
Web Service Composition

as AI Planning – a Survey∗

Joachim Peer

March 22, 2005

Abstract

This article gives an overview of AI (Artificial Intelligence) plan-

ning techniques and discusses their application to the Web service

composition problem.

∗Second, revised version, March 2005.

1

Contents

1 Introduction and Motivation 3

2 Scenarios 5

3 Preliminaries 6

3.1 Formalizing the planning domain 6

3.2 Formalizing the Initial World 9

3.3 Formalizing Goals . 11

3.4 Representing Plans . 13

4 Basic Planning Paradigms 14

4.1 State-Space based Planning 14

4.2 Graph Based Planning . 18

4.3 Partial Order Refinement Planning 22

4.4 Planning as Satisfiability . 26

4.4.1 Planning as Propositional Satisfiability 27

4.4.2 Planning as Description Logic Satisfiability 28

4.4.3 Planning as Petri-Net Reachability 29

4.5 Planning as Logic Programming 30

5 Planning with Control Knowledge 31

5.1 Hierarchical Task Network Planning 31

5.2 High-level Program Execution 33

5.3 Planning As Model Checking 36

5.4 Temporal Planning . 39

6 Discussion and Outlook 41

2

1 Introduction and Motivation

Web services are distributed software components that can be exposed and

invoked over the internet using standard protocols. This concept was put

forward by major IT companies like Microsoft, IBM and Sun as a Web-

compatible solution for distributed computing, with the particularly attrac-

tive property of being an open, fully standardized and vendor neutral ap-

proach.

Web services communicate with their clients and with other Web services

by sending XML based messages over the internet. The signatures of the

operations a Web service offers and the message formats it supports form

its interface. Commonly, interface description languages (IDLs) such as the

Web Service Description Language WSDL (W3C, 2002) are used to describe

the service interface.

WSDL allows for decoupling abstract descriptions of service types (called

Port Types) from concrete implementations of the services. Therefore, a sin-

gle Port Type description can be used for multiple services of similar type.

This allows for the definition of standardized service interfaces, and partici-

pants with a common interest can jointly reach agreements on the semantics

of those descriptions. Based on such agreements, client applications may be

crafted to use the Web services, and complex processes involving several ser-

vices may be composed, for instance using the BPEL4WS (IBM et al., 2002)

process description language.

A problem of this approach becomes immanent when services diverge

from the initial agreements. For instance, when a service changes its imple-

mentation (e.g. to refine its service offerings) its semantics and probably its

syntactic interface will change. Since there is no formal machine interpretable

connection defined between the semantics and the syntactic interface, human

intervention is needed to decide whether the service is still compatible with

the agreed semantics or not.

3

A way of addressing this limitation is writing down a sufficiently large part

of the semantics of a service in a formal machine interpretable fashion, quite

analogous to the syntactic interface. This reduces the dependency on external

semantic agreements that are often difficult to reach, must be reached for

each new service type, and must be re-evaluated after each modification of

a Web service. Instead, the semantic descriptions provide software agents

with a way to autonomically reason about the service’s semantics, i.e. the

preconditions and consequences of its operations.

In an environment of semantically annotated services, users who need to

achieve certain goals could be assisted by software agents which automat-

ically identify and, if necessary, dynamically compose services in order to

accomplish the user’s goals, which may be either explicitly stated or derived

from the situation the user is in.

However, dynamic composition of services is a hard problem and it is

not entirely clear which techniques serve the problem best. One family of

techniques that has been proposed for this task is AI (Artifical Intelligence)

planning. Planning is a complex problem which has been investigated exten-

sively by AI research. (Russel and Norvig, 1995) characterize the problem

of planning as follows : “Planning can be interpreted as a kind of problem

solving, where an agent uses its beliefs about available actions and their con-

sequences, in order to identify a solution over an abstract set of possible

plans”.

Recently, several papers, e.g. (McDermott, 2002; Srivastava and Koehler,

2003; Carman et al., 2003; Sirin and Parsia, 2004), have investigated the po-

tentials and boundaries of applying AI planning techniques to derive web

service processes that achieve the desired goals. In this report we aim to

extend this research by providing a survey of the most important planning

techniques and by discussing their suitability for dynamic Web service com-

position.

The remainder of the article is organized as follows: in Sect. 2 we list

4

the scenarios we gather our requirements from. In Sect. 3 we discuss the

relevant conceptual frameworks of planning. We then proceed to the discus-

sion of basic planning paradigms in Sect. 4 and knowledge oriented planning

paradigms in Sect. 5. We then contrast a collection of representative plan-

ning engines against our identified core requirements and discuss the results

and possible directions for future work.

2 Scenarios

To assess the importance of the various potential requirements we are con-

fronted with, we consider the following collection of Web service domains:

• The Web shopping domain (Peer, 2004b): A collection of services that

offer capabilities to browse catalogs and purchase goods. Possible goals

are to find and purchase one or more products, possibly at best price.

• The document handling domain (Peer, 2004b), which is similar to the

Softbots domain in (Golden, 1997): The services offer functions to

manipulate files, for instance to convert, compress or encrypt them.

Possible goals are series of document transformations, e.g. to convert

and package a collection of documents.

• The mail replication domain (Vukovic and Robinson, 2004): This do-

main combines electronic mail-related services, i.e. SOAP interfaces

to SMTP and POP servers, with services in the document handling

domain (cf. above). Typical goals in this domain are the sending and

receiving of messages, and the context depended adaption of the be-

havior of the mail system, e.g. context- and user-dependent display,

involving text translation and image conversion services.

• The traveling domain (McIlraith and Son, 2002): The services in this

domain offer the capability to query and book air tickets and accom-

5

modation for travelers. A typical problem of this domain is to plan for

a conference attendance, which often involves additional user-defined

constraints to be satisfied (e.g. the date of the conference, preferences

for certain hotels or airlines).

3 Preliminaries

In general, a planning problem has the following components:

• a description of the possible actions which may be executed (a domain

theory) in some formal language.

• a description of the initial state of the world

• a description of the desired goal

In the following sections, we present the most important approaches to

define the components of a planning problem and we will contrast them with

the requirements of Web service composition problems.

3.1 Formalizing the planning domain

The aim of domain formalization is to provide a domain theory, i.e. a formal

account of the semantics of the operations that are available or relevant to the

agent. These operations can represent physical operations (e.g. defined by a

robot’s physical environment) but can also represent more abstract actions

(e.g. withdrawing money from a bank account).

A domain theory must formally define the causal laws of the operations,

i.e. it must allow to axiomatize relevant aspects such as the preconditions

of operations and their effects to the world. Usually, domain theories follow

some state-transition model, i.e. they introduce a notion of state (or situa-

tion), which is a snapshot that describes the world at a certain point in time

6

and they relate actions to transitions between such states. Most approaches

define a state extensionally as a set of ground atomic formulas (atoms), where

atoms that may change their value over time are called fluents and those that

do not change are called state invariants.

Regarding the epistemological principles domain theories are based on,

we can distinguish two variants: domain theories based on classical logics

and extra-logical domain theories.

Among the logical approaches is the situation calculus, which was in-

troduced by (McCarthy, 1963) and later refined by (Levesque et al., 1998;

Pirri and Reiter, 1999), who define the situation calculus as a second-order

framework designed for representing dynamically changing worlds in classi-

cal first-order language. The situation calculus represents the world and its

change as sequence of situations, where each situation is a term that repre-

sents a state and is obtained by executing an action1.

Another approach for encoding operations into first order predicate logics

is the event calculus (Kowalski and Sergot, 1989). In the event calculus,

events initiate periods during which certain properties hold. A property is

initiated by an event and continues to hold until some event occurs that

terminates it. The events, their effects and durations are expressed in Horn

logic.

Yet another approach based on logic are action theories based on modal

logics, as discussed by (Giacomo and Lenzerini, 1995; Castilho et al., 1999;

Giordano et al., 1998). Like the situation calculus, the modal approaches

define a system of world states where the actions are modeled as transitions

between those states. Modal logic approaches allow for a very natural mod-

eling of actions as state transitions, by conceptualizing them as accessibility

relations in Kripke structures. As we will see later in Sect. 5.3, Kripke struc-

tures are indeed practically used to represent nondeterministic domains.

Despite the advantages of these pure logic based approaches, such as the

1A more detailed description of the situation calculus is presented in Sect. 5.2

7

precise semantics and the ability to prove certain properties of domain theo-

ries, the AI planning community largely uses different formalisms to express

planning domains. These formalisms are largely rooted in the STRIPS (Fikes

and Nilsson, 1971) notation, which was used in the 1970ies to describe plan-

ning domains for a robot system called “Shakey”. STRIPS allows to define

operators directly by specifying a precondition, an ADD-list and a DELETE-

list, all represented as conjunctions of atoms. Intuitively, the semantics of

such an operator description is that an operation is only applicable if the pre-

condition is satisfied by the current world state (represented as a database),

and that after execution of the operation the atoms of the ADD-list will be

added to the world state and the atoms of the DELETE-list will be removed.

However, the precise logical semantics of STRIPS has been a subject of de-

bate for long time, with different proposals put forward, e.g. (Lifschitz,

1986; Reiter, 2001).

The ADL language (Pednault, 1989; Pednault, 1994) provides support

for more expressive operator descriptions and narrows the gap between the

semantically ambiguous STRIPS and the declarative situation calculus: ADL

allows the definition of context dependent effects, universally quantified ef-

fects (for instance needed to model the transportation of goods using a truck),

negation and disjunction.

Over the time, many AI planning systems have been developed, support-

ing different levels of expressivity, in many cases in a middle ground between

ADL and STRIPS, sometimes even beyond, e.g. to express temporal reason-

ing, metrics, task networks, etc. This resulted in a wide range of “ad-hoc”

formats, whose semantics have often been ambiguous. To address this prob-

lem, the Planning Domain Definition Language (PDDL) (Ghallab et al.,

1998) was developed to serve as a standard domain (and problem) specifica-

tion language, to ease the comparison of the various systems. PDDL allows

to define domains of the expressivity of ADL, including metric fluents, and

defines rules for standard-compliant extensions. Successor versions of the

8

original PDDL version are PDDL 2.1 (Fox and Long, 2003) which added a

notion of time and PDDL 2.2 which adds derived predicates and timed initial

literals. Several other extensions have been proposed, for instance (Bertoli

et al., 2003) which extends PDDL to express nondeterminism, limited sensing

and iterative conditional plans.

3.2 Formalizing the Initial World

A planning agent must take the initial world state into account, because it

must provide a plan that, when executed in the initial world, will lead to the

specified goal.

The conceptualizations discussed in the last section not only define the

conceptual models of actions, they also define the conceptual models of the

initial world description a planning agent is given. In fact, the initial world

is just another world state (or situation) defined by the domain theory.

The central element that constitutes a world state in practically all ap-

proaches are the atoms that are known to be true in the initial world state.

Classical AI planning approaches assume that the extensional definition of

the initial world state provides a complete description. This allows to employ

the closed world assumption, which means that any fact that is not explicitly

listed in the state database is false.

For real world applications, such as in robotics or in our domains of Web

service computing, these simplifying assumptions are unrealistic. In fact, we

are confronted with the following problems:

• Incomplete information: the extensional definition of the initial world

does not specify all knowledge relevant to the planning task. For in-

stance, in an e-commerce application, the agent may not know which

online retailer offers which products, but it needs this information to

achieve its goal of buying a product.

• Wrong information: some of the atoms that are defined as true may be

9

false in reality (and vice versa). This happens when the invocation and

reasonable persistence (IRP) assumption (McIlraith and Son, 2001)

is violated, i.e. when facts are changed after the agent has acquired

knowledge about those facts and when the agent wrongly believes its

knowledge is accurate.

• Fuzzy information: for each known fluent value there might exist a

certain probability that it is not correct (e.g. because of fuzzy sensors).

Again, this problem does not appear frequently in our domains.

The conceptual models of planners have been extended over the time to

better deal with the difficulties listed above. Since the world view of an agent

may divert from the reality of the world, it is useful to explicitly represent

the knowledge an agent has. The agent’s knowledge can be constituted by

the knowledge of atomic facts and also certain axioms and functions. Along

these lines, alternatives to the widely used closed world assumption have been

investigated, for instance the Local Closed World Assumption(LCA), which

allows to represent Local Closed World (LCW) knowledge (Golden, 1997).

LCW knowledge is usually organized in two databases M and L, where the

database M contains a collection of all known facts and the database L
contains LCW formulas that describe the contents of M, i.e. they state for

which parts of the world the agent’s knowledge can be safely assumed to be

complete. For instance, when an agent queries the list of all products an

online retailer A sells, it may assume to know all products that are available

from A (when the IRP assumption holds).

When knowledge of agents is expressed explicitly, the necessity arises

to define the influence some of the domain’s operators have on the agent’s

knowledge. In other words, it is useful to distinguish operators (or ef-

fects) that change the world from operators (or effects) that only affect the

agent’s knowledge. The latter are called sensing operations (or sensing ef-

fects). An extension to STRIPS that accounts for incomplete knowledge and

10

sensing actions is UWL (Etzioni et al., 1992). Similarly, SADL (Golden,

1997) adds support for incomplete information and sensing to ADL, and

NPDDL (Bertoli et al., 2003) proposes similar extensions to PDDL. An other

proposed extension to PDDL is Opt (McDermott, 2002), which adds knowl-

edge effects and learnable terms to the PDDL framework.

A formal situation calculus based account of the incomplete knowledge

of agents and sensing actions was given in (Moore, 1985), which also in-

troduced the notion of knowledge preconditions, which are conditions the

agent’s knowledge base must fulfill to successfully apply an operator.

3.3 Formalizing Goals

In most classical approaches to AI planning, goals are expressed as properties

that need to hold in a desired world state (the goal state), usually in the form

of conjunctions and disjunctions of literals (positive or negative atoms) and

whereby variables are treated with existential quantification.

The planner needs to identify a solution (a plan), which, when executed

in the initial world state, will result in a world state that satisfies the goal.

For instance a goal (color Door1 Red) specifies a condition that says that

the fluent color of Door1 must have the value Red after plan execution, and

a goal (have-door House1 ?d) would require the existence of an constant c,

that when bound to variable ?d, would make the formula (have-door House1

?d) true.

For automated Web service composition (and many other domains) these

goals specifications are not sufficient enough. Requirements listed in the

literature are:

• Need for temporal structures: Certain complex goals can not be ex-

pressed simply as properties of a final state. For instance, the planning

of a round-trip from Vienna to Zurich and back can not be expressed

as a condition on the goal state because the goal state would equal

11

the initial state (i.e. the agent being in Vienna2). Therefore, certain

structures need to be added to split the planning goal into several dis-

tinct, consecutive phases. In some cases, a valid plan may even have to

include looping and branching, as noted by (Srivastava and Koehler,

2003).

• Strategies for dealing with nondeterminism, i.e. how to behave if the

execution of an operation does not achieve the expected or desired

result (e.g. by defining BPEL-like compensation actions).

• Safety properties: not all possible solutions to achieve a goal are desired

ones. For instance, there may be certain fluents whose values should

not or only moderately be changed (e.g. the credit-card balance); these

protected fluents are sometimes called maintenance goals or resource

constraints. Further, in many domains there are certain situations an

agent may stumble into, which need to be avoided altogether, and

constraints on the goal can help to evade them.

• Distinction between information goals and achievement goals : Many

problems require such a distinction because information goals should

be achieved exclusively by sensing actions. As an example, a goal to

find out the current color of an item may only use operations that

do not actively affect its color; we would not want the agent to use

an operation that sets the color to some new value and then reports

that newly assigned color (Golden, 1997). Instead, the value should be

gathered through a sensing operation.

• Preferences of users over possible solutions (e.g. preferring air travel

over traveling by train, payment via credit card over e-cash) and other

user-provided constraints on the solution (e.g. buying airline ticket

2although the problem could be circumvented by formulating the goal as possessing a
ticket from Vienna to Zurich and a second ticket from Zurich to Vienna.

12

only if driving would take longer than 3 hours) (McIlraith and Son,

2001)

Since these difficulties are relevant to many real world planning domains,

not only to Web service composition, there exist several approaches to ad-

dress these problems, which will be discussed in Sect. 5.

3.4 Representing Plans

The classical view of a plan as a solution to a planning problem is a sequence

of operator instances, which, when executed leads to a state that satisfies

the given goal. Given the discussion of goals in the last section, especially

the problem of nondeterminism, it is not surprising that this classical view

of plans is not always sufficient to capture the solutions to complex planning

problems.

The required complexity of a plan does not only depend on the domain

and goal complexity, it also depends on the execution model foreseen for the

plan: if an operation does not yield the desired result, will the agent have

the opportunity to re-generate the plan (as in replanning/reactive planning

architectures, e.g. (Firby, 1987)), or will the agent have to rely on the pre-

defined plan? In the latter case, a conditional plan is required that deals

with the nondeterminism and incomplete information by constructing a plan

that accounts for the possible contingencies that could arise. At runtime, the

agent has to determine the situation it is in and then chose the appropriate

plan branch that is prepared for that situation. Planners that adopt that

strategy are also called contingency planners.

Beside contingency planners, there exist several other extensions to plans

as simple sequences. As we will discuss later in Sect. 4.3, partial order plan-

ners allow for plans whose actions are partially ordered, i.e. some of the

actions can be executed in parallel rather than sequentially, which often in-

creases the efficiency of the system. Even more feature-rich plans can be

13

created using the planning as model-checking (MC) approach described in

Sect. 5.3, where the planner synthesizes plans that may contain loops and

branches.

4 Basic Planning Paradigms

In the following we will give an overview of the basic planning paradigms

and some representative implementations of these concepts.

4.1 State-Space based Planning

A state space consists of a finite set of states S, a finite set of actions A,

a state transition function f that describes how actions map one state into

another, and a cost function c(a, s) > 0 that measures the cost of performing

action a in state s (Fikes and Nilsson, 1971). A state space extended with a

given initial state s0 and a set SG of goals is also called a state model (Bonet

and Geffner, 2001b).

State based planners aim to solve a planning problem by searching for

useful operator instantiations that achieve the desired state. Depending on

the starting point of the search, we distinguish forward state search (also

called progression) and backward state search (also called regression): A

progressive state based planner starts with the initial state and searches ac-

tion instances that bring the planner closer to the goal. A regression planner

starts with a state satisfying the goal and searches for action instances that

bring the planner closer to the initial state.

In both cases, the goal is to find a sequence of actions that, when applied

beginning in the initial state, will lead to the goal state. More formally, a

solution of a state model is a sequence of actions a0, a1, ..., an that generates

a state trajectory s0, s1 = f(s0), ..., sn+1 = f(an, sn) such that each action

ai is applicable in si and sn+1 is a goal state, i.e., ai ∈ A(si) and sn+1 ∈ G

14

(Bonet and Geffner, 2001b).

In principal, any search algorithm can be used to perform state based

search, and the discipline of means-end-analysis has a long tradition with

roots in the 1950s since GPS (Newell and Simon, 1963). However, the usually

vast number of different branches of actions a planner has to chose from

calls for methods that reduce the search space or help discriminating fruitful

vs. useless branches of the search tree. An early attempt for reducing the

search space was the STRIPS algorithm. It uses backward search, i.e. it

starts with the goal, searches an action that achieves the goal or one of its

subgoals and then goes on to search actions that achieve the precondition of

the actions, and so forth. STRIPS enhances this search by only considering

the preconditions of the last operator added to the plan and by committing

to operators whose preconditions are satisfied by the current state. This

reduces the plan space significantly, but it makes STRIPS incomplete, i.e.

there is no guarantee that a solution for a problem will be found even if there

exists one.

A different way of dealing with the vastness of the plan space is to employ

heuristic functions which estimate the usefulness of the alternative actions

a planner can chose from, thus guiding the planner to chose fruitful search

paths and ignore branches that will lead to dead ends or solutions of low

quality. Truly automatic domain independent planners have no other choice

than gathering these heuristics from the domain and the problem descriptions

they are confronted with, in contrast to specialized algorithms, e.g. the

algorithm solving the 8-puzzle discussed in AI textbooks like (Nilsson, 1980).

A planner adopting such a domain-independent heuristic is UNPOP (Mc-

Dermott, 1996), which employs a regression-match graph. The construction

of this graph starts with the goal, which is matched to the current situation,

yielding a set of literals to be achieved. In the next level of the graph, actions

are considered that achieve some of those subgoals, which yields another set

of subgoals, needed to carry out those actions. Those subgoals are added to

15

the next level of the graph and the process repeats. To enhance the graph

traversal, the notion of estimated effort is used, i.e. an estimate of how many

actions it will take to achieve the main goal, whereby the effort of a goal

that is already given in the current situation is 0 and the effort of a goal that

can not be achieved by any operator in the domain is ∞. When traversing

the regression graph, UNPOP chooses branches first whose effort estimations

seem favorable, which leads to an improvement in planning speed compared

to “blind” unguided searches.

In related work, the forward planner HSP (Heuristic search planner) was

presented, which is based on the additive heuristic hadd. This heuristic defines

the cost of a set C of atoms as the sum of the cost of the elements of C. This

assumes that subgoals are independent of each other, which is not always

true because some goals can become less (or even more) difficult once other

goals are fulfilled. The HSP system uses hadd to guide a hill-climbing search

from the initial state to the goal. At each step, one of the best child nodes

(i.e. nodes whose hadd value is minimal) is selected for expansion and the

same process is repeated until the goal is reached. The costs are calculated as

estimations, which are extracted from a relaxed planning problem P ′, where

the negative effects of operators are ignored. The estimations are generated

by iteratively applying the positive effects of a number of operations whose

preconditions are applicable in the current state (negative effects are ignored)

and by tracking for each atom that is achieved in that process after how

many steps it was achieved (Bonet and Geffner, 1998). Empirical data shows

that the idea of using a relaxed problem to harvest heuristic estimation as

well as the assumption of goal independence yields preferable results, as

documented in the results of the international planning competition IPC-

1998 (McDermott, 2000; Bonet and Geffner, 2001b).

In successive work, the planner HSP2 (Bonet and Geffner, 2001a) was

developed, which employs the same heuristic function hadd, but uses best-

first search (Pearl, 1985) instead of hill-climbing. The best-first search weighs

16

nodes by an evaluation function f(n) = g(n) + W ∗ h(n), where g(n) is the

accumulated cost, h(n) the estimated cost of the goal, and W is a constant.

Higher values of W are associated with faster plan search, but also with lower

plan quality (Korf, 1993). HSP2 evaluates the hadd heuristic from the scratch

in every new state generated in HSP.

The re-generation of hadd is an obvious performance issue, which is a

bottle neck of the HSP planners as well as related planners like UNPOP.

An attempt to address this problem is HSPr (Bonet and Geffner, 1999), a

variant of HSP which uses backward search from the goal rather than forward

search from the initial state. The estimates are computed only once from the

initial state, and the heuristic function hadd(s) is always calculated as sum of

costs to achieve goals from the initial state (Bonet and Geffner, 1999). This

combination of forward propagation to derive estimations and the backward

search for plans is reminiscent of Graphplan (Blum and Furst, 1995),

which is discussed in Sect. 4.2. While HSPr turned out to substantially

improve performance in some domains, the new algorithm is inferior to HSP

in others (Bonet and Geffner, 1999).

Planning as heuristic search was further advanced by the Fast Forward

(FF) planner (Hoffmann, 2001), which was among the winners of the ICP-

2000 competition, outperforming HSP2 and others. Like HSP, FF relies on

forward search in the state space, guided by a heuristic that estimates goal

distances using a relaxed problem. However, FF uses a more sophisticated

method of extracting heuristic values, based on a Graphplan-style algo-

rithm (cf. Sect. 4.2). The number of actions in the relaxed solution is used as

a goal distance estimate; among the advantages of Graphplan-like solution

extraction is that it takes positive interactions between facts into account.

The estimates are used to guide a novel kind of local search strategy, called

enforced hill-climbing. In contrast to HSP, which randomly chooses the best

successor to each intermediate state, FF evaluates all of a state’s successors

(and, if necessary, the successors of the successors etc.), looking for a state

17

with better heuristic value than the current state. In short, at each search

iteration a breadth first search for a state with strictly better evaluation is

performed. This strategy allows the planner to escape plateaus and local

minima. A third advantageous feature of FF is its concept of helpful actions,

i.e. it uses the information from the planning graph to identify at each state

those actions that appear most useful in terms of the effects they achieve and

it prefers those actions over the operators that seem superfluous (Hoffmann,

2001; Hoffmann and Nebel, 2001).

An extension to FF, called Metric-FF, was presented in (Hoffmann, 2003;

Hoffmann, 2002); it handles numerical variables, constraints and effects as

captured in PDDL 2.1 level 2. Metric-FF supports numerical state variables

which can be used in numerical constraints in preconditions (e.g. cash > 100)

and in arithmetic operations in effects (e.g. cash− = 10).

While the heuristics using a relaxed planning graph has had remarkable

success in recent years, in some domains the FF and HSP families of planners

perform poorly, because their relaxation method of ignoring negative effects

loses too much vital information. A recent heuristic search planner which

addresses this problem is Fast Downward (Helmert and Richter, 2004). In

contrast to the previous planners like HSP and FF, it does not use a relaxed

planning graph but it uses Causal Graph (CG) data structures (Helmert,

2004) instead.

4.2 Graph Based Planning

Several planners discussed so far utilize graph structures for the extraction

of heuristics. In this section, we will discuss the graph planning framework

introduced in (Blum and Furst, 1995), which formalizes the construction, an-

notation and analysis of a compact structure called Planning Graph. Despite

some similarity, Planning Graphs are not space graphs such as those used

in UNPOP. In fact, unlike the state-space graph, in which a plan is a path

through the graph, in a Planning Graph, a plan is a flow in the network flow

18

sense (Blum and Furst, 1997).

A Planning Graph is a directed leveled graph. It consists of two types of

nodes, namely action nodes and proposition nodes. These nodes are arranged

in alternating levels consisting of proposition nodes followed by layers of

action nodes, and so forth. Each level is associated with a time step. The

first level of a Planning Graph is a proposition level which consists of one

node for each proposition of the initial situation. The second level is an

action level which contains all actions whose preconditions are satisfied by the

proposition nodes of the first level. The third level is again a proposition level,

containing the proposition nodes from the first level and proposition nodes

that represent the effects of the actions of the preceding action layer. The

construction of the Planning Graph stops when two consecutive propositional

layers are identical; it has been shown that this always occurs, guaranteeing

the termination of the process. The complexity of creating a Planning Graph

is low-order polynomial in the number of actions and propositions (Blum and

Furst, 1997).

All actions at some level i are connected to the preconditions at level i−1

and its effects at level i+1, introducing or negating proposition in i+1. For

literals that persist from layers i− 1 to i+1 and are not connected to action

nodes, persistence action nodes are added. Further, (Blum and Furst, 1995)

defines mutual exclusions (“mutex”) relations for actions and literals. The

possible mutex relations between actions are inconsistent effects, where one

action negates an effect of the other, inference, where one of the effects of one

actions is the negation of a precondition of the other and competing needs,

where one of the preconditions of one action is mutually exclusive with a

precondition of the other. A mutual relation holds between two propositions

on the same level if one is the negation of the other or if each possible pair of

actions that could achieve the two propositions is mutually exclusive (Russel

and Norvig, 2002).

The information captured in such a Planning Graph, especially the ex-

19

clusion relations propagate a variety of intuitively useful facts about the

problem. This information can be used by planners to guide their search.

The first planner using this technique was Graphplan, which was intro-

duced in (Blum and Furst, 1995). The Graphplan algorithm operates in

two main steps which alternate within a loop: graph expansion and solution

extraction. Graph expansion grows the Planning Graph as sketched above,

until a propositional level is reached where all goal propositions are present

with no mutex links between any pair of them. This is a necessary (but

insufficient) condition for plan existence. To look for potential plans, the

solution extraction phase is then started. The Graphplan algorithm uses a

backward-chaining strategy, using a level-by-level approach in order to make

best use of the mutual exclusion constraints (Blum and Furst, 1997). Given

a set of goals at a time (level) t, Graphplan aims to determine a set of ac-

tions at time t−1 which have these goals as effects. At each step, only actions

that are not mutually exclusive with existing actions in the plan are consid-

ered. On failure, Graphplan tracks back and tries different action sets. If

no plan is found and the Planning Graph is not leveled off yet, then Graph-

plan resumes graph expansion until another promising propositional layer

is reached. The solution extraction can be formulated as a constraint solving

problem3 (Do and Kambhampati, 2001) or as a search problem (Russel and

Norvig, 2002).

Graphplan’s advantages are besides its good performance its theoreti-

cal properties such as soundness, completeness, generation of shortest plans

and termination on unsolvable problems. However, the original Graph-

plan algorithm has some limitations: first, its representation language is

restricted to pure STRIPS operators, no conditional or universally quanti-

3Since Graph-based planning can be formulated as “constraint satisfaction”-based plan-
ning, this terms is frequently used to refer to Graph-based planning. However, it should
be pointed out that there exist other constraint-based approaches to planning which do
not use any planning graphs, for instance the MOLGEN planner (Stefik, 1981).

20

fied effects are allowed; and second, the performance can decrease drastically

if too much irrelevant information is contained in the specification of a plan-

ning task (Nebel et al., 1997).

In (Koehler et al., 1997), an early version of the Ipp planner is presented,

which extends Graphplan to handling conditional and universally quan-

tified effects. The authors show that this extension comes with negligible

computational overhead and competes well with other planners that support

ADL subsets (e.g. UCPOP and Prodigy). In additional work, the RIFO (Re-

moving Irrelevant Operators and Initial Facts from Planning Problems) strat-

egy (Koehler et al., 1997) was added to Ipp, addressing Graphplan’s prob-

lem with irrelevant information. Further, a Goal Agenda Manager (GAM)

to order sets of subgoals and incrementally plan for subproblems (Koehler

and Hoffmann, 2000) has been added to Ipp, and more recently to the FF

planner.

Another planner based on Graphplan that has evolved over time is

Stan (Long and Fox, 1999). It improves Graphplan in several ways. First,

Stan performs a number of preprocessing analyses, or STate ANalyses,

on the planning domain before planning, using the Type Inference Module

(TIM) described in (Fox and Long, 1998). Further, Stan uses an efficient

internal representation of preconditions and effects (as bit vectors), which al-

lows for resource-efficient representations of the planning graph (called spike)

and allows to carry out the mutex-checks between actions and facts using

efficient bit manipulating operations4. Further, redundant information is

avoided in the spike structure, using a technique called wave front (Long and

Fox, 1999), which results in advantageous space requirements over Graph-

plan.

Sensory Graphplan SGP (Weld et al., 1998) is an extension to Graph-

plan that not only supports conditional effects in the way described in (Gazen

and Knoblock, 1997), but also deals with uncertain effects (Smith and Weld,

4similar techniques are used in Symbolic Model Checking, which is touched in Sect. 5.3

21

1998) and uncertainty in the initial situation. The idea presented in (Smith

and Weld, 1998) is to extend a separate planning graph for each possible

world, keeping track of mutual exclusion across the worlds, and then to search

backwards for a plan that works in all possible worlds. SGP introduces ob-

servational effects of the form (sense wwf), where wwf denotes an arbitrary

logical expression composed of propositions. Operators in SGP may have zero

or more such observational effects, which, when executed at runtime, deliver

the truth value of the specified expression wwf. To accomplish this exten-

sion of Graphplan, SGP modifies the graph expansion phase, such that it

derives knowledge propositions from the sensor definitions and the previous

planning-graph proposition layer. In addition, it incorporates a conditioning

threat resolution method into the solution extraction phase. Furthermore,

SGP generates contingent plans with branches that can rejoin.

4.3 Partial Order Refinement Planning

In contrast to the techniques discussed so far, Partial Order Refinement Plan-

ners – also called Partial Order Causal Link Planners (POCL) or Partial Or-

der Planners (POP) – formulate the planning problem not as search through

the space of world states, but rather as a search in the space of partially-

specified plans, i.e. the nodes of the search space are not states but plans,

and the arcs between the nodes are not action executions but plan refine-

ments.

POCL planners usually produce partially ordered plans, i.e. not all ac-

tions have a fixed order in the plan, and a plan may have several different

linearizations, which all achieve the identical result.

A partially ordered plan, in older literature also called task network,

can be represented as a quadruple π = 〈S,O,B,L〉, which consists of the

following components: S is a set of plan steps, i.e. instances of operations.

O is a set of ordering constraints. Each ordering constraint is of the form

si ≺ sj, which means that the step si must be executed before step sj. If

22

the set S of some plan π has at least two steps sa and sb where O neither

contains sa ≺ sb nor sa ≺ sb, then π is a partially ordered plan. B is a set

of variable binding constraints on the parameters of action instances: Each

variable constraint is of the form var = x or var 6= x, where var is a variable

of some plan step and x is either a constant value or a reference to a variable

of some other plan step. If only ground plan steps are used, then B = ∅. L
is a set of causal links. Causal links are used to keep track why a step was

introduced to a plan and to prevent other steps from interfering with that

purpose. If a step si achieves a proposition p to satisfy a precondition of step

sj, the causal link si
p→ sj is added to L.

Further, the following derived sets are considered in partial order plan-

ning: OC is the set of open conditions of a plan. An open condition
p→ s

emerges when p is a literal that is part of Prec(s) and when there is no causal

link sx
p→ s in L. In other words, open conditions are preconditions of plan

steps which have not yet been addressed by the current plan. UL is the set

of unsafe links. A causal link si
p→ sj is called unsafe if there exists a step

sk ∈ S such that (i) ¬p is part of the effect of (sk) and (ii) O is consistent

with {si ≺ sk ≺ sj}. In such a case, sk is said to threaten the causal link

si
p→ sj. The union of a plan’s open conditions and unsafe links is called the

set F of flaws of π, i.e. F(π) = OC(π) ∪ UL(π). A plan π that has no flaws

is called complete.

An open condition
p→ s can be resolved by introducing or reusing a plan

step that has an effect achieving p. On the other hand, a threat of a causal

link si
p→ sj by a step sk can be possibly resolved either by promotion, i.e.

by adding an ordering constraint sk ≺ si to O or by demotion, i.e. by adding

sj ≺ sk to O. If the planner uses lifted actions, i.e. if it allows action

instances with variables in their parameter lists, a threat can also possibly

be resolved by separation, that is by adding binding constraints such that p

and ¬p cannot be unified. The way a planner navigates through plan space,

i.e. the strategy it employs to chose the plans to refine and the flaws to

23

remove determines the efficiency of the planner.

The inception of partially ordered planning in 1975 with NOAH (Sac-

erdoti,) sparked research and development activities during nearly three

decades. In 1977, the NONLIN system (Tate, 1977) was presented, which

introduced the concept of causal links. A formal account of partial order

planning was given in (Chapman, 1987), which presented the TWEAK sys-

tem, which could handle conjunctive and disjunctive preconditions as well

as conjunctive effects. (Chapman, 1987) also provides proofs of TWEAKS

soundness and completeness, whereby the latter is given using the modal truth

criterion (MTC) to explicitly check that all the safe ground linearizations cor-

respond to solutions. More recent planners, however, depend on protection

strategies and conflict resolution to indirectly guarantee the safety and nec-

essary correctness of the solution: SNLP (McAllester and Rosenblitt, 1991)

introduces the notion of threats and safety conditions, and UCPOP (Pen-

berthy and Weld, 1992) extends the complexity of domain and problem de-

scriptions to actions that have conditional effects and universally quantified

preconditions and effects and universally quantified goals. Much work has

followed to scale up SNLP and UCPOP, most importantly involving heuris-

tics for efficient flaw selection which was improved in (Peot and Smith,

1993; Williamson and Hanks, 1996; Schubert and Gerevini, 1995; Pollack

et al., 1997). Despite those gradual improvements, partial order planning

was outperformed by the new Planning Graph-, SAT- and heuristic state

space planners which have emerged in the second half of the 1990ies.

In recent years (since around 2001) several promising attempts have been

carried out to reclaim some of the repudation of POCL planning: in (Nguyen

and Kambhampati, 2001) it was noted that the techniques responsible for

the efficiency of Graphplan and heuristic state planners can be adapted to

dramatically improve the efficiency of partial order planning. (Nguyen and

Kambhampati, 2001) introduce RePOP, a POP implementation that in-

corporates several enhancements: it uses a Planning Graph to compute an

24

estimation of the cost of achieving a set of (sub-) goals. Further, it uses a

novel technique of handling unsafe links: An unsafe link ai
p→ aj that is in

conflict with an action ak is not automatically solved by promotion or demo-

tion, which would result in new partial plans, eventually blowing up the plan

space and decreasing performance; instead, RePOP uses disjunctive con-

straint handling, proposed in (Kambhampati and Yang, 1996), which is to

resolve the unsafe link by posting a disjunctive ordering constraint that cap-

tures the promotion and demotion possibilities, and incrementally simplifies

these constraints by propagation techniques, which results in the detection

of many failing plans before they get selected for refinement. Further, Re-

POP improves the consistency enforcement of partial order planning. POP

considers the causal link ai
p→ aj only threatened by an action a, if it has an

effect ¬p. Often a might have an effect q such that no legal state can have

p and q true together. In order to detect such implicit conflicts, information

about reachable states is required. Again, a Planning Graph is employed

to generate this information. The reachable states are then contrasted with

pre- and post-cutsets, which are unions of pre- and post-conditions derived

from the chains of plan steps defined by causal link and ordering constraints.

If these cutsets violate the properties of the reachable states, i.e. if a mutex

is detected (cf. Sect. 4.2), then the partial plan is discarded. The result

of these enhancements is that RePOP is able to demonstrate equal and

sometimes better performance than the CSP and state based planners it has

borrowed the powerful conflict detection techniques from. At the same time,

it is able to generate more compact solutions in many cases and it retained

the openness and flexibility of the POP framework, which is considered one

of the advantages of that framework (Smith et al., 2000).

Another recent advancement of partially ordered planning was achieved

by the Versatile Heuristic Partial Order Planner (VHPOP), presented in (Younes

and Simmons, 2002; Younes and Simmons, 2003), which competed success-

fully at the 3rd International Planning Competition IPC-3.

25

Like SNLP and UCPOP, VHPOP uses the A∗ algorithm (Hart et al.,

1968) to search through the plan space. The A∗ algorithm requires a search

node evaluation function f(n) = g(n) + h(n), where g(n) is the cost of get-

ting to n from the start node (i.e. the initial plan) and h(n) is the estimated

remaining cost of reaching the goal node (i.e. the complete plan). To encour-

age search for minimal plans, the cost of a plan is the number of actions in

it; while SNLP and UCPOP use the number of open flaws F(π) of a plan to

give an estimation of h(π), the VHPOP planner adapts the additive heuris-

tic hadd of HSP (cf. Sect. 4.1) to achieve a better informed heuristic, which

takes into account positive interactions between goals. Like the state space

planner FF, VHPOP utilizes a relaxed Planning Graph to extract the data

for hadd.

While these heuristics inform plan selection, VHPOP also provides power-

ful heuristics for flaw selection: Besides implementations of existing strate-

gies such as DUnf and DSep (Peot and Smith, 1993), LCFR (Joslin and

Pollack, 1994), and ZLFIO (Schubert and Gerevini, 1995), VHPOP intro-

duces novel flaw selection strategies: Static-first deals efficiently with static

open conditions, LCFF-Loc allows for local flaw selection, which makes the

planner less sensitive to precondition order in operator specifications, and

several conflict-driven flaw section strategies are introduced which build on

the assumption that those open conditions which would be threatened when

closed, should be treated with higher priority (Younes and Simmons, 2003).

Furthermore, VHPOP extends the POP framework to handle durative

actions as specified by PDDL 2.1 level 3, attaching temporal annotations to

open conditions which tell the planner at which time step the condition must

hold.

4.4 Planning as Satisfiability

The idea behind the planning as satisfiability-approach is to express the

planning problem as a reasoning problem for which powerful problem solving

26

algorithms exist.

4.4.1 Planning as Propositional Satisfiability

The logical approach to planning has traditionally been deduction (e.g. (Green,

1969; McCarthy and Hayes, 1987; Rosenschein, 1990)), that is, to find a proof

that the initial conditions together with the domain axioms (which define the

semantics of the operators) and some sequence of actions imply the goal sit-

uation (expressed as logical formula). The proof for such a theorem is any

valid instantiation of the logical theorem, and the action sequences can be

extracted from such an instantiation.

However, in (Kautz and Selman, 1992) planning through satisfiability

checking was presented. In that approach, a planning problem is not a theo-

rem to be proved, instead it is formulated as a set of axioms with the property

that any model of the axioms correspond to a valid plan. This property is

achieved by crafting axioms that rule out unintended (anomalous) models, for

instance axioms are needed to explicitly rule out the possibility of executing

an action while its precondition is not fulfilled.

Further, the axioms do not contain quantification or terms, and all pred-

icates have a trailing argument that takes a time step. For instance5, in the

well known blocks world (Gupta and Nau, 1992), the planning problem of

achieving on(B, A) from an initial situation on(A,B) ∧ on(B, Table) would

be expressed as:

on(A,B, 1) ∧ on(B, Table, 1) ∧ clear(A, 1) ∧ on(B, A, 3)

Further, the semantics (preconditions and effects) of the move operator

would be formalized as:

∀x, y, z, i.move(x, y, z, i) ⊃ (clear(x, i) ∧ clear(z, i) ∧ on(x, y, i))

5The example was taken from (Kautz and Selman, 1992), which lists all axioms of the
example; a complete account of formalizing planning problems in SAT can be found in
(Kautz et al., 1996).

27

Additional axioms are needed to make sure that exactly one action is

taken at one time step. In this example, the only model that satisfies the

axiomatized planning problem is:

{move(A,B, Table, 1),move(B, Table, A, 2)}

which is the intended model and which can serve as a plan for an agent. The

models can be constructed using satisfiability decision procedures such as the

Davis-Putnam procedure or stochastic procedures such as GSAT (Selman

et al., 1992); another example is WalkSAT, also called WSAT (Selman et al.,

1993).

This approach to planning turned out to be highly competitive (Kautz

and Selman, 1996). Planning procedures based on this techniques are Sat-

plan (Kautz and Selman, 1992) and the successor Blackbox (Kautz and

Selman, 1998a) which combines Satplan with ideas from Graphplan.

Both systems competed well in the international planning competitions.

A similar approach is taken by the LGP system (Gerevini and Serina,

2002) and its successor LGP-td (Gerevini et al., 2004). Both are based on

WalkSAT, but incorporate a best-first search algorithm and use a Planning

Graph for search heuristics.

Beside the good performance, SAT based planning has another advantage:

since states are modeled explicitly in this framework (the trailing arguments

of the atoms), it is easy to formulate requirements on states, as discussed

in (Huang et al., 1999; Kautz and Selman, 1998b). This, in turn is useful for

expressing the complex goals discussed in Sect. 3.3.

4.4.2 Planning as Description Logic Satisfiability

Another approach that presents the planning task as a logical satisfiability

problem is presented in (Berardi et al., 2003). More precisely, the article

concentrates on the problem of automatic Web service composition. In this

28

approach the “target logic” is not Propositional Logic, but the Description

Logic ALU .

The approach defines a community of Web services, which is character-

ized by a common set of actions, called the alphabet of the community and

a set of Web services specified in terms of the common set of actions. The

interaction protocols a service offers are expressed as execution trees, where

each node represents a possible state in the client-server interplay and each

edge represents an action invoked by the client following the protocol. The

Web service composition problem is now to identify an execution tree com-

posed of the actions of the services in the community, that corresponds with

a given desired execution tree.

The task of constructing such a tree is reminiscent of the task of pro-

ducing a model of a description logic concept to prove its satisfiability (or

its unsatisfiability): to exploit this property, the Web service domain and

planning problem are transformed from a situation calculus representation

to ALU , and then any of the highly efficient tableau-based Description Logic

reasoners (such as (Volker Haarslev, 2001; Horrocks, 1999)) can be used to

generate the tree model of the satisfiability check, from which the synthesized

process (if it exists) can be directly extracted.

4.4.3 Planning as Petri-Net Reachability

Another work that starts with a situation calculus based axiomatization of

the planning problem and then transforms it to fit into a well-known formal

framework was presented in (Narayanan and McIlraith, 2002): This article

suggests that Web service planning tasks can be carried out under the notion

of reachability analysis of Petri nets (Petri, 1962). The idea is to create a Petri

net based on atomic Web services that represents all possible combinations

of atomic operations and to specify the desired goal as a state of this Petri

net (i.e. as a configuration of tokens). Standard Petri net techniques, among

them satisfiability checking, can then be used to determine if this goal state

29

is reachable. These techniques can also be used to validate whether a plan

is well-formed (Narayanan and McIlraith, 2002).

4.5 Planning as Logic Programming

Another approach that proposes a way to encode the action laws of a planning

domain as a logical representation that is amendable to formal reasoning

methods is the Planning as Logic Programming approach.

A Logic program is composed by a set of Horn clauses of the form A ←
B1, ..., Bn. Each such Horn clause can also be interpreted as a disjunction of

literals with at most one positive literal, i.e. A∨¬B1 ∨ ...∨¬Bn. Negativity

in Logic programs is usually expressed as negation-as-failure (NAF), which

makes them nonmonotonic.

The relation between logic programming (LP) and planning, as well as

the encoding of planning problems as Logic programs is extensively studied in

the literature, e.g. in (Gelfond and Lifschitz, 1993; Turner, 1997; Lifschitz,

1999).

While the direct application of deductive reasoning, such as Prolog’s

SLD would appear self-evident, much of the progress of the Planning as

LP-approach has been achieved using alternative methods, inspired by (Sub-

rahmanian and Zaniolo, 1995). (Subrahmanian and Zaniolo, 1995) show

that planning problems can be converted to Logic programs in linear time

such that a given goal G is achievable in the planning domain if and only

if a related goal G∗ is true in some stable model of the logic program ob-

tained by the transformation; the goal G∗ can be obtained in linear time

as well (Subrahmanian and Zaniolo, 1995). These stable models can be ef-

ficiently generated by computing the answer sets of the logic program, as

implemented in tools like SMODELS (Niemelae and Simons, 1997). (Di-

mopoulos et al., 1997) report empirical tests of this approach, and suggest

that, given a proper encoding of the Logic programs, the performance can

keep up with the performance of general-purpose planning algorithms such

30

as Graphplan or Satplan.

Other applications of Logic programming have been Reiter’s implemen-

tation of Golog and regression for situation calculus (Reiter, 2001). Also

mentioned should be (Shanahan, 2000) which presents a Logic programming

encoding of the event calculus. In the realm of Web service composition, the

SWORD toolkit was presented in (Ponnekanti and Fox, 2002), which uses

Prolog to reason about information providing services, whereby plans are

extracted directly from the execution trace of the Prolog interpreter.

5 Planning with Control Knowledge

Although the performance of many of the planners described in the last sec-

tions is quite impressive, there is a belief among many researchers, that it is

necessary to provide the planing agent with domain- or task dependent con-

trol knowledge in order to achieve good performance in real world domains.

In the following sections, we will briefly review planning techniques that

allow to incorporate and exploit domain or task-dependent control knowledge

in one way or the other.

5.1 Hierarchical Task Network Planning

Hierarchical Task Network (HTN) planning was first introduced in the early

Abstrips (Sacerdoti, 1973) planning system, followed by NOAH and several

other planners; it was given a formal semantics in (Erol et al., 1994b; Erol

et al., 1994a).

HTN planning provides hierarchical abstraction, a powerful strategy to

deal with the complexity of large and complicated real world planning do-

mains. Like other planning paradigms, HTN planning assumes a set of oper-

ators that achieve certain defined effects when its preconditions hold directly

before its execution. However, in addition to operations (which are called

31

primitive tasks in HTN planning), HTN planning also supports a set of meth-

ods, where each is a prescription for how to decompose some task into some

set of subtasks. Such method descriptions represent common domain knowl-

edge, or if viewed from the planner’s perspective, represent plan fragments.

According to the definition in (Erol et al., 1994b), there are three types of

goals in HTN planning: (i) goal tasks, which are desired properties of the final

state, just like in most other planning paradigms, (ii) the already mentioned

primitive tasks, and (iii) compound tasks that denote desired changes that

involve several goal tasks and primitive tasks.

A variant of HTN planning which received much attention recently is

ordered task decomposition planning, where the agent plans for tasks in the

same order that they will be executed, which reduces the complexity of the

planning problem greatly. Planners based on that principle, like SHOP (Sim-

ple Hierarchical Ordered Planner) (Nau et al., 1999) accept goals as task lists,

where compound tasks may consist of compound tasks or primitive tasks;

goal tasks are not supported. Hence, ordered task decomposition system do

not plan to achieve a defined (declarative) goal, but rather to carry out a

given (complex or primitive) task.

Such a HTN based planning system decomposes the desired task into a

set of sub-tasks, and these tasks into another set of sub-tasks (and so forth),

until the resulting set of tasks consists only of primitive tasks, which can be

executed directly by invoking atomic operations. During each round of task

decomposition, it is tested whether certain given conditions are violated.

The planning problem is successfully solved if the desired complex task is

decomposed into a set of primitive tasks without violating any of the given

conditions.

An approach of using HTN planning in the realm of Web Services was

proposed in (Hendler et al., 2003), facilitating the SHOP2 system (Nau et al.,

2003), which belongs to the family of ordered task decomposition planners

we described above. The papers (Hendler et al., 2003; Wu et al., 2003)

32

present a transformation method of OWL-S processes into a hierarchical

task network. OWL-S processes are, like HTN task networks, pre-defined

descriptions of actions to be carried out to get a certain task done, which

makes the transformation rather natural. The advantage of the approach is

its ability to deal with very large problem domains; however, the need to

explicitly provide the planner with a task it needs to accomplish may be seen

as a disadvantage, since this requires descriptions that may not always be

available in dynamic environments.

5.2 High-level Program Execution

In the classical approaches to planning, a plan is synthesized given a domain

description and a planning goal, where the planner has to search a – usually

very large – space of possibilities to identify a proper solution to the planning

problem. An alternative approach is high-level program execution; the idea

behind this approach is that, instead of searching for a sequence of actions

that satisfies some declarative goal, the task is to identify a sequence of ac-

tions which constitutes a legal execution of a given high level program. As

in planning, it is necessary to reason about the preconditions and effects of

the domain’s operators to find out which actions can be applied in detail. If

the high level program is formulated in detail and is formulated determin-

istically, then not much reasoning is left to be carried out; otherwise, when

the programm is formulated not in detail and if it makes use of nondetermin-

istic control constructs, then the search task begins to resemble traditional

planning (Giacomo et al., 2000).

The Golog (alGOL in LOGic) (Levesque et al., 1997) language is such

a high-level programming language, and it is particularly designed for the

specification and execution of complex actions in dynamic domains. Further,

it is logic-based, which means that Golog program are amendable to formal

verification procedures and Golog based planning problems can be carried

out by logic tools such as theorem provers.

33

Golog is based on the situation calculus (cf. Sect. 3.1), which was in-

troduced by (McCarthy, 1963) and since then is often used as a means for

providing a formal account of dynamic systems. While early treatments of

the situation calculus identify situations with states, i.e. a description of

the universe at an instant of time (McCarthy and Hayes, 1969), more recent

formal treatment (Levesque et al., 1998; Pirri and Reiter, 1999) of the sit-

uation calculus identifies situations with world histories. All changes to the

world are results of named actions. A situation is a possible world history,

resulting from a sequence of actions, and it is expressed as a first order term.

The constant S0 denotes the initial situation, i.e. the empty sequence of ac-

tions. The function do(α, s) denotes the situation that results from executing

action α in situation s. Actions are written as functions and may be param-

eterized. For example, the function paint(?o, ?c) might stand for painting an

object ?o with color ?c, in which case do(paint(Door,Red), s) would denote

the situation resulting from painting the Door with red color. The expres-

sion do(putDown(Red), do(paint(Door,Red), do(pickUp(Red), S0))) denotes

the situation resulting from executing pickUp(Red) in situation S0, then ex-

ecuting paint(Door, Red), followed by putDown(Red).

Golog builds on top of the situation calculus by providing a set of extra-

logical constructs which serve as abbreviations for logical expressions in the

language of the situation calculus. The abbreviation Do(δ, s, s′), macro-

expands into a situation calculus formula that says that it is possible to reach

situation s′ from situation s by executing a sequence of actions as specified

by δ, which is a complex action expression. Golog provides the following

macro-expandable language constructs: primitive actions, test actions, se-

quence, nondeterministic choice of two actions, nondeterministic choice of

action arguments and nondeterministic iteration (while loops). Golog also

allows for the definition of (possibly recursive) procedures (Reiter, 2001).

Given a situation calculus-based domain axiomatization Axioms, an ini-

tial situation S0 and a Golog program δ, the planning (i.e. program execu-

34

tion) task can be expressed as the following theorem proving task (Reiter,

2001):

Axioms ` (∃s)Do(δ, S0, s)

In other words, the planner has to identify a situation s for which the macro-

expansion is provable from the axioms. The instance of s is obtained as a

side effect of the proof, and from this instance a sequence of actions ~a can be

extracted such that Axioms |= Do(δ, S0, do(~a, s)) holds, where ~a abbreviates

do(an, do(an−1, ..., do(a1, S0))). A Prolog-based implementation of a Golog

interpreter is presented in (Levesque et al., 1997).

A variant of Golog capable of dealing with concurrency is ConGolog

(Concurrent Golog) (Giacomo et al., 2000): it allows concurrent processes,

whereby the concurrency is established by interleaving the atomic actions

in the component processes; it also supports interrupts (e.g. to handle the

situation when an alarm button is hit in an elevator) and exogenous actions,

i.e. actions that may occur in parallel to the program but are not under con-

trol of the interpreter. A Prolog-based interpreter for ConGolog is presented

in (Giacomo et al., 2000).

In (McIlraith and Son, 2001; McIlraith and Son, 2002) a modified version

of ConGolog is applied to the problem of Web Service composition. The

ConGolog interpreter is extended with the ability to include customized user

constraints, a more flexible variant of Golog’s sequence construct and the abil-

ity to implement sensing actions as external function calls. In (Narayanan

and McIlraith, 2002), a formal tranformation from OWL-S to situation cal-

culus and Golog is given. In this context, OWL-S processes can serve as

specification of desired processes to be carried out as well as a description of

the atomic and complex actions offerered by Web services. The Web service

composition problem would then be to find an execution of a Golog program

that does satisfy the properties defined in the goal.

35

5.3 Planning As Model Checking

The planning as model checking approach was first proposed in (Cimatti

et al., 1997; Giunchiglia and Traverso, 1999), which formulates the planning

problem as semantic model checking problem. Model checking is a formal

verification technique, which allows to determine whether a property holds

in a certain system formalized as a finite state model. This technique is used

for the verification of hardware and software systems, to achieve a formal

account of the system’s behavior, e.g. that a system does never reach a

certain unwanted state (safety), or that it is guaranteed to reach a certain

state at some point (liveness). For example, the SPIN model-checker was

used to verify the multi-threaded plan execution module in NASA’s DEEP

SPACE 1 mission and discovered five previously unknown concurrency er-

rors (Havelund et al., 2001). A more general, detailed discussion of model

checking for reasoning over systems can be found in (Halpern and Vardi,

1991).

Planning by model checking (PBM) is semantically well founded and is

capable of dealing with nondeterminism, partial observability and extended

goals. In PBM, the planning domain is formalized as a nondeterministic

state-transition system, where an action is a transition that may bring the

system from one state to a set of possible successor states. As in other plan-

ning approaches, planning goals may be expressed as constraints about a

desired goal state; additionally, goals may be extended by statements about

properties about the plan itself, e.g. by CTL (Computation Tree Logic) tem-

poral formulas (Emerson, 1990) or using the recently proposed Eagle (Lago

et al., 2002) language.

The underlying idea of the PBM approach is to generate plans by deter-

mining whether the goal formula is true in a model, whereby the model is

usually formalized as a Kripke structure. The plans that are generated by

PBM are “situated plans” (Georgeff and Lansky, 1990), which are plans that

are executed by a reactive agent, which, at each iteration cycle determines

36

the state in which it is situated in, and then applies the action that is fore-

seen for that state by the plan. To illustrate this more formally, consider a

planning domain Σ = (S,A, γ), where S is a finite set of states, A is a finite

set of actions and γ : S × A → 2s is the nondeterministic state transition

function. Now, a valid PBM-generated plan π, also called policy for this

planning domain Σ, is a set of pairs (s, a) such that s ∈ S and a ∈ A(s).

It is required that for any state s there is (at most) one action a such that

(s, a) ∈ π.

Due to the nondeterminism allowed in PBM domains, the definition of

a solution differs from the definition of a solution under classical planning

assumptions. Depending on the contingency inherent in a solution, it may

be either weak, strong or strong cyclic: A weak solution is a solution that

may achieve the goal but does not guarantee to do so. A strong solution

is guaranteed to achieve the goal regardless of the nondeterministic nature

of the domain. A strong cyclic solution is one which guarantees to achieve

the goal, if fairness assumptions are granted which state that the loops the

solution foresees will eventually terminate (Giunchiglia and Traverso, 1999).

Analogously, several algorithms have been proposed, capable of either

constructing weak (e.g. (Cimatti et al., 1997)), strong (e.g. (Daniele et al.,

2000)) or strong cyclic (e.g. (Cimatti et al., 1998)) solutions. These algo-

rithms have in common that they always terminate.

Since real-world problems involve models that may contain very large

numbers of states, practical implementations of these algorithm usually re-

sort to Symbolic Model Checking (Burch et al., 1990). In Symbolic Model

Checking the sets of possible states of a Kripke-structure and the transition

relations between states are represented symbolically, usually using vectors

of variables that represent the truth value of propositions in states, allowing

for more concise, less redundant representation of states and for efficient ap-

plication of set-theoretic and logical operations. Planning is performed by

searching through sets of states, rather then individual states, and the plans

37

themselves are represented as formulas. The practical implementation of the

representation and the reasoning techniques of Symbolic Model Checking is

often carried out using Binary Decision Diagrams (BDDs) (Bryant, 1986).

One implementation of the Planning for Model Checking approach is

MIPS (Edelkamp and Helmert, 2000), which is based on BDDs. The main

strength of MIPS is its precompilation phase, which identifies implicit do-

main knowledge, e.g. state invariants, which, when properly encoded can

lead to a reduction of the state description length. Further, MIPS imple-

ments numerous novel techniques to increase the efficiency of BDD traversal

(Edelkamp and Helmert, 2000).

Other PBM implementations for deterministic domains are Proplan (Four-

man, 2000) and BDDPlan (Hölldobler and Störr, 2000); however, these lack

a MIPS-like pre-compilation phase and therefore do not reach the high per-

formance of MIPS in larger domains.

While MIPS, Proplan and BDDPLan are designed for deterministic do-

mains, systems like MBP (Model Based Planner) (Bertoli et al., 2001) and

UMOP (Universal Multi-agent Obdd-based Planner) (Jensen and Veloso,

2000) have been designed to leverage a key advantage of model checking,

which is to deal with nondeterministic environments: MBP can deal with

uncertainty on the initial situation, on the action effects and on the state in

which the actions are executed. It uses its own action description language

NuPDDL, a variant of PDDL 2.1 which can express uncertainty in the initial

state, nondeterministic action effects and non-perfect sensing actions.

Similarly, UMOP uses its own domain description language NADL (Non-

deterministic Agent Domain Language); NADL problem and domain speci-

fications are translated into symbolic Kripke structures, represented by OB-

DDs (Bryant, 1986).

38

5.4 Temporal Planning

The term “temporal planning” does not necessarily refer to a particular plan-

ning technique in the narrow sense, it rather refers to the ability of planners

to deal with temporal aspects of planning domains and problems. Most plan-

ning paradigms have been extended in some way to support some temporal

aspects of planning. Examples of such temporal aspects are:

• Durative actions: In classical planning approaches actions are usually

formalized as having no temporal extension. However, in many do-

mains, the duration of actions play a role. As a consequence the exact

timing of effects and time efficient plans are of interest to the planner.

• Validity intervals of propositions: in classical planning, a proposition

remains unchanged until it is explicitly changed by the agent using

an operator. In the real world, many fluents are dependent on time;

for instance the permission to access a Web service may be valid only

during a defined temporal interval.

• Concurrent actions: classical planning usually assumes that only one

action is executed at once. POP and its partially ordered plans appear

like an exception, but it is not that the temporal concurrency of actions

in such plans is deliberatively sought; it just means that these actions

are independent and that no constraints excluding their concurrency

have been identified. Some problems, however, require that two actions

must be executed at the same time because a sequential operation

would not yield the desired result.

• Specification of temporally extended goals (Bacchus and Kabanza, 1996),

which do not only express classical goals of achieving some final state,

but also express a set of acceptable sequences of states. Temporally

extended goals may also extend temporal deadlines, safety and main-

tenance goals (Weld and Etzioni, 1994; Penberthy and Weld, 1992).

39

The problem of durative actions was already addressed by early planners

such as the partial order planner NONLIN (Tate, 1977) and the hierarchical

SIPE (Wilkins, 1988) planner and is also addressed by more recent planners

like VHPOP(Younes and Simmons, 2003), LPG (Gerevini and Serina, 2002)

and MIPS (Edelkamp and Helmert, 2000).

Temporally extended goals have been addressed by the TLPlan (Bac-

chus and Kabanza, 1995; Bacchus and Ady, 2001) system, which supports

goals specified in an extended version of the Metric Interval Temporal Logic

(MITL) (Alur et al., 1996). TLPlan is based on a forward-chaining plan-

ning engine. Usually, forward-chaining planners (or state-space planners in

general) evaluate the contribution a state makes towards the desired goal by

determining its heuristic value (cf. Sect. 4.1). TPLan takes a different ap-

proach. It treats each state as a database which it checks against an inverse

formulation of the goal formula, and it prunes each state that satisfies such

a formula, because this means that it violates a property of the desired goal.

It should be noted that the notion of a temporally extended goal formula can

be extended to the notion of domain control knowledge, which encodes hints

to the planners by specifying desired or undesired properties of the states it

is supposed to identify.

A successor of TLPlan is TALPlanner (Kvarnstrom and Haslum, 2001),

which is, like TLPlan, based on forward search, but uses the TAL language

instead of MITL to specify the planning goals and domain control knowledge.

TAL is a narrative-based linear metric time logic used for reasoning about

action and change in incompletely specified dynamic environments. A TAL

goal (or control) formula is input to TALplanner which then generates a

solution that entails the goal (or control) formulas.

40

6 Discussion and Outlook

We will now review the most important requirements we previously discussed

and we will contrast them with a selection of state-of-the art planning sys-

tems. The core requirements we identified for our problem scenarios (cf.

Sect. 2) are:

1. The domain complexity should support a significant subset of ADL:

for instance, universally quantified effects are needed to describe web

services that deal with multiple objects (e.g. an operation that removes

all items from a virtual shopping cart). Explicit markup of sensing

actions and nondeterministic service results is desirable as well.

2. Support for complex goals (cf. Sect. 3.3), i.e. “hints” that tell the

planner which actions should precede which other actions. This is

needed for almost all complex problems, for instance in comparison

shopping, where the solution is a sequence of three distinct phases

(getting price quotes, making a decision, carrying out the purchase).

3. As already mentioned, the ability to deal with incomplete information

(cf. Sect. 3.2), for instance to query catalogs in the Web shopping

domain, is a core requirement for most Web service domains. This, in

turn calls for support of sensing actions which help the agent to acquire

the needed data (e.g. a method that returns a list of products an online

retailer sells)

4. Related to the problem of supporting sensing actions is the ability of

planners to dynamically add (or remove) objects to (or from) the do-

main, for instance to add knowledge about product information queried

from a sensing action, or to properly model a file copy function in the

document handling domain.

41

5. Finally, there is a strong need for dealing with the nondeterministic

behavior of services: Web service operations may fail during execution

time or they may yield unexpected or undesired results; for instance, an

airline in the traveling domain may suddenly run out of free seats (pos-

sibly violated the IRP assumption), or an image conversion operation

in the e-mail replication scenario may fail.

42

P
la

n
n
er

D
om

ai
n

co
m

p
le

x
-

it
y

E
x
te

n
d
ed

G
oa

ls
S
en

si
n
g

D
y
n
am

ic
O

b
-

je
ct

s
N

on
d
et

er
m

.
ac

ti
on

s
F
F

(s
ta

te
ba

se
d)

P
D

D
L

2.
1

le
ve

l
1

N
o

N
o

N
o

N
o

F
F
-M

et
ri

c
(s

ta
te

ba
se

d)
P

D
D

L
2.

1
le

ve
l

1,
le

ve
l
2

N
o

N
o

N
o

N
o

H
SP

2.
0

(s
ta

te
ba

se
d)

P
D

D
L
/A

D
L

w
it

h-
ou

t
co

m
pl

ex
pr

e-
co

nd
./

go
al

s

N
o

N
o

N
o

N
o

IP
P

(G
ra

ph
pl

an
ba

se
d)

P
D

D
L
/A

D
L

N
o

N
o

N
o

N
o

SG
P

(G
ra

ph
-

pl
an

ba
se

d)
P

D
D

L
/A

D
L
,w

it
ho

ut
co

m
pl

ex
ne

ga
ti

on
s

in
pr

ec
on

d.
/g

oa
ls

N
o

Su
pp

or
t

se
ns

in
g

ac
ti

on
s

th
at

de
te

rm
in

e
th

e
tr

ut
h

va
lu

e
of

fo
rm

ul
as

N
o

P
ro

du
ce

s
co

n-
ti

ng
en

t
pl

an
s

(?
)

ST
A

N
4

(G
ra

ph
-

pl
an

,
st

at
e

ba
se

d)

T
he

ST
R

IP
S+

E
qu

al
it
y

su
bs

et
of

P
D

D
L

N
o

N
o

N
o

N
o

V
H

P
O

P
(P

O
P

ba
se

d)
P

D
D

L
2.

1
le

ve
l1

an
d

3
N

o
N

o
N

o
N

o

B
L
A

C
K

B
O

X
(S

A
T

,
G

ra
ph

-
pl

an
ba

se
d)

P
D

D
L
/S

T
R

IP
S

w
it

h
re

st
ri

ct
io

ns
N

o
N

o
N

o
N

o

L
G

P
(S

A
T

ba
se

d)
P

D
D

L
2.

1
le

ve
ls

1,
2,

3
N

o
N

o
N

o
N

o

T
ab

le
1:

W
S
C

re
q
u
ir

em
en

ts
v
s.

st
at

e-
of

-t
h
e-

ar
t

n
eo

cl
as

si
ca

l
p
la

n
n
er

s

43

P
la

n
n
er

D
om

ai
n

co
m

p
le

x
-

it
y

E
x
te

n
d
ed

G
oa

ls
S
en

si
n
g

D
y
n
am

ic
O

b
-

je
ct

s
N

on
d
et

er
m

.
ac

ti
on

s
SH

O
P

2
(H

T
N

ba
se

d)
P

D
D

L
/A

D
L

w
it

h
m

et
ri

cs
an

d
ti

m
e

ye
s,

as
H

T
N

M
et

ho
ds

H
T

N
m

et
ho

ds
m

ay
co

nt
ai

n
ex

pl
ic

it
se

ns
in

g
ac

ti
on

s

?
H

T
N

M
et

ho
ds

ca
n

be
de

si
gn

ed
to

de
al

w
it

h
no

nd
et

.
ac

ti
on

s
C

on
G

ol
og

(H
ig

h
le

ve
l
pr

og
.e

xe
c.

)
Si

t.
C

al
c.

ye
s,

as
G

ol
og

pr
og

ra
m

ex
e-

cu
ti

on
s,

in
cl

.
us

er
de

f.
co

n-
st

ra
in

ts

G
ol

og
pr

og
ra

m
m

ay
co

nt
ai

n
se

ns
in

g
ac

-
ti

on
s/

su
bg

oa
ls

?
G

ol
og

pr
og

ra
m

s
ca

n
be

de
si

gn
ed

to
de

al
w

it
h

no
n-

de
t.

ac
ti

on
s

M
IP

S
(P

la
nn

in
g

as
M

od
.C

he
ck

.)
P

D
D

L
/S

T
R

IP
S

+
ne

ga
ti

ve
pr

ec
on

-
di

ti
on

s
an

d
un

iv
.

co
nd

it
io

na
l
eff

ec
ts

su
pp

or
ts

C
T

L
N

o
N

o
N

o

M
B

P
(P

la
nn

in
g

as
M

od
.C

he
ck

.)
P

D
D

L
2.

1+
ex

te
ns

io
ns

te
m

po
ra

lly
ex

-
te

nd
ed

go
al

s
as

su
pp

or
te

d
by

N
uP

D
D

L

Y
es

no
?

Y
es

,
ca

n
cr

ea
te

st
ro

ng
(c

yc
lic

)
or

w
ea

k
pl

an
s

T
L
P

la
n

(T
em

-
po

ra
l)

A
D

L
+

m
et

ri
cs

te
m

po
ra

lly
ex

-
te

nd
ed

go
al

s
as

su
pp

or
te

d
by

M
IT

L

N
o

N
o

N
o

T
A

L
P

la
nn

er
(T

em
po

ra
l)

P
D

D
L

2.
1

(o
r

T
A

L
)

T
A

L
na

rr
at

iv
es

Y
es

?
N

o
(u

nd
er

de
ve

l-
op

m
en

t?
)

T
ab

le
2:

W
S
C

re
q
u
ir

em
en

ts
v
s.

p
la

n
n
er

s
su

p
p
or

ti
n
g

co
n
tr

ol
k
n
ow

le
d
ge

44

In the Tables 1 and 2 we contrast a collection of representative planner

implementations against our collection of core requirements for WSC prob-

lems. The planners listed in Tab. 1 are neoclassical6 planners based on the

techniques we discussed in Sect. 4, and the tools listed in Tab. 2 are im-

plementations of the planning with control knowledge approach discussed in

Sect. 5.

Table 1 shows that most of the neoclassical planners we listed allow for

domain descriptions of the necessary complexity, i.e. a significant subset of

ADL. However, with the exception of SGP, which provides support for incom-

plete initial states and sensing operations, the rest of the WSC requirements

is not supported by any of these planners.

On the other hand, the planners using domain control knowledge offer

a much broader support for our requirements: They support complex do-

mains and they allow complex goals as well. For instance, MBP allows to

define temporally extended goals and Golog represent goals in a program-like

fashion, including branching and iteration. Consequently, nondeterministic

domains can be addressed by providing contingency-handling code (e.g. non-

deterministic iteration which forces the planner to continue a loop unit the

desired effect of some operation is achieved).

Does this mean that the WSC problem is already solved by planners

with control knowledge and that neoclassical planners can not be used for

the task?

We think this is not the case: While it is apparent that domain knowledge

is a key to solving the WSC problem, it is not clear which form of domain

knowledge is best suited and how it should be gathered and encoded. Here,

“soft requirements” like the acceptance of the targeted developer commu-

nities are relevant as well. The idea of transforming pre-existing process

6they are classical in the sense that the planning problems are formulated as desired
properties on the final state, and they are neoclassical in the sense that they use modern
planning algorithms.

45

descriptions (in OWL-S) to domain control information (HTN methods) as

exercised by (Hendler et al., 2003) seems a reasonable approach: it does not

require the developers to adopt a new logic-based language, but allows them

to use wide spread process engineering skills. However, (Hendler et al., 2003)

use a restricted variant of HTN planning, i.e. ordered task decomposition

planning, which does not support declarative goal tasks. This means that

the agent solely depends on the task lists it is given and that is does not

attempt to find “creative” solutions on its own. Similarly, sensing actions

are not called because the agent identifies the need for sensing; instead the

sensing action is explicitly predefined in the task list. While this is a use-

ful and pragmatic approach for many domains, we think it would still be

interesting to look for alternative approaches that allow for more flexibility

on the agent’s part, for instance to deal with situations where no predefined

strategies exist yet.

Furthermore, the domain-independent neoclassical planners of Tab. 1 are

far from being inapplicable to the WSC problem. What is required, how-

ever, is a proper architecture that allows for the decomposition of the plan-

ning problem into a set of subproblems that match the capabilities of the

neoclassical planners.

An example would be an execution monitoring & replanning architecture

(e.g. (Haigh, 1998)), where a controller component transforms the problem

into a sequence of simpler planning problems and uses the feedback from

plan execution to better inform the heuristics of the embedded planner(s).

Since the planning problem is split up into a sequence of planning problems,

the problem of dynamic object creation and destruction disappears (because

the world is re-created at each step) and even the planning for sensing ac-

tions becomes possible for classical planners, as informally described in (Peer,

2004a).

Finally, there is a number of unaddressed issues, which, once solved, may

turn out to be very helpful regardless of the planning approach taken. One

46

central issue is automatic domain analysis ; in this survey we discussed sev-

eral planning implementations which outperformed their direct competition

because of automatically generated domain knowledge gathered during a pre-

processing phase (e.g. STAN, MIPS). Therefore, it appears to be a worth-

while undertaking to identify ways of gathering useful control knowledge

from Web service domains. Similarly, the application of learning techniques

(e.g. based on feedback from earlier runs) may be considered to improve the

agent’s planning heuristics.

Acknowledgements

This work has been supported by the European Commission and by the

Swiss Federal Office for Education and Science within the 6th Framework

Programme project REWERSE number 506779 and by the Swiss National

Science Foundation under contract 200021-104009. The author would like

to thank Juergen Zimmer, Drew McDermott and Maja Vukovic for their

comments and valuable feedback.

47

References

Alur, R., Feder, T., and Henzinger, T. A. (1996). The benefits of relaxing

punctuality. J. ACM, 43(1):116–146.

Bacchus, F. and Ady, M. (2001). IJCAI. In Planning with Resources and

Concurrency: A Forward Chaining Approach, pages 417–424.

Bacchus, F. and Kabanza, F. (1995). Using temporal logic to control search

in a forward chaining planner. In Proceedings of Second International

Workshop on Temporal Repre sentation and Reasoning (TIME), Mel-

bourne Beach, Florida.

Bacchus, F. and Kabanza, F. (1996). Planning for temporally extended goals.

In Proceedings of the Thirteenth National Conference on Artificial In-

telligence (AAAI-96), pages 1215–1222, Portland, Oregon, USA. AAAI

Press / The MIT Press.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and Mecella, M.

(2003). e-service composition by description logics based reasoning. In

Description Logics.

Bertoli, P., Cimatti, A., Dal Lago, U., and Pistore, M. (2003). Extend-

ing PDDL to nondeterminism, limited sensing and iterative conditional

plans. In ICAPS Workshop on PDDL, Informal Proceedings, pages 15–

24.

Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., and Traverso, P. (2001).

Mbp: a model based planner.

Blum, A. and Furst, M. (1995). Fast planning through planning graph anal-

ysis. In Proceedings of the 14th International Joint Conference on Arti-

ficial Intelligence (IJCAI 95), pages 1636–1642.

48

Blum, A. and Furst, M. L. (1997). Fast planning through planning graph

analysis. Artificial Intelligence, (1-2).

Bonet, B. and Geffner, H. (1998). HSP - entry at the AIPS-98 planning

competition, pittsburgh 6/98.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results.

In ECP, pages 360–372.

Bonet, B. and Geffner, H. (2001a). Heuristic search planner 2.0. AI Magazine,

22(3):77–80.

Bonet, B. and Geffner, H. (2001b). Planning as heuristic search. Artificial

Intelligence, 129(1–2):5–33.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manip-

ulation. IEEE Transactions on Computers, C-35(8):677–691.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J.

(1990). Symbolic model checking: 1020 states and beyond. In Procedings

of Symp. Logic in Computer Science, pages 428–439.

Carman, M., Serafini, L., and Traverso, P. (2003). Web Service Composition

as Planning. In Proceedings of ICAPS’03 Workshop on Planning for

Web Services, June, Trento, Italy.

Castilho, M. A., Gasquet, O., and Herzig, A. (1999). Formalizing action

and change in modal logic I: the frame problem. Journal of Logic and

Computation, 9(5):701–735.

Chapman, D. (1987). Planning for conjunctive goals. Artif. Intell., 32(3):333–

377.

49

Cimatti, A., Giunchiglia, F., Giunchiglia, E., and Traverso, P. (1997). Plan-

ning via model checking: A decision procedure for ar. In ECP ’97: Pro-

ceedings of the 4th European Conference on Planning, pages 130–142.

Springer-Verlag.

Cimatti, A., Roveri, M., and Traverso, P. (1998). Automatic OBDD-

based generation of universal plans in non-deterministic domains. In

AAAI/IAAI, pages 875–881.

Daniele, M., Traverso, P., and Vardi, M. Y. (2000). Strong cyclic planning

revisited. In ECP ’99: Proceedings of the 5th European Conference on

Planning, pages 35–48. Springer-Verlag.

Dimopoulos, Y., Nebel, B., and Koehler, J. (1997). Encoding planning prob-

lems in nonmonotonic logic programs. In ECP, pages 169–181.

Do, M. B. and Kambhampati, S. (2001). Planning as constraint satisfac-

tion: solving the planning graph by compiling it into csp. Artif. Intell.,

132(2):151–182.

Edelkamp, S. and Helmert, M. (2000). The implementation of Mips.

Emerson, E. A. (1990). Temporal and modal logic. pages 995–1072.

Erol, K., Hendler, J., and Nau, D. S. (1994a). Semantics for HTN planning.

Technical Report CS-TR-3239.

Erol, K., Hendler, J. A., and Nau, D. S. (1994b). UMCP: A sound and

complete procedure for hierarchical task-network planning. In Artificial

Intelligence Planning Systems, pages 249–254.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., and Williamson,

M. (1992). An approach to planning with incomplete information. In

Nebel, Bernhard; Rich, Charles; Swartout, W., editor, Proceedings of

50

the 3rd International Conference on Principles of Knowledge Represen-

tation and Reasoning, pages 115–125, Cambridge, MA, USA. Morgan

Kaufmann publishers Inc.: San Mateo, CA, USA.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to theorem

proving in problem solving. Artificial Intelligence.

Firby, R. J. (1987). An investigation into reactive planning in complex do-

mains. In AAAI, pages 202–206.

Fourman, M. (2000). Propositional planning.

Fox, M. and Long, D. (1998). The automatic inference of state invariants in

tim. Journal of AI Research, 9:367–421.

Fox, M. and Long, D. (2003). PDDL2.1: An extension to pddl for expressing

temporal planning domains.

Gazen, C. and Knoblock, C. (1997). Combining the expressivity of ucpop

with the efficiency of graphplan. In Proceedings of ECP.

Gelfond, M. and Lifschitz, V. (1993). Representing action and change by

logic programs. Journal of Logic Programming, 17(2/3,4):301–321.

Georgeff, M. P. and Lansky, A. L. (1990). Reactive reasoning and planning.

In Allen, J., Hendler, J., and Tate, A., editors, Readings in Planning,

pages 729–734. Kaufmann, San Mateo, CA.

Gerevini, A., Saetti, A., and Serina, I. (2004). Planning in PDDL2.2 do-

mains with LPG-TD (short paper). In Proceedings of the International

Planning Competition, 14th Int. Conference on Automated Planning and

Scheduling (ICAPS-04), abstract booklet of the competing planners.

Gerevini, A. and Serina, I. (2002). Lpg: A planner based on local search for

planning graphs with action costs. In AIPS, pages 13–22.

51

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso,

M., Weld, D., and Wilkins, D. (1998). PDDL—the planning domain

definition language.

Giacomo, G. D. and Lenzerini, M. (1995). PDL-based framework for reason-

ing about actions. In AI*IA, pages 103–114.

Giacomo, G. D., Lesperance, Y., and Levesque, H. J. (2000). Congolog,

a concurrent programming language based on the situation calculus.

Artificial Intelligence, 121(1-2):109–169.

Giordano, L., Martelli, A., and Schwind, C. (1998). Dealing with concurrent

actions in modal action logics. In European Conference on Artificial

Intelligence, pages 537–541.

Giunchiglia, F. and Traverso, P. (1999). Planning as model checking. In

ECP, pages 1–20.

Golden, K. (1997). Planning and Knowledge Representation for Softbots.

Green, C. C. (1969). Application of theorem proving to problem solving. In

Proc. of the First International Joint Conference on Artificial Intelli-

gence, Washington, DC, pages 219–240.

Gupta, N. and Nau, D. S. (1992). On the complexity of blocks-world plan-

ning. Artificial Intelligence, 56(2-3):223–254.

Haigh, K. Z. (1998). Situation Dependent Learning for Interleaved Planning

and Robot Execution.

Halpern, J. Y. and Vardi, M. Y. (1991). Model checking vs. theorem proving:

A manifesto. In Allen, J., Fikes, R. E., and Sandewall, E., editors,

Proceedings 2nd Int. Conf. on Principles of Knowledge Representation

and Reasoning, KR’91, pages 325–334. Morgan Kaufmann Publishers,

San Mateo, CA.

52

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the deter-

mination of minimum cost paths. 4(2):100–107.

Havelund, K., Lowry, M. R., and Penix, J. (2001). Formal analysis of a space-

craft controller using SPIN. Software Engineering, 27(8):1000–9999.

Helmert, M. (2004). A planning heuristic based on causal graph analysis.

In Zilberstein, S., Koehler, J., and Koenig, S., editors, Proceedings of

the Fourteenth International Conference on Automated Planning and

Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia,

Canada, pages 161–170. AAAI.

Helmert, M. and Richter, S. (2004). Fast Downward - making use of causal

dependencies in the problem representation. In IPC-4, Extended Ab-

stract.

Hendler, J., Wu, D., Sirin, E., Nau, D., and Parsia, B. (2003). Automatic

Web Services Composition Using SHOP2. In Proceedings of The Second

International Semantic Web Conference(ISWC).

Hoffmann, J. (2001). Ff: The fast-forward planning system. The AI Maga-

zine.

Hoffmann, J. (2002). Extending FF to numerical state variables. In Proceed-

ings of the 15th European Conference on Artificial Intelligence (ECAI-

02), pages 571–575, Lyon, France.

Hoffmann, J. (2003). The metric-ff planning system: Translating ”ignoring

delete lists” to numeric state variables. J. Artif. Intell. Res. (JAIR),

20:291–341.

Hoffmann, J. and Nebel, B. (2001). What makes the difference between HSP

and FF? In IJCAI-01 Workshop on Empirical Methods in Artificial

Intelligence.

53

Hölldobler, S. and Störr, H.-P. (2000). Solving the entailment problem in the

fluent calculus using binary decision diagrams. In Workshop on Model-

Theoretic Approaches to Planning at AIPS2000. Beckenridge. Extended

Abstract, see also (?).

Horrocks, I. (1999). FaCT and iFaCT. In Lambrix, P., Borgida, A., Lenz-

erini, M., Möller, R., and Patel-Schneider, P., editors, Proceedings of the

International Workshop on Description Logics (DL’99), pages 133–135.

Huang, Y.-C., Selman, B., and Kautz, H. (1999). Control knowledge in plan-

ning: benefits and tradeoffs. In AAAI ’99/IAAI ’99: Proceedings of the

sixteenth national conference on Artificial intelligence and the eleventh

Innovative applications of artificial intelligence conference innovative ap-

plications of artificial intelligence, pages 511–517. American Association

for Artificial Intelligence.

IBM, Microsoft, and BEA (2002). Business process execution language for

web services, version 1.0.

Jensen, R. and Veloso, M. M. (2000). Obdd-based universal planning for

synchronized agents in non-deterministic domains. Journal of Artificial

Intelligence Research, 13:189–226.

Joslin, D. and Pollack, M. E. (1994). Least-cost flaw repair: A plan re-

finement strategy for partial-order planning. In Proceedings of the 12th

National Conference on Artificial Intelligence AAAI ’94, Seattle, WA,

USA, pages 1004–1009. AAAI Press.

Kambhampati, S. and Yang, X. (1996). On the role of disjunctive represen-

tations and constraint propagation in refinement planning. In Aiello,

L. C., Doyle, J., and Shapiro, S., editors, KR’96: Principles of Knowl-

edge Representation and Reasoning, pages 135–146. Morgan Kaufmann,

San Francisco, California.

54

Kautz, H. and Selman, B. (1992). Planning as satisfiability. In ECAI ’92:

Proceedings of the 10th European conference on Artificial intelligence,

pages 359–363. John Wiley & Sons, Inc.

Kautz, H. and Selman, B. (1996). Pushing the envelope: Planning, propo-

sitional logic, and stochastic search. In Shrobe, H. and Senator, T.,

editors, Proceedings of the Thirteenth National Conference on Artifi-

cial Intelligence and the Eighth Innovative Applications of Artificial In-

telligence Conference, pages 1194–1201, Menlo Park, California. AAAI

Press.

Kautz, H. and Selman, B. (1998a). Blackbox: A new approach to the appli-

cation of theorem proving to problem solving.

Kautz, H. A., McAllester, D., and Selman, B. (1996). Encoding plans in

propositional logic. In Proceedings of the Fifth International Conference

on the Principle of Knowledge Representation and Reasoning (KR’96),

pages 374–384.

Kautz, H. A. and Selman, B. (1998b). The role of domain-specific knowledge

in the planning as satisfiability framework. In Artificial Intelligence

Planning Systems, pages 181–189.

Koehler, J. and Hoffmann, J. (2000). On reasonable and forced goal orderings

and their use in an agenda-driven planning algorithm. volume 12, pages

338–386.

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. (1997). Extend-

ing planning graphs to an ADL subset. In Prof. of the 4th European

conference on planning, pages 273–285.

Korf, P. (1993). Linear-space best-first search. Artificial Intelligence,

62(1):41–78.

55

Kowalski, R. and Sergot, M. (1989). A logic-based calculus of events. pages

23–51.

Kvarnstrom, J. and Haslum, P. (2001). TALPlanner: A temporal logic based

forward chaining planner. Annals of Mathematics and Articial Intelli-

gence.

Lago, U. D., Pistore, M., and Traverso, P. (2002). Planning with a language

for extended goals. In Eighteenth national conference on Artificial intel-

ligence, pages 447–454. American Association for Artificial Intelligence.

Levesque, H., Pirri, F., and Reiter, R. (1998). Foundations for the situation

calculus.

Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and Scherl, R. B. (1997).

GOLOG: A logic programming language for dynamic domains. Journal

of Logic Programming, 31(1-3):59–83.

Lifschitz, V. (1986). On the semantics of STRIPS. In Georgeff, M. P. and

Lansky, A. L., editors, Reasoning about Actions and Plans: Proceedings

of the 1986 Workshop, pages 1–9, Timberline, Oregon. Morgan Kauf-

mann.

Lifschitz, V. (1999). Action languages, answer sets and planning.

Long, D. and Fox, M. (1999). Efficient implementation of the plan graph in

stan. Journal of AI Research, 10:87–115.

McAllester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In

Proceedings of the Ninth National Conference on Artificial Intelligence

(AAAI-91), volume 2, pages 634–639, Anaheim, California, USA. AAAI

Press/MIT Press.

McCarthy, J. (1963). Situations, actions and causal laws, Technical Report,

Stanford University.

56

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the

standpoint of artificial intelligence. Machine Intelligence.

McCarthy, J. and Hayes, P. J. (1987). Some philosophical problems from the

standpoint of artificial intelligence. pages 26–45.

McDermott, D. (1996). A heuristic estimator for means ends analysis in

planning. In Drabble, B., editor, Proceedings of the 3rd International

Conference on Artificial Intelligence Planning Systems (AIPS-96), pages

142–149. AAAI Press.

McDermott, D. (2000). The 1998 AI planning systems competition. AI

Magazine, 21(2):35–55.

McDermott, D. (2002). Estimated-regression planning for interactions with

web services. In Proc. of the AI Planning Systems Conference 2002.

AAAI.

McIlraith, S. and Son, T. (2001). Adapting golog for programming in the

semantic web.

McIlraith, S. and Son, T. (2002). Adapting Golog for composition of semantic

web services. In Proceedings of the Eighth International Conference on

Knowledge Representation and Reasoning (KR2002)Toulouse, France,

April 2002.

Moore, R. C. (1985). A formal theory of knowledge and action. In Hobbs,

J. R. and Moore, R. C., editors, Formal Theories of the Common Sense

World, pages 319–358.

Narayanan, S. and McIlraith, S. A. (2002). Simulation, verification and

automated composition of web services. In WWW ’02: Proceedings of

the eleventh international conference on World Wide Web, pages 77–88.

ACM Press.

57

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and

Yaman, F. (2003). SHOP2: An HTN planning system. Journal of

Artificial Intelligence Research, 20:379–404.

Nau, D. S., Cao, Y., Lotem, A., and Muñoz-Avila, H. (1999). Shop:

Simple hierarchical ordered planner. In IJCAI ’99: Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence, pages

968–975. Morgan Kaufmann Publishers Inc.

Nebel, B., Dimopoulos, Y., and Koehler, J. (1997). Ignoring irrelevant facts

and operators in plan generation. In Proceeding of ECP-97, pages 338–

350.

Newell, A. and Simon, H. A. (1963). GPS, a program that simulates human

thought.

Nguyen, X. and Kambhampati, S. (2001). Reviving partial order planning.

In Nebel, B., editor, Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, pages 459–464. Morgan Kaufmann

Publishers.

Niemelae, I. and Simons, P. (1997). Smodels - an implementation of the

stable model and well-founded semantics for normal logic programs. In

Proceedings of the 4th International Conference on Logic Programming

and Nonmonotonic Reasoning, volume 1265 of Lecture Notes in Artificial

Intelligence, pages 420–.429. Springer Verlag.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Morgan Kaufmann,

Palo Alto, CA.

Pearl, J. (1985). Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley Publishing Company, Reading (Mas-

sachusetts), USA.

58

Pednault, E. (1994). ADL and the state-transition model of action. Journal

of Logic and Computation.

Pednault, E. P. D. (1989). Adl: Exploring the middle ground between strips

and the situation calculus. In Brachman, R. J., Levesque, H. J., and

Reiter, R., editors, KR’89: Proc. of the First International Conference

on Principles of Knowledge Representation and Reasoning, pages 324–

332. Kaufmann, San Mateo, CA.

Peer, J. (2004a). A PDDL based Tool for Automatic Web Service Com-

position. In Proc. of the Second Workshop on Principles and Practice

of Semantic Web Reasoning (PPSWR 2004) at the 20th International

Conference on Logic Programming, St. Malo, France), Lecture Notes in

Computer Science 3208. Springer Verlag.

Peer, J. (2004b). Sesma semantic service markup: Domains and use cases,

http://elektra.mcm.unisg.ch/pbwsc/docs/domains.pdf.

Penberthy, J. S. and Weld, D. S. (1992). Ucpop: A sound, complete, partial

order planner for adl. In Principles of Knowledge Representation and

Reasoning: Proceedings of the Third International Conference KR’92,

pages 103–114.

Peot, M. A. and Smith, D. E. (1993). Threat-removal strategies for partial-

order planning. In Proc. of the Eleventh National Conference on Artifi-

cial Intelligence (AAAI Press, ed.), pages 492–499.

Petri, C. A. (1962). Kommunikation mit automaten, dissertation, bonn.

Pirri, F. and Reiter, R. (1999). Some contributions to the metatheory of the

situation calculus. J. ACM, 46(3):325–361.

Pollack, M. E., Joslin, D., and Paolucci, M. (1997). Flaw selection strategies

for partial-order planning. Journal of Artificial Intelligence Research.

59

Ponnekanti, S. and Fox, A. (2002). SWORD: A developer toolkit for web

service composition. In Proc. of the 11th International World Wide Web

Conference.

Reiter, R. (2001). On knowledge-based programming with sensing in the

situation calculus. ACM Transactions on Computational Logic (TOCL).

Rosenschein, S. J. (1990). Plan synthesis: A logical perspective. In Allen, J.,

Hendler, J., and Tate, A., editors, Readings in Planning, pages 531–536.

Kaufmann, San Mateo, CA.

Russel, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach.

Prentice-Hall Inc.

Russel, S. and Norvig, P. (2002). Artificial Intelligence: A Modern Approach.

Prentice-Hall Inc.

Sacerdoti, E. D. The nonlinear nature of plans. In Proceedings of the Fourth

Joint Conf. on Artificial Intelligence.

Sacerdoti, E. D. (1973). Planning in a hierarchy of abstraction spaces.

In Third International Joint Conference on Artificial Intelligence, Palo

Alto, California.

Schubert, L. K. and Gerevini, A. (1995). Accelerating partial order planners

by improving plan and goal choices. In Proceedings of the 7th IEEE

International Conference on Tools with Artificial Intelligence, pages 442–

450, Herndon, Virginia. IEEE Computer Society Press.

Selman, B., Kautz, H. A., and Cohen, B. (1993). Local search strategies

for satisfiability testing. In Trick, M. and Johnson, D. S., editors, Pro-

ceedings of the Second DIMACS Challange on Cliques, Coloring, and

Satisfiability, Providence RI.

60

Selman, B., Levesque, H. J., and Mitchell, D. (1992). A new method for

solving hard satisfiability problems. In Rosenbloom, P. and Szolovits,

P., editors, Proceedings of the Tenth National Conference on Artificial

Intelligence, pages 440–446, Menlo Park, California. AAAI Press.

Shanahan, M. (2000). An abductive event calculus planner. Journal of Logic

Programming, 44(1-3):207–240.

Sirin, E. and Parsia, B. (2004). Planning for semantic web services (to ap-

pear). In Semantic Web Services Workshop at 3rd International Seman-

tic Web Conference (ISWC2004).

Smith, D., Frank, J., and J’onsson, A. (2000). Bridging the gap between

planning and scheduling.

Smith, D. E. and Weld, D. S. (1998). Conformant graphplan. In Pro-

ceedings of the fifteenth national/tenth conference on Artificial intelli-

gence/Innovative applications of artificial intelligence, pages 889–896.

American Association for Artificial Intelligence.

Srivastava, B. and Koehler, J. (2003). Web Service Composition - Current

Solutions and Open Problems. In Proceedings of ICAPS’03 Workshop

on Planning for Web Services, June, Trento, Italy.

Stefik, M. (1981). Planning with constraints. Artificial. Intelligence.

Subrahmanian, V. S. and Zaniolo, C. (1995). Relating stable models and AI

planning domains. In International Conference on Logic Programming,

pages 233–247.

Tate, A. (1977). Generating project networks. In Proceedings of the Fifth In-

ternational Joint Conference on Artificial Intelligence (IJCAI-77), pages

888–893.

61

Turner, H. (1997). Representing actions in logic programs and default theo-

ries. Journal of Logic Programming, 31(1-3):245–298.

Volker Haarslev, R. M. (2001). Description of the racer system and its appli-

cations. In Proceedubgs International Workshop on Description Logics

(DL-2001), Stanford, USA, 1.-3. August 2001.

Vukovic, M. and Robinson, P. (2004). Adaptive, planning-based, web service

composition for context awareness. In Second International Conference

on Pervasive Computing, Vienna.

W3C (2002). Web Services Description Language (WSDL) Version 1.2.

Weld, D. and Etzioni, O. (1994). The first law of robotics (a call to arms). In

AAAI’94: Proceedings of the twelfth national conference on Artificial in-

telligence (vol. 2), pages 1042–1047. American Association for Artificial

Intelligence.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Extending graphplan

to handle uncertainty and sensing actions. In AAAI/IAAI, pages 897–

904.

Wilkins, D. E. (1988). Practical planning: extending the classical AI planning

paradigm. Morgan Kaufmann Publishers Inc.

Williamson, M. and Hanks, S. (1996). Flaw selection strategies for value-

directed planning. In Proceedings of the Third International Conference

on Artificial Intelligence Planning Systems (AIPS’96), pages 237–244.

Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. (2003). Automating

DAML-S web services composition using SHOP2. In Proceedings of 2nd

International Semantic Web Conference (ISWC2003), Sanibel Island,

Florida.

62

Younes, H. L. S. and Simmons, R. G. (2002). On the role of ground actions

in refinement planning. In Ghallab, M., Hertzberg, J., and Traverso, P.,

editors, Proceedings of the Sixth International Conference on Artificial

Intelligence Planning and Scheduling Systems, pages 54–61. AAAI Press.

Younes, H. L. S. and Simmons, R. G. (2003). VHPOP: Versatile heuristic

partial order planner. Journal of Artificial Intelligence Research.

63

