of the integration of the CBR-BDI agents 

The operations that are carried out during the reasoning process of the CBR 
system are now defined, using the previously introduced notation. 

3.1.1 Retrieval and Adaptation 

During the retrieval phase, a problem P´ stored in the case base CB and that is 
similar to the target problem P is identified. Given the problems P and P’, it is 
said that P’ is "similar" to P and it is denoted P’ ≈ P, if the case: 
• C’= (P’, S(P’), ℑ[S(P’)] )∈CB, is a possible CBR solution, and  
• idx(C’) ⊇ {idx(Ck) k=(1,...., n) } 

Now we need to identify which is the best case from this subset. If we 
represent the cases stored in a space of coordinates ℵ = (A1, A2,…,Av), the 
stored cases define a hyper-surface (if we extrapolate the lattice of cases to a 
continuous surface) and each case can be represented by a curve on that 
surface. The advantage of modelling the cases as a hyper-surface is that we can 
apply on the cases a variational calculus based strategy.  

For example, Table (4.a) refers to the New Cathedral of the City of Salamanca, 
which may be visited from 10:00 to 13:00. The average time for a visit is one 
hour and the cost is 6 Euro. It is situated in the Zone A (the city of Salamanca 
has been divided into 5 different areas: A to E). The profiles of the visitor to 
Salamanca have been divided in: Mo1 (cultural tourist), Mo2 (art expert), Mo3 
(family visit) and Mo4 (generic tourist) with respect to the monuments. The 
classifications may vary with respect to other entities. Each beliefs maintains 
information related to the evaluation provided by the tourists after the visit. The 
evaluation (between 0 and 3) is averaged taking into consideration the group to 
which the tourist belongs.  



 

Table 3. Believes: Instance characterisation. 
Class Monument Class Spectacle 
Entity New Cathedral Entity Local music band 
Visiting time 10-13 h Visiting time 21-23 h 
Time for a visit 1 h Time for a visit 2 h 
Visiting Cost 6 € Visiting Cost 3 € 
Zone A Zone B 
Eval. Mo1 1,13 Eval. Sp1 2,20 
 Mo2 2,85  Sp2 2,34 
 Mo3 2,76  Sp3 2,49 
 Mo4 1,12  Sp4 1,46 
 (a)  (b) 

Table 5 shows a table maintained by the agent that associates to each route or 
intention its total cost, the time required by the tourist to carry it out, the 
characterisations of the tourist, its evaluation with respect to such 
characterisations and the average evaluation. For example, the route/intention, 
I1, was carried out by the tourist T1, the total cost was 18 Euro, the time spent on 
it was 12 hours, the tourist was doing cultural tourism (Mo1), he enjoys 
traditional music (Sp1) and he has evaluated his interest in the monuments 
visited in this route as Mo1=1,12, and of the spectacles attended as Sp=6,25. The 
agent may then use this information to retrieve past intentions taking into 
consideration the preferences of the tourist. 

Table 4: Intentions evaluation 
Intention Tourist C(€) T(h) No.Places Eval: Mo1-Mo4 Eval: Sp1-Sp4 
I1 T1 18 12 5 Mo1: 1,12 .. Sp1: 2,25 
I1 T2 18 13 5 Mo3: 2,30 .. Sp3: 2,50 
I2 T3 21 11 4 Mo2: 2.38 .. Sp2: 2,50 
----  ---- ----  ---- -- ---- 

 
Then, for simplification purposes, we may represent the routes in function of the 
coordinates (A1,A2,A3,.. ,An), where for example:   
• A1=Cost (€)=C= it is a monotonically increasing variable (it accumulates 

the costs taken step by step) 
• A2=Nº Places =P=number of visited items. It is an accumulative variable  
• A3=Time (hr)=T= monotonically increasing variable as above. 
• A4=Evaluation =E=mean of the quality. A priori we cannot establish a 

defined tendency. 
In dynamic environments with uncertainty it is difficult to guarantee that a given 
algorithm retrieves the best cases from the case base, and the evaluation, in real 
time, of all the possible options may have unacceptable computational costs. In 
our proposal the agent first has to interrogate the tourist and obtain information 
about his desires: time and money to spend in the visit and preferences with 
respect to art, food, accommodation, etc. Let see now this process’ works  in 
detail.  
 
Step 1: The solution has to be found in the retrieved cases that satisfy the 
selection criteria imposed by the tourist. Such a subset defines a topology and 
therefore to obtain an optimum solution implies defining a metric on the subset. 
For example, if we supposes that the visit to the monuments, the transport, etc. is 
free after 12:00, the cost-time relationship may be represented by Figure 1. 



 

 
Figure 1: Cost-time (C-T) relationship  

 
The framework of this problem implies that the items are not crossed increasing 
the cost progressively.. Then the agent solution needs to be based in the retrieved 
routes, which have been carried out by tourists with similar preferences and 
profiles that the tourist interested in carrying out a tour. 
 
Step 2: On the hyper-surface generated by the retrieved solutions -on the space 
defined by the variables (A1, A2,..., An)– variational calculus is applied [3, 4]. 
Now it will be shown how variational calculus can be used to automate the reuse 
process. Let us consider a case base (CB, R)={[Ck / k=1,.,q  and q ∈IR],R}. 
Using the relationships between BDI agents and CBR systems established, it is 
denoted Τ(BC)=(A1, A2,...Av ), coordinates system of I(Θ), which allows us to 
define a function V on the space I(Θ), that stores the information of all the cases 
Ck є CB. 

V : T(CB)       →    T(CB) 
(A1, A2,...Av) →  V (A1, A2,...Av) 

If we consider two states ( Si , Sf ) initial and final, on I(Θ), the function V 
shows all the intentions i є I(Θ), that joins both states ( Si ,Sf ) and that has 
related a case Ck є CB.  On the phase space, the function V=V(A1,A2,...Av) is 
translated onto a surface Π0[A1,A2,...Av]=0, where the notion of Euclidean 
distance is defined. In the m=3 case, and with A1=X, A2=Y, A3 =Z, the theory of 
variational calculus says that a coordinate system ( λ, µ ) exists which allows an 
expression of the functional F=F(λ, µ), that associates to each curve between Si 
and Sf on Π0[x,y,z]=0 with its length, thus we can obtain a solution of 
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d ;  that we call µ = µ 0 (λ) and that takes the form  

χ0 = χ0[x,y,z] on the original coordinates (X, Y, Z). This function is named the 
geodesical curve. 

 
Step 3: Solutions of differential equations in variational problems exist only in 
exceptional cases. In the actual problem, the routes are non-differentiable broken 
lines. In these cases, the variational problem is just a theoretical boundary for 
function optimisation problems with a finite number of variables. A 
differentiable continuous functional V[y(x)] can be expressed as a function of a 
Taylor series, taking the following form: V[y(x)] = V[a0+a1x1+a2x2+...]. 
Therefore, variational calculus with mobile frontiers is used [3].  



 

Variational calculus with mobiles frontiers calculates the optimum solution 
taking into consideration that one extreme is moving over a function f=f(A1, 
A2,...,An), as represented in Figure 2. 
 

 
Figure 2: Graphical representation of three intentions/routes in a three 

dimensional space.  

In the most general case, the mapping V=V(A1, A2,..., Am) generates curves that 
cannot be differentiated because V only takes values at discrete points 
corresponding to defined and stored cases. 

Let us now define a mapping σ, as σ= χ0 – ψ, where χ0  is the solution obtained 
by Euler´s equation [4] and ψ є {φ(Si,Sf)} is a path between Si, and Sf, stored in 
the case-base as a case C є CB. Then we will call "the closest to the optimal 
curve ψ0" the mapping of {φ(Si,Sf)} given by the minimisation of  

I = ∫
ef

ei
 {σ [X,Y,Z] } dx dy dz 

So far it has been shown how variational calculus can be used to select the 
closest to the optimum curve. Variational calculus may then be used to select and 
retrieve the most appropriate case during the retrieval stage. The retrieved case is 
characterised as being the one that, in each of its stages, maintains the efficiency 
most constant. [referrencia] 
 
During the adaptation phase, the system executes a transformational reasoning 
mechanism [1], that can be represented by the adaptation function A,  

A :  (CB) x Σ (P) � C 
( C    ,    P )     �  A [S(P’), P]= { P, A[S(P’)], ℑ(A[S(P’)])} 

with P∈ Σ (P) is called set of problems, and C=(P’,S(P’), ℑ([S(P’)]) 

In [2] a retrieval mechanism that identifies a case easy to adapt is suggested. 
Therefore the retrieval mechanism should be subordinate to the adaptation one. 
In our proposal we assign higher relevance to the retrieval strategy. If P=(Si, Sf) 
and during the retrieval stage it is obtained C'={P’,S(P’), ℑ[S(P’)]} )∈ (CB), the 
adaptation function constructs a solution for P maintaining the sequence of 
operators that S(P’). If at any point the sequence may not be applied, a new 



 

retrieval cycle is initiated from the state in which the sequence was interrupted. 
Therefore the adaptation function can be seen as a serie of operators:             
A= αm •αm-1•......•α2•α1, where each operator is a part of a retrieved case.  

3.1.2 Revision and Memorisation 

In this phase the case solution generated in the previous phase is evaluated and 
reviewed. A problem P occurs for which we want to obtain a solution S(P) with 
ℑ[S(P)]. If, during the retrieval step, a case C’=(P’, S(P’), ℑ[S(P’)]) is recovered 
and the adaptation step ensures a solution S(P)=A[S(P’)], the review must 
guarantee that ℑ{ A[S(P’)]} ⊇  ℑ [S(P)] . 
The problem target and the characteristics of the adapted solution can be 
memorized as a new case to be reused in the future and is denoted by 
C= { P, A[S(P’)], ℑ(A[S(P’)]) } = ( P, S(P), ℑ[S(P)] ) 

3.2 Planning with variational calculus  

This section shows how the variational calculus, introduced in the previous 
section, allows the agents to plan and replan at execution-time because this 
formalism is used to select the most adequate case during the reuse phase of the 
reasoning process to solve a given problem. Variational calculus may also deal 
with dynamic problems such as this one. When the plan proposed by the agent is 
stopped for any reason (i.e. the tourist may decided to spend more time visiting a 
monument, have a longer lunch, etc.), variational calculus calculates a new plan. 
In this case the new initial state is the point at which the initial proposed route 
has stopped, as shown in Figure 3. 

 

 
Figure 3: Replanning at execution time. 

From the previous equations, and based on variational calculus tools, an 
expression can be determined to identify the final solution of the CBR-BDI 
agent. This expression, which represents the agent plan, can be obtained in 
execution-time and takes the following form: 
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4. A “CBR-BDI” planner to solve problems in the e-tourism 
domain 

The tourism industry is an information intensive economic sector. This activity, 
as many others, requires the use of a great amount of data, ranging from product 
data to technical publications, from tourism regulations to best practice guides. A 
multiagent based system has been developed for guiding tourists around the city 
of Salamanca. The agent based system can be accessed via Internet or wireless 
devices such as mobile phones, PDAs, etc. The system is composed of a CBR-
BDI agent that advises tourists and that communicate with other agents that 
maintain uptodate information about Salamanca, its monuments, restaurants, 
spectacles, etc. When the agent is contacted by the tourist, it receives information 
about his desires and preferences.  
In this section we are going to see how the agent reasons and provides the 
solution to the tourist using a particular case. The tourist desires to spend a day 
visiting Salamanca (12 hours visit), he is an art expert, and wants to visit the 
Museum of Contemporary Art (about which he has heard of) and eat in fast food 
restaurants. He does not want to spend more that 60 Euro, and he wants to visits 
monuments, restaurants, etc. that have been evaluated positively with a value 
upper of 1,3 (evaluation range 0-3). The agent retrieves from the case base the 
cases that satisfy these requirements that they are graphically represented in 
Figure 4. 
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Figure 4: Retrieved instances.  

 

The retrieved instances define the space shown in Figure 5, to which variational 
calculus with mobile frontiers may be applied (reuse stage) to calculate the 
optimum solution. 



 

 
Figure 5: Surface or space to which variational calculus with mobile 

frontiers may be applied.  
 
Given the optimum solution, the agent calculates which of the retrieved routes is 
the nearest to the optimum. This will be the proposed route. Figure 6 shows the 
optimum solution and the selected one.  
In this case , 
 i6=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ D(B,B) ∧ M3 ∧ D(B,B) ∧ R6. 

 
Figure 6: Optimum and closest to the optimum route.  
 

Let see what may happen when the tourist demands a change in the route after having 
lunch (R2), for any reason. The agent needs to take into consideration the initial 
constraints together with new ones: there is a new initial state and previously visited 
monuments should not be visited again. New intentions are retrieved and variational 
calculus is again applied. Again, the new routes may be represented, and variational 
calculus may be applied to obtain the optimum route. The route closest to the optimum 
is then selected, in this case: D(B,A) ∧ M8 ∧ D(A,A) ∧ R1. Joining both parts of the 
route can be obtained:  
i=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ D(B,A) ∧ M8 ∧ D(A,A) ∧ R1. 

 



 

5. Results and conclusions  

The CBR-BDI architecture solves one of the problems of the BDI (deliberative) 
architectures, which is the lack of learning capability. The reasoning cycle of the 
CBR systems helps the agents to solve problems, facilitate its adaptation to 
changes in the environment and to identify new possible solutions. New cases 
are continuously introduced and older ones are eliminated. The CBR component 
of the architecture provides a straight and efficient way for the manipulation of 
the agents knowledge and past experiences. The proposal presented in this paper 
reduces the gap that exists between the formalization and the implementation of 
BDI agents. Variational calculus has been introduced in this paper to facilitate 
the agents to define their plans and to replan as execution-time in order to 
provide the best possible service. Variational calculus can be used to obtain the 
most adequate plan to achieve a goal in environment with uncertainty. This paper 
has also shown how the proposed architecture may be used to design an agent for 
an e-tourism problem. The work presented in this paper is just the first step 
toward the development of an ambitious framework for developing communities 
of agents capable of solving problems in an autonomous and intelligent manner.  
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