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Abstract

Bayesian networks are suitable models to deal with the
Information Retrieval problem because they are appropri-
ate tools to manage the intrinsic uncertainty with which this
area is pervaded. In this paper we introduce several modifi-
cations to the previous works on this field, adding new fea-
tures and showing how a good retrieval effectiveness can be
achieved by improving the quality of the Bayesian networks
used in the model and tuning some of their parameters.
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1 Introduction

In our days in which Internet and the World Wide Web
is getting more and more relevance in our life, the Informa-
tion Retrieval (IR) field is strongly centering the attention
of research, changing the natural environment in which IR
had been moving since the 40s, when it was born. But de-
spite this change, and the influence of new technologies,
the foundation of IR is still the same: people need infor-
mation to solve problems and this field tries to organize all
the required things to provide that information in the best
conditions.

Therefore, IR deals with the following topics [17]: Rep-
resenting the information to be easily handled, storing and
organizing that representation, facilitating the posterior ac-
cessing, and retrieval of the information required by an
user’s information need.

Also, the stages which compose this previous cycle of
retrieval will be carried out by means of a software in a
computer, which will be called Information Retrieval Sys-
tem (IRS). In our case, the IRS will deal with texts in any
of its varieties, i.e., e-mails, books, research articles, etc.
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genericly referred to as documents.

In this paper we introduce an IRS based on a Bayesian
network model '. The retrieval engine of our model is com-
posed of a Bayesian network with two layers of nodes, rep-
resenting the documents and the terms in the collection. Ina
first approach, we assume the independence between terms.
This assumption is unrealistic, and will be relaxed in the
second approach, where the relationships between the terms
are allowed playing the role of a thesaurus. We show how,
by improving the quality of the term layer adding the the-
saurus, the performance of the IRS is also improved.

After specifying the structure of the Bayesian network
there still remains the problem of assessing the probability
distributions stored in the nodes. For document nodes, it
is necessary to estimate a very big conditional probability
table, which arises problems related to efficiency and stor-
age capacity. Also, the management of these tables by the
propagation modules becomes a time-consuming process.
We propose in this work an alternative way to estimate the
probability matrices allocated in the nodes, lightening the
previously mentioned problems.

For term nodes, whose conditional probability matrices
are estimated from the whole collection, a technique based
on relaxing the conditional probabilities is presented. This
method demonstrates how by finding the correct parame-
ters, the IRS can obtain better results. Also, the way in
which the prior probabilities are computed is a relevant fact
that influences the retrieval effectiveness. To expose these
ideas, this paper is divided into six sections. The next sec-
tion deals with all the concepts related to IR that are neces-
sary to understand the rest of the paper, and also introduces
the Bayesian network models that have been already devel-
oped. Section 3 shows the general structure of our Bayesian
networks. In section 4, the specific details about probability

'An IR model is a specification about how to represent documents and
queries, and how to compare them.



distributions stored in the networks are discussed. In section
5, we expose how we have carried out the experimentation
and the results we have obtained with our model. Finally,
the last section contains the concluding remarks and some
proposal for future research.

2 Preliminaries: Information Retrieval and
Bayesian network models

Given a document collection, the first step to operate
with an IRS, as previously mentioned, is to characterize
the content of the document, task called indexing. It ob-
tains a representation of each document in a suitable form
to be managed by a computer. The result is a set of key-
words or terms extracted from each text that should ap-
propriately express the content of the document: D; =
(t1j,t25, .- trj), although this representation depends on
the IR model being used. Because they are not equally im-
portant, these terms could be weighted to highlight their
importance in the documents they belong, as well as in
the whole collection. A weighted indexed document could
be D; = ((t1j,w1;), (t25,w25), -, (trj, wij)), where each
wyj is the weight associated to the corresponding term.
Usually, we use the weight known as tf.idf weight. In this
case, the value associated to a term is computed multiplying
the frequency of the term in that document (¢f) by the in-
verse document frequency (idf) of the term in the collection,
idf; = lg nﬁ.-’ where N is the number of documents in the
collection, and n; is the number of documents that contain
the it* term. The tf.idf weight increases proportionally to
the frequency of the term in the document and decreases
proportionally to the number of documents containing the
term.

When the indexing process has finished and the collec-
tion is ready to be used, a user interacts with the IRS by
means of a query. That query is a description of the user’s
information need, and must be also indexed to produce a
representation which can be handled by the system. The
next step is the retrieval of those documents which are the
most relevant to the query. The matching process is based
on the search strategy implemented by the corresponding
model. The result of this stage is a ranking of documents
sorted by the proximity of each document to the query.
There are three classic retrieval models: Boolean, vector
space and probabilistic models [16, 17].

In this paper we focus on probabilistic models [7], which
estimate the probability that a document satisfies a query,
and mainly differ in the way in which they compute that
probability of relevance. Based on probabilistic methods,
Bayesian networks [14] have been proved to be a good
model to manage uncertainty, even in the IR environment, in
which they have been successfully applied as an extension
of the probabilistic IR model, because they offer important
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advantages to deal with the intrinsic uncertainty with which
IR is pervaded [9, 5].

A Bayesian network is a Directed Acyclic Graph (DAG),
where the nodes represent the variables from the problem
we want to solve. In that kind of graph, the knowledge is
represented in two ways [14]: (a) Qualitatively, showing the
(in)dependencies between the variables, and (b) Quantita-
tively, expressing the strength with which we believe the de-
pendence relationships, and represented using a set of con-
ditional probability distributions.

We are briefly going to review the different works de-
veloped based on Bayesian networks. Croft and Turtle
have carried out an important work in this field [5, 18].
Their model is based on a Bayesian network formed by two
pieces: the collection network and the query network. The
former is composed of two types of nodes which represent
documents and terms (concepts). The latter is built to repre-
sent the queries submitted to the system by means of query
nodes and query concept nodes. The document network is
fixed for a given document collection, and the query net-
work is created each time that a user formulates a query.
Once the probabilities have been assessed for each node, in-
ference is carried out instantiating each document node, in
turn. Therefore, the probability that the query is met given
that a document has been observed in the collection, is ob-
tained. After all the propagation processes, the posterior
probabilities are sorted in decreasing order, so the higher
the probability the more relevant the document is.

Closely related to this work, Ghazfan et al. in [10, 12]
explain their modifications to Croft and Turtle’s network,
with the only goal of giving a ‘corrected semantic meaning
for the inference process’. Thereby, they change the direc-
tion of all the arcs, instantiating only the query node instead
of each document and propagating only once towards doc-
ument nodes.Ribeiro and Muntz [15] have also developed a
Belief network model, which generalizes the classical mod-
els.

3 Description of our IR models based on
Bayesian networks

Our model is composed of a DAG, where two different
sets of nodes can be found: a set containing binary ran-
dom variables representing the terms in the glossary from a
given collection, and a second, corresponding also to binary
random variables, but in this case related to the documents
which belong to the collection. The document set will be
referred to as the document subnetwork, and, similarly, the
term set will be called term subnetwork.

On the one hand, a variable T; associated to a term takes
its values from the set {£;, t;}, where £; stands for ‘the term
T; is notrelevant’, and ¢; represents ‘the term 77 is relevant’.
On the other hand, a variable referring to a document Dy,



has its domain in the set {d;, d;}, where in this case, d; and
d; respectively mean ‘the document D is not relevant for a
given query’, and ‘the document D; is relevant for a given
query’.

The nodes from both subnetworks are connected be-
tween them by means of links, in such a way that for each
term that has been used to index a document, there is a link
between the node representing the keyword and the node
associated with the document to which the term belongs.

Because we are working with DAGs, there is a question
that immediately arises: What is the orientation of these
links to form arcs of a DAG? There are two possible an-
swers: (a) from documents to term nodes, supported by
Croft and Turtle [5, 18], (b) the arcs will leave the term
nodes to point to the document nodes, which is maintained
by Ghazfan et al. [10, 12] and Ribeiro and Muntz [15].

In our case, we think that it is more intuitive to consider
the probability of relevance of a document given a query,
which leads to adopt the second option and therefore, the
arcs joining both subnetworks in our model will follow the
direction described in (b).

Until now, we have not discussed anything about the re-
lationships between the term nodes in the term subnetwork,
and similarly, the relationships inside the document layer.
First of all, let briefly concentrate on the latter.

We will assume that the relation between documents
only occurs through the terms included in these documents.
Therefore, the document nodes will only receive the arcs
from term nodes and not from other document nodes. This
assumption implies that documents are conditionally inde-
pendent given that we know the terms that they contain.
Nevertheless, if we could have some semantic information
relating two documents then the relationships between doc-
uments would be also allowed.

With regard to the relationships between term nodes, we
have considered two hypotheses: (a) the terms are indepen-
dent between each other, and (b) the terms are dependent. In
the first case, our model is going to be composed of two sim-
ple node layers, the term and document subnetworks, arcs
only exist from nodes in the first subnetwork to nodes in
the second one. The second case will imply a Bayesian net-
work learning process that captures the relationships among
terms. In the two following subsections we will describe
both models, specifying the main characteristics that define
them.

3.1 The simple retrieval Bayesian network

This model is composed of two subnetworks inside of
which the nodes are independent, existing links between the
term nodes and the document nodes, which join the nodes
from both subnetworks. All the terms nodes are root nodes,
having prior probabilities stored in them, and all the docu-
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Term subnetwork

Document subnetwork
Figure 1. The simple IR Bayesian network.

ment nodes are leaf nodes and should contain a conditional
probability matrix. A graphical representation of the simple
retrieval Bayesian network is shown in figure 1.

The structure of our simple IR Bayesian network is sim-
ilar to the network introduced by Ghazfan et al. [10, 12]
and Ribeiro and Muntz [15]. As we will see later, the dif-
ferences are mainly in the probability distributions stored.

3.2 The augmented retrieval Bayesian network

The major change with respect to the simple model is
that the term subnetwork is not composed of a set of inde-
pendent term nodes, but a more complex graph, showing the
most important (in)dependences between the terms in the
collection, resulting as a consequence in a more accurate
model. To be precise, the graph that has been configured
as the base of the term subnetwork is a polytree — a DAG
where there is no more than one undirected path connecting
each pair of nodes.

This new model needs a learning phase which uses an
inverted file for the collection. Then, by means of a learn-
ing algorithm, a Bayesian network is constructed. Basically,
what we are automatically building is a kind of thesaurus?
for the collection. This thesaurus was used by the authors
in a previous work [2] to develop a query expansion sys-
tem, in which the most relevant terms to those belonging to
the original query, selected after propagating the evidences
in the polytree, were added to the query. The result of that
stage was passed to the Smart Retrieval System [4], to fi-
nally carry out the retrieval process, getting the relevant
documents for that new expanded query.

In the IR field the number of terms in a collection is very
big. Therefore, the main reason why we chose a polytree
was because the bigger and more complex the learned graph
is, the more time is consumed for learning it and carrying
out the propagation process. For singly connected graphs,
like polytrees, there is a set of very efficient learning and
propagation algorithms that reduce both times, without los-
ing too much accuracy and expressiveness.

The learning algorithm is based on Chow and Liu’s

2 A structure which stores the terms and the relationships between them,
used to improve the IRS performance.



Term subnetwork

Document subnetwork

Figure 2. The augmented IR Bayesian net-
work.

method for constructing dependence trees ([3], adding some
additional features.

Figure 2 represents an example of the augmented
Bayesian network model, where we notice that the connec-
tion between terms and document nodes is exactly the same
as described previously.

4 Probability matrices in the Bayesian net-
work models

Once we know the structure of the two Bayesian network
models, we are going to focus our attention on the probabil-
ity matrices stored in them.

There are two kinds of nodes in our Bayesian network:
term and document nodes. For the first type, the prior dis-
tribution must be specified for all the nodes which are root
nodes. Therefore, given a root node representing a term 77,
it must store the probability that T is not relevant and the
probability that T is relevant. Both types of nodes which
own parents will store conditional probability matrices.

When the probability matrices are going to be computed,
the next three points must be taken into account: (1) The
way of calculating the prior probabilities, (2) the size of the
conditional probability matrices, and (3) the computation of
the conditional probabilities.

In the following subsections we will deal with these
three important questions, which are completely relevant
for the retrieval effectiveness, and must be correctly tuned
to achieve good results.

4.1 Computation of the prior probabilities
We have considered three different ways of computing
prior probabilities:

e ppl: Given a term T3, the probabilities which will store
its related node are p(t;) = 0.5 and p(f;) = 0.5, i.e.,
the uniform distribution.

e pp2: p(t;) = 45 and p(£;) = 1 — p(t;), M being the
number of terms in a given collection.
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o pp3: p(t;) = & and p(f;) = 1 — p(t;), where N is
the number of documents in the data set, and n; is the

number of documents in which the term T occurs.

What we were looking for designing these prior prob-
ability expressions is to observe whether the retrieval re-
sults were relevant to prior probabilities. ppl and pp2 ex-
pressions compute the same values for all the terms, but
pp2 gives a prior probability of relevance to any term much
lower than ppl. On the other hand, pp3 assigns a different
probability to each term depending on the number of occur-
rences of the term in the collection.

4.2 The size of the conditional probability matri-
ces

When the number of parents of a given node is very big,
conditional probability matrix computing turns to be a prob-
lem for several reasons: the time needed to obtain these ma-
trices is very long, the matrix sizes are very big, with the
subsequent problems with its storage, and finally, the prop-
agation process gets slower because of the management of
these matrices.

At this point in the paper, we are going to focus our atten-
tion on the conditional probability matrices placed in every
document node. As previously mentioned, each document
node will have as many parents as terms were assigned to it
in the indexing process. Therefore, it should store 2% condi-
tional probability matrices, k being the number of parents.
Taking into account that the average number of terms per
document in a common collection is relatively large, e.g.
100 or 200, the computation of these matrices is nearly im-
possible. Even if they could be estimated, the disk space
required to store them would be huge. Subsequently, alter-
native solutions must be looked for to overcome this draw-
back.

Our proposal to solve this problem is based on
storing, instead of the conditional probability matrix
p(D;|Ty,...,Tx) on each document node, a probability
function, in such a way that given a configuration of val-
ues of the parent variables, as well as a value for the docu-
ment variable, the function is evaluated just at the moment
in which the propagation process requires a specific condi-
tional probability value (i.e., we use an implicit representa-
tion of the probability values instead of a explicit one).

Given a document Dy, the set of terms which have been
assigned to it, II(D;) = {Ti,...,Tx}, and a particular
configuration of II(D;), w(D;), we are going to use for-
mulas that allow us to compute the conditional probability
p(d;|n(D;)) = p(dj{ts,...,t) as a function of the in-
dividual probabilities p(d;|t;), ¢ = 1,...,k. The follow-
ing three functions have been designed to be applied to our
model:



e fpl: It can be considered as a normalized idf repre-
senting that the more a term occurs in the collection,
the less probable the documents which contain it are
relevant to that term.

_ idf;
" log(N + Dlog(k +1)

p(d;lts) (1)
where k is the number of terms in document D; and
p(d;]t;) = a, o being a number close to 0.0. The
factor log(k + 1) represents the idea that for a docu-
ment indexed by many terms, to know that only one
term is relevant gives less information than when the
document has few terms.

The aggregation function is based on an “Or-gate” [14]
and is the following: let p(d;|t;) = p; and p(d;|t;) =
gi, then we will show the expressions when all the
terms are relevant, not relevant, and the case in which
there are some of them that are relevant, and the rest
not relevant:

k

pldjltr,. .-, ti) = 1= [J(1 = pa), )
=1
&
p(djlt, -8 = [ o 3
i=1
and finally,
p(d_j|t1,...,th,t_h_%],...,{k) =

1-TTm, (L= p) + [Ty @ [T (1 —p) (4)

e fp2: Represents a normalized sum of the tf.idf values
from those terms which are relevant in the configura-
tion. That is to say,

&
Zi:1 b

i thidf,

pi being ¢ fj;idf; if T; = t;, and 0 when T;; = ¢;.

p(d;|w(D;)) = 5)

s fp3: This third way of computing conditional proba-
bilities represents the proportion of relevant terms in
the configuration from the total number of terms in the
document. In this case, the probability of relevance for
a document is calculated as:

k

i—1 Pi
p(d; (D)) = 2P
with p; being equals to 1if 7; = ¢;, and 0 when T; =
.

(6)
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Both Bayesian network models, the simple and the aug-
mented, will use this kind of probability functions instead
of matrices.

In their model, Ribeiro and Muntz [15] also use a proba-
bility function, more precisely the cosine similarity formula
[17], and alternatively, Indrawan et al. [12] use a kind of
clustering, grouping the terms of a document by inserting
intermediate nodes to which each group is connected. These
new nodes are, at the same time, linked to the correspond-
ing document node, thus reducing the size of the conditional
probability matrices.

As mentioned at the beginning of this subsection,
this problem with conditional probability matrices is also
present in term nodes when the learning algorithm assigns
too much parents to a term, and was solved in the learning
phase by limiting the number of parents of a node [2].

4.3 Computation of conditional probabilities

Let us now concentrate on the computation of the con-
ditional probability matrices that are going to be stored in
the term nodes. For instance, given a node 7; and its par-
ents, I1(T;), we estimate the conditional probability values
by means of the maximum likelihood estimator, i.e.

n(t;, (1))

pltl(T) = ",

N
n(t;, 7(T;)) being the number of cases in the collection
that both appear, the term 7; and those terms in II(T})
that take the value relevant in the configuration w(7}).
Similarly, n(7(7};)) represents the number of cases where
all the variables in w(7;) being relevant appear in a
document. Once matrices were estimated, we observed
that they had a lot of probabilities equal to 0.0 or very
close to it (similarly, there were others very close to
1.0); this fact leads us immediately to think that the
data are very disperse, and therefore there were several
co-occurrence patterns whose frequency is 0. To improve
the matrix quality, we decided ‘softening’ or ‘relaxing’
the probabilities using two different Bayesian methods [11]:

e sl:

n(t, 7(T7)) + 1
n(w(Ti)+ | T |

where | T; | is the number of values that T; can have, i.e., 2.

p(ti|w(Ty) = ®)

® s2:

i, T nlt:)
i) = 2

)

s being a parameter (that can be interpreted as the sample
size used to estimate the a priori distribution) and NN is the



total number of data, i.e., the number of documents in the
collection.
For s2, two variations have been considered:

o Global relaxing (g): the expression (9) is applied to
all the components of the conditional probability ma-
trices.

e Selective relaxing (s):. the expression (9) is only ap-
plied to those configurations of the conditioning vari-
ables whose values are all of them relevant. The reason
why we do this type of relaxing is to establish a greater
distance with the rest of probabilities, highlighting the
importance of these two probabilities in which all the
parents are relevant with respect to the others in the
matrix.

5 Experimentation

In the following subsections we will briefly describe the
material used in our experiments (databases and software),
as well as the experimental design and the obtained results.

5.1 Standard test collection

In IR it is very common to test the IR systems developed
over standard collections, with the aim of comparing the
performance obtained by these different IR models. These
collections are composed of a set of documents, a group of
queries, and a set of relevance judgments, indicating which
documents are relevant for each query.

In our experiments, we have used the Adi collection, ob-
tained from the Computer Science Department ftp site at
Cornell University [4], whose subject is Information Sci-
ence. This collection consist on 82 documents, 828 terms
and 35 queries.

As can be noticed, the collection size is relatively small
and could not represent the sizes of actual collections, but
the reason why we chose this database to carry out our ex-
periments is that it establishes a good test bank to exper-
iment with our model in a very short time, preparing and
tuning our algorithms to work with bigger collections.

5.2 The retrieval process. Experiment design

Given a query submitted to our system, the retrieval pro-
cess starts placing the evidences, i.e., the terms belonging to
the query, in the term subnetwork by setting their states to
‘the term is relevant’. The propagation process is run, ob-
taining for each document its probability of relevance given
that the terms in the query are also relevant. Then, the docu-
ments are sorted by its posterior probability to carry out the
evaluation process.

| Model | Prior prob. | Cond. prob. | Prob. functions |

SIRBN | ppl, pp2, pp3 - fpl, fp2, fp3

AIRBN pp3 sl,s2 fpl, fp2

Table 1. : Experiment design.

The propagation method that we have used is the so
called "Importance Sampling’ [13], which is a new Monte-
Carlo propagation algorithm integrated in the Elvira System
[6]. We choose an approximate propagation method due to
the size of the probability distributions stored in document
nodes. An exact method would need to evaluate all the pos-
sible configurations for the parents of each document node,
which represents a high time consuming task.

The experiments that we have designed to test our IR
models, are divided into two groups, according to the two
models introduced in this paper. We present in Table 1 the
main different parameters which have been used in the ex-
perimentation for both, the Simple and Augmented Infor-
mation Retrieval Bayesian Network, SIRBN and AIRBN,
respectively. In order to reduce the number of experiment
for AIRBN, and considering that the number of root nodes
has been drastically reduced in the polytree, we only use the
pp3 prior probability distribution that takes into account the
quality of the term.

For s2 and for its two variations, we have to specify the
parameter s for equation (9), which will regulate the relax-
ation. We have chosen the values 3, 5, 7 and 8. Summing
up, we have designed 33 experiments, 9 belonging to the
simple model, and 24 to the augmented model. In the fol-
lowing subsection we are going to introduce the results we
have obtained in our experimentation.

5.3 Results

The evaluation of retrieval performance is basically car-
ried out by means of two complementary measures: recall
and precision estimations [16, 17]. The first one measures
the ability of the IRS to present all the relevant documents
(number of relevant document retrieved / number of relevant
documents). The second one, precision, measures its ability
to present only the relevant documents (number of relevant
documents retrieved / number of documents retrieved).

To establish the quality of our results, we will compare
them to the well known IR system Smart [4], developed
by G. Salton and C. Buckley [1]. Smart implements the
vector space model, in which queries and documents are
represented by vectors containing weights. In our compar-
isons, we have used the ‘ntn’ weighting scheme, based on
the ¢t f.idf weight. In Tables 2 and 3 we present for each ex-
periment the following data: number of Relevant Retrieved
documents (R) — we use the default number of retrieved doc-
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Exp. R Exp. ER Exp. EP | [ Exp. [RJ Exp. | ER [ Exp. [ EP |
Smart | 91 Smart | 0.5964 || Smart | 0.1733 $2,8,7,fpl | 96 || s2.8,3.fp2 | 0.6356 || s2,5,7,fpl | 0.1829
fpl, pp3 | 87 || fp2, pp2 | 0.5909 || fpl, pp2 0.1657 s2,g,5,fpl | 95 || s2,5,3,fp2 | 0.6284 || s2,5,9,fpl 0.181
fpl, pp2 | 87 fpl, pp2 05787 fpl, pp3 | 0.1657 $2,5,9,fpl | 95 s2,5,7,fpl | 0.6141 sZ,g,S,f'pl 0.181
fp2, pp2 | 87 || fpl, pp3 | 0.5587 || fp2. pp2 0.1638 s1,fp2 94 || s2,5,8,fp2 | 0.6139 || s2,g,3,fp2 | 0.179
s2,,3,fp2 | 94 fp2 0.6136 sl,fp2 0.179
fp3, pp2 | 86 | fp2,pp3 | 0.5494 || fp3,pp2 | 0.1562 | |- ot 553155 5052 [ 0.6106 || s2.5.8.0p2 | 0.1771
fp2, pp3 | 82 || fp3,pp2 | 0.5344 || fp2,pp3 | 0.1543 | =5 o5 e 103 [ 52,5,7,6p2 | 0.6085 || s2.5.5,fp1 | 0.1771
fp2,ppl | 79 || fp2,ppl | 0.5275 || fp2,ppl | 0.1505 | 582 193 || sifp2 | 0.6064 || s2.s.3.fp2 | 0.1771
fp3,pp3 | 79 || fp3,pp3 | 0.4891 || fp3, pp3 | 0.1505 fp2 92 |[ 52.5.9,fp1 | 0.6053 || s2,g.8,fpl | 0.1752
fp3, ppl | 69 || 1p3, ppl | 04430 || fp3, ppl | 0.1314 $2,2.8.0p2 | 92 || s2.59,fp2 | 0.6035 || s2,g.3.fp1 | 0.1752
fpl, ppl | 34 || fpl, ppl | 0.1863 || fpl,ppl | 0.064 s2,8,3,fpl | 92 || s2,5,5.fpl | 0.6035 || s2,5,3,fp1 | 0.1752
s2,g,3,fpl | 92 || s2,g,5,fpl | 0.6034 fp2 0.1752
Table 2. Experimentation results for the Sim- $2,5,7.fp2 | 91 || Smart | 0.5964 || s2,5,5fp2 | 0.1733
ple IR Bayesian Network. s2,5,5,fp2 | 91 || s2,5,3,fp1 | 0.5961 || s2,5,7,fp2 | 0.1733
s2,8,8.fpl | 91 s2,2,3,fpl 0.594 $2,5,8,fpl | 0.1733
Smart 91 || s2,g,9,fpl | 0.5854 Smart 0.1733
s2,8,8,fpl | 91 || s2,g.8,fpl | 0.5831 || s2,g,7.fp1 | 0.1714
uments established in Smart, i.e., 15—, the Exact Recall (ER) s2,,7.fpl | 90 || s2,g,7,fp2 | 0.5803 || s2,5,9,fp2 | 0.1714
and the Exact Precision (EP). For illustrative purpose, the s2,2,9.fp1 | 90 || s2,5,8,fpl | 0.5794 || s2,g.9.fpl | 0.1714
experimental results have been sorted in both tables by its $2,8,9,fp2 | 90 | s2,g,7,fpl | 0.5792 || s2,g,8,fp2 | 0.1714
effectiveness measures, i.e., R, ER and EP. These tables also s2,8,7,fp2 | 87 || s2,89,fp2 | 0.5724 || s2,8,7,fp2 | 0.1657
include the results obtained with Smart. fpl 86 || s2,8,5,fp2 | 0.5718 || s2,2,5,fp2 | 0.1638
As it could be expected, from both tables, we can con- s2,8,5.fp2 | 86 fpl 0.5628 fp! 0.1638
clude that the performance of the retrieval system is highly st?l;flpZ Zg st"c]é:?:lpz 822;2 st?F,)flpZ 8:222

dependent on the network structure and also on the proba-
bility distributions stored in the nodes, being the augmented
network preferable to the simple one.

Focusing on the results for SIRBN, it can be concluded
that it is useful to assign small prior probability of relevance
for the terms in the collection, like pp2 and pp3 do. More-
over, considering the conditional probability distributions
stored in document nodes, is preferable to incorporate infor-
mation related with the relevance or specificity of the terms
in the collection, as fpl and fp2 do. So that, we do not con-
sider the probability function fp3 in the experiment with the
augmented network.

Now, we are going to analyze the results obtained with
AIRBN (see Table 3). Similarly with the simple model, it is
difficult to discern which probability function, fpl or fp2,
is the best one. In this case, two main discussion ought to
be done: On the one hand, considering fp2, it is better to
use sl as relaxing criterion. When we use s2, it can be
found that, in general, selective relaxing has better perfor-
mance than global relaxing. With respect to the parameter
s used in s2 it seems to be necessary a tuning process, be-
ing preferable small values. On the other hand, considering
fpl, we obtain the worst results using s1. We think that the
reason is in the way in which s1 increments the probabil-
ity of relevance when we are conditioning to a non relevant
term. This effect is reconsidered when using s2, obtaining
better results. Again, using the selective relaxing seems to
be better for improving the results. Nevertheless, a good
tuning of the relaxing parameter seems to be important for
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Table 3. Experimentation results for the Aug-
mented IR Bayesian Network.

getting good results.

6 Concluding remarks and future work

In this paper we have introduced a new Bayesian
network-based model for IR, which has been based on a
thesaurus that captures the most important term relation-
ships and is represented by a polytree structure. We have
shown how the retrieval effectiveness greatly depends on
the quality of the term subnetwork, as well as on other pa-
rameters as probability functions and the type of relaxation
in the conditional probability matrices.

The results obtained from our experiments show how the
augmented IR Bayesian network improves in certain cases
those obtained by Smart, but conveniently tuning the differ-
ent parameters.

The main conclusions that we can obtain from this work
are the following:

e The prior probability matrices are very relevant to the
simple IR Bayesian network, but this network is not
good enough to get better results.

e The results are improved when the term relationships



represented in the term subnetwork are closer to the
relationships present in the real model.

The relaxing of probability matrices is shown to be a
good technique to improve the retrieval effectiveness,
although is very relevant the factor used to soften these
probabilities, because an over-relaxation could lead to
decrease the IRS performance.

The alternative of using probability functions in the
document nodes instead of conditional probability ma-
trices is one of the most suitable solutions to the prob-
lem of the matrix sizes, although the design process of
these functions requires special care.

Our future works on this field are going to be focused on

the following:

e Proving the goodness of our mode! applying it on dif-
ferent standard document collections, obtaining the set
of values for all the parameters in which the retrieval
effectiveness is the highest achievable.

Designing new and more accurate probability func-
tions.

Improving the quality of the term subnetwork in or-
der to learn a more accurate model. To carry out this
task, we are planning to develop efficient learning al-
gorithms to:

1. Learn an unique term subnetwork but more com-
plex than a polytree, and closer to the real model.
In this case we have to take care because, as
mentioned, the more complex the network is, the
more time to learn and propagate is consumed,
and

2. apply clustering techniques to learn several and
smaller term subnetworks, but, and due to the re-
duced sizes, with a greater complexity.

Learning of more accurate document networks, taking
advantage of the relationships between the documents
to improve the retrieval effectiveness.

Designing of appropriate propagation methods to be
completely adapted to the networks we will use, with
the aim of reducing the propagation time.
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