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Abstract— In this paper the problem of the
propagation of linguistic labels in polytrees is con-
sidered. The approach has been purely simbolic,
and does not consider semantic translations of the
terms. It starts from a general axiomatic frame-
work to propagate information in graphs, which is
later particularized to the case of linguistic labels.
It is observed how it is very difficult to define op-
erations with linguistic labels verifying all the re-
quired properties, mainly because of the lack of
granularity of finite sets of terms. Finally, to cope
with these problems, modifications of the propa-
gation algorithms are proposed.

I. INTRODUCTION

The propagation of probabilities in graphical structures
(see [9, 12]) is an efficient and very well founded procedure
of handling uncertainty in Artificial Intelligence. Propa-
gation algorithms take advantage of the independence re-
lationships among the variables of a problem in order to
calculate ’a posteriori’ conditional probabilities, without
explicitely giving a global probability for all the variables
in the problem.

The weakest point of this methodology is that it re-
quires a complete specification of some conditional proba-
bilities. However, in some cases, they are unknown or only
vaguely known. Several authors have studied propagation
algorithms for the case in which we only have a set of
possible conditional probabilities instead of knowing the
specific values of conditional probabilities (see [3, 1, 16]).
The resulting algorithms are, in general, more complex
than their probabilistic counterpart.

The aim of this paper will be to devise propagation algo-
rithms for linguistic probabilities. In most real situations,
when we ask the expert for the value of a probability,
he is unable to give a precise numerical value, however,
in general, he will give a linguistic term, expressing his
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knowledge about this probability. One approach to make
use of this kind of knowledge is to transform the linguistic
terms into fuzzy numbers and then to use fuzzy arithmetic
to generalize probabilistic propagation algorithms. This is
the method used by Jain and Agogino, [7]. One character-
istic of this method is that the resulting procedures involve
exact calculations with real numbers, in fact, more than
in the case of probabilistic propagation.

A completely different way of approaching this prob-
lem is by considering that a calculus with linguistic values
does not need precise calculations, and that it is better to
define symbolic operations directly in linguistic terms (see
[11]). This is closer to the way we manage uncertainty in
everyday reasoning. We do not rely on complicated op-
erations, but on some qualitative relationships among the
terms we use to express the degree of occurrence. This
will be the perspective adopted in this work. We shall
try to generalize probabilistic propagation algorithms to
linguistic probabilities.

In the second section we shall give a general axiomatic
framework to propagate uncertainty in directed acyclic
graphs that was established in [4]. Next (section 3) we
shall consider the desirable properties of the operations
defined on a set of linguistic labels, which will allow to
verify the general framework. These properties will hardly
be verifiable by most common sets of linguistic labels. The
problem will be the lack of precision available when using
small sets of labels. In section 4 we shall consider how
propagation algorithms can be modified to minimize the
effect of this lack of precision.

II. THE VALUATION FRAMEWORK

In [4] we have proposed an axiomatic framework for the
propagation of uncertainty in Directed Acyclic Graphs.
It is based on Shenoy and Shafer, [13] valuation based
systems. Shenoy and Shafer, [13], introduce the primitive
concept of valuation, which can be considered as the math-
ematical representation of a piece of information. A val-
uation may be particularized to a possibility distribution,
a probability distribution, a belief functions, etc.. Then



they develop and express propagation algorithms in terms
of operations with valuations. These algorithms may be
particularized to any concrete theory by translating val-
uations and operations to their special interpretation in
this theory.

To fix the notation, let us assume that we have an n
dimensional variable, (X1, ..., X,), each X;, taking values
on a finite set U;. Then the following conventions will be
followed:

- ifI C {1,...,n}, by X; we shall denote the family of
variables (X;)ier, and by Ur the cartesian product
ITie; Ui, that is the set in which X; takes its values.

- Foreach I C {1,...,n}, the set of valuations defined
on Uy will be denoted by V;. An element of Vy will
be the representation of a piece of information about
the variable X;.

- if I C J and u € Uy then u!! will denote the point
from U; obtained from u eliminating the coordinates
in U; that are not in U;. For example, if

I={1,2},J ={1,2,3}, u= (u1,u2,us)
then u!! will be (u,uz).
- V will be the set of all valuations V = Ujc (... ) VI

The following two operations are defined on the set of
valuations, [13]:

e Marginalization.- If J C I and V3 € V then the
marginalization of V; to J is a valuation Vlu in Vj.

o Combination.- If Vi € Vy and V, € V;, then their
combination is a valuation V3 ® V5 in Vg

The propagation algorithms are based on the verifica-
tion of the following six axioms.

Axiom 1 Vi@V, =V, @ W,
(V2 ® V).

MeWn)eVse=We

Axiom 2 If I C J C K, and V € V, then (VV) =
Vi,

Axiom 3 If Vi € Vi, V2 € Vs, then (VL @ V)Y =1 @
Vinn),

Axiom 4 Neutral Element.- There is one and only one
valuation Vj defined on U; x...x U, such that VV €
VIVICI wehave VY @V = V.

Axiom 5 Contradiction.- There is one and only one
valuation, V., defined on U; x ... x U,, such that
Weyv.ev="yV.
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Axiom 6 VYV € Vy, if V # V.1 then V = ',

The first three axioms were introduced by Shafer and
Shenoy, [13]. Axioms 4-6 were introduced by Cano, Del-
gado and Moral, [4].

The following definitions are fundamental to our work.

Definition 1 A valuation V € V; is said to be absorbent
if and only if it is not the contradiction in V; and (YV' €
VD((VRV' =V) or VeV =V,)).

Definition 2 IfV € Vyyy, it ts said that V is a valuation
on Ur conditioned to Uy, if and only if V¥ = V4 € V5,
the neutral element on V;. The subset of Viys given by
the valuations on U conditioned to Uy will be denoted by
Vns.

Details about the meaning of operations and the above
definitions can be found in [4]. The following example
describes valuations and operations in the probabilistic
case.

Example 1 In Probability Theory a valuation is the rep-
resentation of a probabilistic piece of information about
some of the variables, X;,I C {1,...,n}. More con-
cretely, if we have three variables (X1, X3, X3) taking val-
ues on Uy x Uz, xUs, where U; = {uj,uix},i = 1,2,3,
then a valuation may be a probability distribution about
le
p(u11) =08,  p(u2) =02

It may also be a conditional probability distribution about
X3 given X,

p(u:;l[uzl) =09 p(U32|u21) =0.1

p(‘U31|u22) = 0.6 p(u;;lezz) =04

From a mathematical point of view, a probabilistic val-
uation about variables Xy is a non-negative mapping,

p:U1—>§Rg'

where RF denotes the non-negative real numbers.

These mappings are not considered normalized, but are
considered equivalent upon multiplicetion by a positive
constant. That is, two valuations py,ps defined on the
same frame U are considered equivalent if there is a con-
stant o > 0, such that

Yu € Ur, p1(u) = a.pa(u)

From a strict mathematical point of view, a valuation
should be considered as an equivalence class on the set of
non-negative mappings from Uy on RF, under the above
equivalence relation. However, to sumplify the language
and notation, we shall consider that a valuation is a map-

ping, but that two mappings are considered identical if they
are equtvalent.



Combination is defined by point-wise multiplication. If
p1 and pz are non-negative functions defined on Uy and
Uj respectively, then p1 ®@pa is a mapping defined on Uryy
to RY given by,

P1® pa(u) = p1(u!") pa(ut’), Vu € Urus

This operation is used in probability to combine a marginal
distribution with a conditional one to produce a bidimen-
sional distribution, or used to calculate conditional infor-
mation. Remember that as we are not concerned about
normalization, conditioning to ¢ set A may be consid-
ered as multiplication by the likelihood associcied to A (its
characteristic function: l4(u) = 1, if u € A; l4(u) =0,
otherwise).

Marginalization is defined tn the usual way: Ifp is a
valuation defined on Uy and J C I, then

PP =) plw),

ul=vp

Yv e Uy

The neutral element is a constant (non-zero) valuation:
p)=1 YuelU x...xU,

The contradiction is given by the zero valued function:
pe(u) =0, YueU; x...xU,

An absorbent valuation is a probability degenerated on a
point. It represents perfect knowledge about the true value
of the variable.

The above conditional distribution about X3 given X,
verifies the definition of conditional valuations: If we
marginalize to X, we obtain a constant valuation (1 at
every point).

In general, when we have a set of pieces of information
(valuations), H = {V;};es about an n-dimensional vari-
able (X1,...,Xn) each one of them will only be related
to some of the variables. For example, we may have an
’a priori’ valuation about (X3, X3) or a conditional valu-
ation about X4 given X;. In [4] rules to obtain a global
(unconditional) valuation for the n-dimensional variable
(X1,...,Xn) are studied. These rules take advantage of
the independence relationships among the variables. For
example, if V7 is an ’a priori’ valuation about X, V3 is
a conditional valuation about X given X3, V3 is a con-
ditional valuation about X3 given X5, and X3 and X,
are conditionally independent given X, then we can de-
duce that V; ® V> ® V3 is an unconditional valuation about
(X1, X2, X3).

An observation about a variable will be an absorbent
valuation defined on it. If we have a global valuation V
about variables (X1, ..., X,) and {Ox}rek 15 a family of
observations for some of the variables, { Xy }xex,then the
conditioning of this valuation to these observations is de-
fined as

VI{Ok}rek = @V

&) O

kEK

1)

In probability theory we carry out a division, but here
this division is avoided because valuations are equivalent
under multiplication by a constant factor.

The problem of the calculus with valuations can be ex-
pressed in the following way:

1. We start with a set of pieces of information (val-
uations), H = {Vj}jes, representing our general
knowledge about the problem, and a family of ob-
servations {Og }rex for a particular case which we
are studying.

2. In an intermediate step, we calculate an uncondi-
tional valuation V for all the variables. This valua-
tion is conditioned to the observations, calculating

VHOk}kek-

3. V|{Ox}rek is marginalized to the variables in which
we are interested.

The main problem of the above procedure is that step
2 is very expensive if the number of variables is high. An
unconditional valuation would be defined on the cartesian
product Hie{l,...,n} U; and the number of elements of this
set is the product of the number of elements of all the
sets U;. Probabilistic propagation algorithms in directed
acyclic graphs developed by Pearl, [12], take advantage of
the independence relationships among variables in order
to avoid the second step, carrying out step 3 directly from
step 1, using only initial local pieces of information. In [4]
these algorithms have been generalized to the case of val-
uations. The main results of this work can be summarized
in the following points:

1. In a directed acyclic graph (nodes represent vari-
ables and the arcs express dependence relationships)
if we have a conditional valuation, V;, for each vari-
able, X;, given the parent variables in the graph
then we can determine one and only one uncondi-
tional global valuation which is equal to V1 ®. . .®V,,.

2. If the graph does not have loops (undirected cycles)
and we want to calculate PS; = {V|{O}rex }1}
(step 3), then this can be carried out by using algo-
rithms that are very similar to the Pearl’s, in which
each variable receives (send messages) from (to) his
neigbourhood variables. If

-0 =Vo €V, ifj¢K
-0, =0, ifke K
865



- P(j) is the set of parents of node X;
- C(j), is the set of children of node X;.

then Vj € {1,...,n}, PS; = 7; @ Aj, where

s}
™= [m( 03¢ Wf)] @
keP(j)

= ( (03¢ Af) ® 0] ®3)

keC(j)

Yk € P(j),
7r;-° = [‘xk ®0:® ( ® ,\’k)] 4)
i€C(k), i#i
vk € C(j),

Wi}
A}‘ = |:/\k®O§,®Vk ( ® w;)} (5)
i€P(k), i#j |

7r}‘ is called the message that node j sends to his child k.
¥ is the message that node j receives from his child k.
The fundamental fact for the propagation is:

An outgoing message from node X; to node
X; can be calculated from all the incoming
messages to X;, except the incoming message
coming from X;.

We can consider propagation algorithms as an ordered
way of calculating all the messages among nodes taking
into account the above considerations. Equations (4) and
(5) are the ones used in the calculations of the messages
going out of a node from the incoming messages to it.
More details can be found in [12, 4, 3].

As in [12] directed acyclic graphs without loops will be
called polytrees.

III. VALUATIONS TAKING VALUES ON SETS OF LABELS

In [8] the calculus with linguistic probabilities taking val-
ues on a set of labels was studied. The idea was to de-
termine the necessary operations and properties which we
should define on a set of labels in order to reproduce prob-
ability calculus. In this section we shall propose the prop-
erties which will allow us to define linguistic valuations
and to propagate them in directed acyclic graphs.

Definition 3 A probabilistic set of labels will be a set, L,
in which two operations (addition , @, and multiplicacion,
®©) and a total order relation, <, are defined, verifying the
following properties:

1. Commutative.—V!l,Iz € L, 116912 = 12@’1, 11@12 =
Loh

2. Associative- Vij,lp,ls € L, (hob)®l =L&(129
L), hok)ol=L06(Lols)

3. Neutral Element.- There is one and only one ele-
ment 0 € L, such that 0l =1Vl e L.
There ezists one and only one element 1 € L, such
that 1ol=1LVle L.

4. Distributive.- Vly, 15,13 € L,
LYo (hels)

5 a<bifand only ifIc € L such thata®c=0b.

Lho(lell)=(0Lo

6. Inverse element.- If a < b, then 3d € L such that
b®d =a, d being unique ifa # 0.

An example of a probabilistic set of labels is the set of
non-negative real numbers.

The valuations defined in a probabilistic set of labels are
very similar to the probabilistic valuations. A valuation
on Ur will be a mapping:

V:Ur—1L (6)

Two valuations, V;, Vs, defined on the frame Uy are con-
sidered equivalent if a label | # 0 exists, such that

Vu € Uy, Vi(u) =10 Vj(u) (N

wherei=1,7=20ri=2,j=1.

With the same reasoning as in the probabilistic case,
two valuations will be considered identical if they are
equivalent.

Combination is defined in the following way: If V; €
Vr,Va €V,

Vi ® Va(u) = Vi(ut) 2 Va(ut?),Yu € Urys  (8)

Marginalization is defined as follows: If V' is a valuation
defined on Ur and J C I, then

VP = @ Vi),

ull=y

Yv e Uy 9

The neutral element is a constant (non-zero) valuation:

Vo(u)=1, YVueU, x...x U,
The contradiction is given by the zero valued function:
Ve(u) =0,

VuelU; x...xU,
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It can be shown that valuations defined in this way ver-
ify Axioms 1-6, then these valuations can be represented
and propagated by using dependence graphs.

Example 2 Let Ly = {0} U {l; | i > 0}, where addition
is defined as

-0+1=1, Viel;

- L+l = byingi ), V4,5 2 0
and multiplication is

-Ix0=0,Vie L,

-l xly=14;,V4,5 >0

The minimum element is 0 and I; < I; if and only ifi > j.

When assigned to an event, a value of 1 (I} means that
there is no limitation of the probability of this event. A
value of 0 means that this event is impossible. A value of
I; means that the probability of this event is of the order p*,
where p is a ’small’ number. This semantic establishes a
direct relationship with Spohn conditionals, (14, 15], which
have the same interpretation.

In this case, all the properties are satisfied. The neutral
element for multiplication is ly. As a conclusion, this kind
of labels can be propagated in polytrees.

IV. FINITE LINGUISTIC SETS OF LABELS

Unfortunately things are not so easy when we are work-
ing with labels which are more similar to the ones used in
everyday human speech. In general these labels are gener-
ated by a finite set of terms, [2, 5, 6, 8, 10]. The following
set is from [6]:

L={0,AN,F,AH M,1}

where the intuitive meaning of the labels is

0 None AN Almost None
F  Few AH About Half
M Most 1 Almost All or All

The order of the labels is immediate:
0<XAN<XF<XAH<M<1

To define the operations among labels, first let us note
that the addition of some labels is not defined. For exam-
ple, there is no label that could be assigned to 1@ 1. The
reason is that we are only working with the labels between
0 and 1. The complete set of labels, L’, would include the
elements greater than one. In general, to work with val-
uations is enough to consider the interval [0, 1] of labels.
The operations will only be defined when the operators
and the result are in this interval.

Table 1: Operations with a finite set of labels

® || 0 |[AN| F |AH|M]|1]

0 0 [AN| F JAH [ M |1
AN[AN|AN| F [AH | M | 1
F F FAH| M |1 [=
AH |AH |[AH | M 1 | - |-
M M| M 1 [ R
1 1 1 - - - 1=
© [|o|AN| F |AH| M | 1 |
0 0 0 0 0 0 0
AN |0 | AN | AN | AN [ AN | AN
F 0| AN | AN | AN [AN | F
AH|Jo[AN AN | AN | F | AH
M [[0|AN[AN| F |[AH| M
1 0[AN| F |[AH [ M 1

Another important point is how to determine the re-
sult of one operation, for example, F @ AH. For this we
may adopt a semantic approach which consists in trans-
lating the labels to numerical intervals or fuzzy numbers,
[2, 6], carrying out the operation at this level and then
coming back to the labels by means of an approximation
procedure. It is also possible [5, 10] to consider a direct
elicitation of these operations from the experts. Here, we
shall follow a purely symbolic point of view in which op-
erations are given by means of tables, without worrying
about the procedure of the construction of these tables.
As an example of the operations see table 1.

As was noticed in [8], some of the required properties
are very difficult to verify, so we have to discard them from
the beginning. These are:

- Inverse element.- Consider the multiplication of a
label, for example AH, by a label different from 0.
The result should be less than or equal to AH and
different from 0. In our case, by multiplying AH by
all the non 0 labels we get:

AN — AN - AN - F - AH

As we have a finite granularity, and we multiply
more labels than the number of possible results,
then some of them have to be repeated. The inverse
of one repeated label with respect to AH is not well
defined: There are several labels, that multiplied by
AH, give AN as the result.

- Distributive.- If we assume that AN & AN = AN
and there is a label ! such that I ®1 = AN, and
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i times
ﬁ - “y -
{@---@l = 1 (F verifies these conditions in our

case), then the distributive property can not be sat-
isfied. In effect, we have

i times

e N,
lo(e---dl)=lol=1

and

i times i times
—

o)+ -+(0)=ANG ---® AN = AN.

These properties can not be verified because of the lack
of granularity in the set of terms. These properties are de-
sirable but they are impossible to verify with the finite sets
we are considering. Anyway, we can establish that these
properties are verified in most of the cases. In our exam-
ple, the main problem is with the AN value. The other
cases verify inverse property with respect to a greater
value and distributive property is verified if AN is not one
of the used labels. The question is: How to cope with these
limitations of a finite set of terms? First, we shall con-
sider the consequences of not verifying these properties.
Valuations can be defined and propagation formulas can
be used. But there are two axioms that are not verified.
The first is Axiom 3 (this axiom is based on distributive
property). As a consequence the result of applying propa-
gation formulas is not equal to PS; = {V|{O:}rex }'V/3,
this is the result of building a global piece of information
V, combining it with the observations, and marginalizing
the result to U;. One could view the result of propagation
as being incorrect. However, our point of view is that the
result of propagation is a better assesment of the ’a pos-
teriori’ information than PS;. As we do not have enough
granularity, building a global valuation and marginalizing
it after can degrade the information, while it can be more
appropriate to use only local valuations. The following
example is an extreme case of this idea.

Example 3 Consider two variables, X, and X,, taking
values on Uy = {u11,u12}, Uz = {ua1, uzz}, respectively.
Assume thal we know that these two variables are inde-
pendent and that we have the ’a priori’ valvations Vi and
Vo about them, where

- Vi(u11) =1, WVi(ug2) = AN

- Va(uz1) = AN, Va(uz2) =1

Assume that we observe the value us, for Xo. The in-
duced information in X, is:
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a) By using propagation formulas we have a graph con-
sisting of two nodes without links (the variables are
independent), then the resull of propagation is the
same valuation Vi.

b) By calculating PS, through a global valuation we
get:
PSl(uu) = AN, PS](ulg) = AN

In the second case the information has been degenerated.
However, in the firsi case we have used the independence
relationship to do less calculations and therefore the result
s more appropriate.

The other axiom that is not fulfilled is Axiom 6. If
inverse property is not verified, we can not consider two
valuations as equivalent if condition (7) is given. As a
consequence a constant valuation is not longer a neutral
element and multiplying by a value may change a valua-
tion. The consequences of using propagation algorithms
are analyzed in the following example.

Example 4 Let us use the ezample of a machine that is
prepared to work in very tough environmenial conditions.
The performance of the machine is very good in bad con-
ditions and excellent tn good conditions. This machine,
almost always works in bad conditions. This situation can
be modeled with two variables: X, (conditions) and X,
(state), where X1 takes the values: G (good) and B (bad),
and X, the values W (working) and NW (not working).
The graph consists of 2 nodes, X1 and X, with an arc
from Xy to Xo. As ’a priori’ information about X, we
have:

Vi(G) = AN, Vi(B) = 1
As conditional valuation about X, given X; we have,
Van(W|B) = M, Vo (NW|B) = F

Let us now assume that we know that in a particular sit-
uation the machine is working in good conditions. The
message that X1 sends to Xy is n} with

73(G) = AN, 7%(B) =0

Calculating the value of PS> according to propagation for-
mulas we get,

PSy(W) = AN, PSy(NW) = AN

We get the same value for working end not working. How-
ever, we should obtain the value 1 forW and AN for NW.
The problem is that with the lack of granularity it is im-
possible to discriminate between 1 ® AN and AN ® AN.
The value AN contaminates the rest of the valuations.



To solve the problem of propagation of the lack of gran-
ularity we propose a solution consisting in normalizing
the messages that nodes send each other. In the general
framework, when all properties are verified this normal-
ization 1s senseless: we obtain an equivalent valuation.
But here it is important to maintain the maximum preci-
sion in the calculations. First, we give a definition of the
normalization of valuations defined on a set of labels.

Definition 4 Let V be a valuation on Ur conditioned to
U; we say that this valuation is normalized if and only if

Sup {VV¥(u) |uelUs;}=1 (10)

For an unconditional valuation (J = @) the meaning of
(10) is that the addition of all the values is 1. 7} messages
are unconditional valuations in Uj;, thus the normalization
is a transformation to a valuation in which all the values
add up to 1. The /\;F messages are valuations in the empty
set conditioned to U;. Then the normalization condition
s,

Sup {)\f(u)| vel;}=1

That is, that the supremum of the values is equal to 1.

Definition 5 A normalization function N is a mapping
applying a valuation, V, in a set of normalized valuations
N(V) such that for every V' € N(V) there exists a label
1 € L such that

Yu, V(u)=16V'(u) (11)

The result of normalizing a valuation is a set of val-
uations in the general case. The reason is that as the
property of the inverse element is not verified we may find
several normalized valuations, V", fulfilling (11). We shall
assume that this set is never empty. This happens with
the labels we are considering.

Example 5 Consider the set U = {uj,us} and the valu-
ation V given by

V(U1) = AN, V(UZ) = AN

For all normalized valuations, V', in U with all the values
different from 0, there exists a label | € L (this label can
be AN ) such that (11) is verified.

In the case of the valuation 7% of the abore example,
N(n?) has only a valuation, V', being

V’(u”) = 1, V’(U]z) = AN

The propagation problems of this example could be solved
after transforming 7} into @ normalized valuation.

To cope with the problem of normalization in the gen-
eral case, we have two extreme approaches:
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e The sirong approach.- In this method the normal-

ization of a valuation is the set of all the valuations
verifying (11). It consists in considering a new con-
cept of valuation. A new valuation in Uy, V, will be
a set of mappings from Ur to L. The combination
is carried out by making the pointwise combination
of all the mappings in the valuations:

Vi@V ={V |V =Vi@V,, Vi €Vy,heVoy}
(12)

The marginalization is defined on an analogous way:
vi=(v'|iv=v" vev} (13

The normalization of a new valuation, V, will be
the set of all the mappings obtained by normaliza-
tion of the mappings in V. In this way we may use
propagation formulas (4,5) taking into account that
valuations are now sets of mappings and that nor-
malization is applied after their calculation.

This method is very similar to the one used in [6] in
which the result of the propagation is a set of labels.
This imprecision is a consequence of the imprecision
of the set of labels we are using.

The weak approach.- This method consists in con-
sidering that the result of normalization is a unique
valuation. In this case we ignore some of the im-
precision of the set of labels we are using but the
calculations are simpler. Valuations are composed
of an unique mapping. This can be considered as an
approximate approach. We find that it is difficult
to deduce any particular rule to select a normalized
valuation. However we propose the following rule
based on the heuristic principle of avoiding extreme
probability assignments as much as possible:

1. Let | be AN.

2. While the set of normalized valuations has
more than one element do

3. Remove from the set of normalized valua-
tions those with a number of values equal
to 1 greater than the number of values
equal to [ of other valuation in the set.

4. Let I be the following label in L.

With our set of labels, this algorithm ends with an
unique valuation. In the case of

V(ul) = AN, V(UQ) = AN
we get

N(V)(w1) = AH, N(V)(uz) = AH

This is a kind of maximum entropy principle.
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