Hybridization of Components to Improve the Accuracy in Linguistic Fuzzy Modeling

R. Alcalá
Dept. Computer Science,
University of Jaén
E-23071 - Jaén, Spain
alcala@ujaen.es

J. Casillas, O. Cordon, F. Herrera
Dept. Computer Science and Artificial Intelligence,
University of Granada
E-18071 - Granada, Spain
{casillason,ocordonf,herrera}@dorsai.ugr.es

Abstract

This contribution faces an hybridization study of soft computing techniques within the genetic fuzzy system field. It is performed by combining several accuracy improvements to the linguistic fuzzy modeling with basic genetic algorithms and cooperative coevolutionary algorithms. Thus, five learning methods that generate linguistic models with good accuracy degrees preserving the interpretability are proposed.

Keywords: fuzzy modeling, interpretability and accuracy, soft computing, cooperative coevolution.

1 Introduction

Fuzzy rule-based systems (FRBSs) constitute an extension of classical rule-based systems, because they deal with IF-THEN rules where antecedents and/or consequents are composed of fuzzy logic statements, instead of classical logic rules. The most usual application of FRBSs is system modeling, which in this field may be considered as an approach used to model a system making use of a descriptive language based on fuzzy logic with fuzzy predicates. Fuzzy modeling (FM) (i.e., system modeling with FRBSs) usually comes with two contradictory requirements to the obtained model:

- interpretability, capability to express the behavior of the real system in an understandable way, and
- accuracy, capability to faithfully represent the real system.

While linguistic FM (LFM) — mainly developed by linguistic (Mamdani-type) FRBSs — is focused on the interpretability, precise FM (PFM) — mainly developed by Takagi-Sugeno-Kang FRBSs — is focused on the accuracy. Since both criteria are of vital importance in system modeling, the balance between them has started to receive attention in the fuzzy community in the last few years [4].

Roughly speaking, the balance is usually attained from two different perspectives: either the LFM is extended to obtain more accurate models or the PFM is improved to obtain more interpretable model. The former approach is usually developed by improving the fuzzy rule set derivation [10], automatically defining the membership functions [12, 13, 14], or extending the model structure [5, 15, 16]. The latter approach is usually developed by reducing the fuzzy rule set [22], reducing the number of fuzzy sets (with the subsequent merging of rules) [10, 20], or exploiting the local description of the rules [1].

This paper is focused on the LFM side approach to find the balance between interpretability and accuracy. Thus, three different mechanisms to improve the accuracy of LFM are jointly considered:

- Improving the fuzzy rule set learning —
It is performed by inducing cooperation among the consequents composing the fuzzy rules of the model.

- **Learning the linguistic term meanings** — It is performed by considering two different ways of learning the shapes of the membership functions with linear and non-linear effects.

- **Extending the fuzzy rule structure** — It is performed by using a more flexible rule structure that includes linguistic hedges.

To perform these tasks, different combinatorial or optimization tools such as evolutionary algorithms (EAs) or neural networks are usually employed. In fact, these two areas together with fuzzy logic constitute the most important partnerships of the soft computing field. Among the different possible hybridizations of these partnerships (neuro-genetic systems, fuzzy neural networks, fuzzy genetic algorithms, neuro-fuzzy systems...), this contribution focuses on analyzing the integration of EAs with the aforementioned LFM accuracy improvement mechanisms to develop genetic fuzzy systems [7].

When this task is fixed, we should keep in mind that, as David Goldberg stated, the integration of single methods into hybrid intelligent systems goes beyond simple combinations. For him, the future of computational intelligence “lies in the careful integration of the best constituent technologies” and subtle integration of the abstraction power of fuzzy systems and the innovating power of genetic systems requires a design sophistication that goes further than putting everything together [9].

This view encourages us to make a deeper study of the hybridization of components to improve the accuracy by properly exploiting the existing interdependencies. To do that, sequential and simultaneous learning processes together with genetic algorithms (GAs) and cooperative co-evolutionary algorithms are considered and analyzed.

The paper is organized as follows: Section 2 explains the three LFM accuracy improvement considered, Section 3 shows different proposals to hybridize the components, Section 4 performs an experimental study over four different modeling applications, and finally, Section 5 points out some conclusions and future work.

2 Accuracy Improvements to Linguistic Fuzzy Modeling

This section describes the different LFM accuracy improvements considered in the paper.

2.1 Improvement C: Rule Base Learning with COR

This improvement arises as an effort to exploit the accuracy ability of linguistic FRBSs by exclusively focusing on the fuzzy rule set design [3, 10]. In this case, the membership functions and the model structure keep invariable, thus resulting in the highest interpretability.

The method COR (cooperative rules) proposed in [3] follows the primary objective of inducing a better cooperation among the linguistic rules. To do that, the rule base design is made using global criteria that consider the action of the different rules jointly. It is attained by means of a strong, smart reduction of the search space. The main advantages of the COR methodology are its capability to include heuristic information, its flexibility to be used with different metaheuristics, and its easy integration within other derivation processes.

Let E be the input-output data set, $e_i = (x_{i1}, \ldots, x_{in}, y_i)$ one of its elements (example), and n be the number of input variables. Let A_s be the set of linguistic terms of the s-th input variable and B the set of linguistic terms of the output variable. The operation mode of COR is as follows:

1. Define a set of fuzzy input subspaces, $\{S_s \mid s \in \{1, \ldots, N_s\}\}$, with the antecedent combinations containing at least a positive example, i.e., $S_s = (A^s_1, \ldots, A^s_{i_s}, \ldots, A^s_n) \in A_1 \times \ldots \times A_n$ such
that $E_i \neq \emptyset$ (with A_i being a label of the i-th input variable, E_i being the set of positive examples of the subspace S_i, and N_S the number of subspaces with positive examples).

In this contribution, we will define the set of positive examples for the subspace S_i as follows:

$$E_i = \{ e_i \in E \mid \forall i \in \{1, \ldots, n\}, \forall A_{ij} \in A_i, \mu_{A_{ij}}(x_{ij}) \geq \mu_{A_{ij}}(x_{ij}) \} ,$$

with A_{ij} being a label of the i-th input variable and μ_{ij} the membership function of the label T.

2. For each subspace S_i, obtain a set of candidate consequents (i.e., linguistic terms of the output variable) B^S to build the corresponding fuzzy rule.

In this contribution, we will define the set of candidate consequents for the subspace S_i as follows:

$$B^S = \{ B_k \in B \mid \exists \mu_k \in E_i \text{ where} \forall B_k \in B, \mu_{B_k}(y_k) \geq \mu_{B_k}(y_k) \} ,$$

with B_k being a label of the output variable.

3. Perform a combinatorial search among these sets looking for the combination of consequents (one for each subspace) with the best global accuracy.

For example, from the subspace $S_i = \{ \text{high, low} \}$ and the candidate consequent set in such a subspace $B^S = \{ \text{small, medium, large} \}$, we will obtain the fuzzy rule:

$$R_i = \text{IF } X_1 \text{ is high and } X_2 \text{ is low THEN } Y \text{ is } B_k ,$$

with $B_k \in B^S$ being the label selected by the combinatorial search to represent the subspace S_i.

2.2 Improvement M: Learning of Membership Function Parameters and Non-Linear Scaling Factors

Basic LFM methods are exclusively focused on determining the set of fuzzy rules composing the RB of the model. In these cases, the membership functions are usually obtained from expert information (if available) or by a normalization process and it remains fixed during the rule base derivation process.

However, the automatic design of the membership functions has shown to be a very suitable mechanism to increase the approximating capability of the linguistic models. Generally speaking, the procedure involves either defining the most appropriate shapes for the membership functions that give meaning to the fuzzy sets associated to the considered linguistic terms or determining the optimum number of linguistic terms used in the variable fuzzy partitions, i.e., the granularity.

In this contribution, we will focus on learning the membership functions by defining their parameters and using non-linear scaling factors to vary their shapes (these shapes will have a high influence in the FRBS performance):

- **Learning/tuning the membership function parameters** — The most common way to derive the membership functions is to change their definition parameters [12, 13]. For example, if the following triangular-shape membership function is considered:

$$\mu(x) = \begin{cases} \frac{x-a}{b-a}, & \text{if } a \leq x < b \\ \frac{x-c}{b-c}, & \text{if } b \leq x \leq c \\ 0, & \text{otherwise} \end{cases} ,$$

changing the basic parameters — a, b, and c — will vary the shape of the fuzzy set associated to the membership function, thus influencing the FRBS performance. The same yields for other shapes of membership functions (trapezoidal, gaussian, sigmoid, etc.).

- **Using non-linear scaling factors** — Another way to define the membership function shapes of the DB is to use more flexible alternative expressions for the membership functions to vary the compatibility degrees to the fuzzy sets [5, 14]. For example, a new membership function can
be obtained raising the membership value to the power of \(\alpha \), i.e.,
\[
\mu'(x) = \mu(x)^\alpha, \quad 0 < \alpha.
\]

By changing the \(\alpha \) value we may define different membership function shapes.

2.3 Improvement L: Fuzzy Rules with Linguistic Hedges

A third possibility to increase the accuracy in LPM is to relax the rule structure by including certain operators that slightly change the meaning of the linguistic labels involved in the system when necessary [5, 11]. As Zadeh highlighted, a way to do so without losing an excessive description is to use linguistic hedges.

A linguistic hedge is an operator that alters the membership functions for the fuzzy sets associated to the linguistic labels, giving a more or less precise definition as a result depending on the case. For example, the linguistic hedges 'very' and 'more-or-less' perform as follows: \(\mu_{\text{very}}(x) = \mu(x)^2 \) and \(\mu_{\text{more-or-less}}(x) = \sqrt{\mu(x)} \). An example of a rule with this structure is the following:

IF \(X_1 \) **is very high and** \(X_2 \) **is low**

THEN \(Y \) **is more-or-less large**.

Actually, the consideration of linguistic modifiers does not define a new meaning to the so-called primary terms — high, low, and large in our example — but they are used as generators whose meaning is defined in the context. Certainly, the fact of using fuzzy rules with linguistic modifiers will have a significant influence in the behavior of the linguistic FRBS because the matching degree of the rule antecedent as well as the output fuzzy set obtained when applied the implication operator in the inference process are changed.

3 Hybridizing Accuracy

Improvements to the Linguistic Fuzzy Modeling

This section proposes different ways of hybridizing the three mentioned LPM accuracy improvements (improvement C (linguistic rule set learning with COR), improvement M (learning of the membership function parameters and non-linear scaling factors), and improvement L (learning of the linguistic hedges used for each linguistic variable in each linguistic rule). To develop these hybridizations, two main mechanisms are considered in this contribution.

On the one hand, we may distinguish between sequential or simultaneous learning. When several components of the FRBS are designed, we may opt to make a sequential learning by dividing it in two or more stages, each of them performing a partial or complete derivation of the linguistic models. Other possibility is to consider a simultaneous learning that directly obtain the whole model. With the simultaneous learning, the strong dependency of the components is properly addressed. However, the derivation process becomes significantly more complex because the search space grows.

On the other hand, we can consider the use of cooperative coevolution. Indeed, from a different point of view, the combinations of the components can be made by a basic GA or using a more sophisticated evolutionary approach such as the coevolutionary algorithms [17]. They involve two or more species (populations) that permanently interact among them by a coupled fitness. Thereby, in spite of each species has its own coding scheme and reproduction operators, when an individual must be evaluated, its goodness will be calculated considering some individuals of the other species.

Within coevolutionary algorithms, we can mainly distinguish between two interaction schemes, depending on if the species compete with the remainder (competitive approach) or cooperate to build the problem solution (cooperative or symbiotic approach). The latter interaction is usually recommendable when the following issues arise [18]: the search space is huge, the problem may be decomposable in subcomponents, different coding schemes are used, and there is strong interdependencies among the subcomponents. Therefore, the cooperative coevolution seems to be very adequate to hybridize the different LPM accuracy improvements.
3.1 Hybridizations

Different combinations are regarded by differentiating between sequential or simultaneous learning and between basic GAs or cooperative coevolution. Among all the possible combinations we will exclusively consider those seeming to be more coherent. Thus, a good approach to perform the sequential learning would be to firstly achieve the fuzzy rule set learning (with macroscopic effects) and then adjust this rule set and the initial membership functions (with microscopic effects). As regards the cooperative coevolution, we will contemplate two criteria to decide how dividing the subcomponents into two groups: on the one hand, we will distinguish between macroscopic (C) and microscopic (ML) effects, and on the other hand, between learning of the rule set (CL) and of the membership functions (M).

Therefore, the following five learning methods are proposed as a representation of the possible hybridizations:

1. **Method C+ML** — Sequential learning with GAs. It is comprised of a first stage for learning the fuzzy rule set (C) and a subsequent tuning of the fuzzy rule set and membership functions (ML) with a GA.

2. **Method C+M-L** — Sequential learning with cooperative coevolution. It is comprised of a first stage for learning the fuzzy rule set (C) and a subsequent tuning with cooperative coevolution, a species for the membership functions (M) and another one for the linguistic hedges of the fuzzy rules (L).

3. **Method CML** — Simultaneous learning with GAs. It involves a process to learn both fuzzy rules and membership functions by including in a unique chromosome the three improvement mechanisms.

4. **Method C-ML** — Simultaneous learning with cooperative coevolution. The fuzzy rules are learnt in a species (C) while the membership functions and linguistic hedges (ML) are learnt in another one.

5. **Method CL-M** — Simultaneous learning with cooperative coevolution. The fuzzy rules and their associated linguistic hedges are learnt in a species (CL) while the membership functions are learnt in another one (M).

3.2 Description of the Evolutionary Algorithms

This section shows some details related with the developed evolutionary methods. All of them have some common aspects that are described in the following.

A generational scheme is followed. Baker's stochastic universal sampling procedure together with an elitist mechanism (that ensures to select the best individual of the previous generation) are used.

The fitness function will be to minimize the well-known mean square error (MSE):

\[
\text{MSE} = \frac{1}{2N} \sum_{i=1}^{N} (F(x^i) - y^i)^2,
\]

with \(N \) being the data set size, \(F(x^i) \) being the output obtained from the designed FRBS when the \(i \)-th example is considered, and \(y^i \) being the known desired output.

The following subsections describe the specific coding scheme and evolutionary operators used in the different learning methods. They are grouped according to the accuracy improvement where they are used. The interaction scheme followed in the cooperative coevolutionary algorithms is also explained.

3.2.1 Subcomponent C

An integer-valued vector of size equal to the number of subspaces with positive examples is employed as coding scheme. Each cell of the vector represents the index of the consequent used to build the rule in the corresponding subspace:

\[\forall s \in \{1, \ldots, N_s\}, \; a[s] = k_s \text{ s.t. } B_{k_s} \in \mathbf{B}^s. \]
The standard two-point crossover operator is used. The mutation operator randomly selects a specific \(s \in \{1, \ldots, N_S\} \) where \(|B^s| \geq 2 \), and changes at random \(d[a] = k^s \) by \(d[a] = k'^s \) such that \(B_k^s \in B^s \) and \(k'^s \neq k^s \).

3.2.2 Subcomponent M

This component is encoded with two strings, one for each of the parameters of the membership functions, and another for their scaling factors.

- The former one is a 3-tuple of real values for each triangular membership function, thus being the membership functions encoded into a real-coded chromosome built by joining the membership functions involved in each variable fuzzy partition. A variation interval over every gene is associated to preserve meaningful fuzzy sets.

- The latter string consists of a real-coded chromosome that encodes the value of the non-linear scaling factor associated to each membership function. Each gene can take any value in the interval \([-1, 1]\) with the following mapping between alleles and actual value:
 - \(0 \) \(\leftrightarrow \) \([0, 1] \)
 - \(1 \) \(\leftrightarrow \) \([-1, 0] \)
 - \(2 \) \(\leftrightarrow \) \([1, 5] \)

with \(c_0 \) being the gene associated to the membership function for the \(j \)-th linguistic term of the \(i \)-th variable.

The max-min-arithmetic crossover [6] is considered. With respect to the mutation operator, it simply involves changing the value of the selected gene by other value obtained at random within the corresponding variation interval.

3.2.3 Subcomponent L

The coding scheme of this subcomponent generates integer-coded strings of length \(m \cdot (n + 1) \) (with \(m \) being the number of rules and \(n \) being the number of input variables). Each gene can take any value in the set \(\{0, 1, 2\} \) with the following correspondence to the linguistic hedge used:

- \(0 \) \(\leftrightarrow \) "very",
- \(1 \) \(\leftrightarrow \) no linguistic hedge,
- \(2 \) \(\leftrightarrow \) "more-or-less",

with \(c_0 \) being the gene associated to the linguistic term used in the \(j \)-th variable of the \(i \)-th rule.

The standard two-point crossover is used. The mutation operator changes the gene to the allele 1 when a gene with alleles 0 or 2 must be mutated, and randomly to 0 or 2 when a gene with allele 1 must be mutated.

3.2.4 Cooperative Interaction Scheme for the Cooperative Coevolutionary Algorithms

Each individual of species 1 or 2 is evaluated with the corresponding fitness function \(f_1 \) or \(f_2 \), which are defined as follows:

\[
\begin{align*}
f_1(i) &= \min_{j \in B_{L_1}} \text{MSB}_{B_{L_1}} \\
n_2(i) &= \min_{i \in B_{L_2}} \text{MSB}_{B_{L_2}}
\end{align*}
\]

with \(i \) and \(j \) being individuals of species 1 and 2 respectively, \(B_{L_1} \) and \(B_{L_2} \) being the set of the fittest individuals in the previous generation of the species 1 and 2 respectively, and \(P_{L_1} \) and \(P_{L_2} \) being individual sets selected at random from the previous generation of the species 1 and 2 respectively.

Whilst the sets \(B_{L_1} \) allow the best individuals to influence in the process guiding the search towards good solutions, the sets \(P_{L_1} \) introduce diversity in the search. The combined use of both kinds of sets makes the algorithm have a trade-off between exploitation (\(R_{L_1} \)) and exploration (\(P_{L_2} \)). The cardinalities of the sets \(R_{L_2} \) and \(P_{L_2} \) are previously defined by the designer.

4 Experimental Study

The experimental study will be devoted to analyze the behavior of the different proposed hybridizations. With this aim, we have chosen two laboratory problems (two-dimensional functions \(f_1 \) and \(f_2 \) [8]) and two real-world applications (the rice taste evaluation problem [15] and the maintenance
cost estimating of an electrical network in a
town [8]. Seven linguistic terms for each
variable are used for problems P₁ and P₂, two la-
ables for the rice problem, and five labels for
the electrical problem.

Moreover, we will compare the results of our
methods with three GA-based learning meth-
ods proposed in the literature: the method
proposed by Thrift [21], the method proposed
in [9] to generate linguistic models following
the MÖGUL methodology, and the P-FCS1
method proposed in [7] that generates fuzzy
models with local semantics (approximative
FRBSs). Although the latter method deve-
lops PFM instead LFM since it considers a
more flexible model structure that allows it to
use different membership functions for each
fuzzy rule, it is interesting to include it in
the comparative study to analyze the perfor-
mance of our methods.

Table 1 collects the results obtained by
the eight analyzed methods. In that table, #R
stands for the number of fuzzy rules, and
MSE SEEK and MSE TEST the error obtained over
the training and test data sets, respectively.

From the obtained results, we can observe
the good behavior of the proposed hybridiza-
tions and the high accuracy of the gener-
ated linguistic models. Even the worst re-
results obtained by our methods outperform to
the results obtained by the comparative meth-
ods. Moreover of improving the accuracy,
the interpretability of the generated models
is significantly higher because a lesser num-
ber of rules is used (compared to the MÖGUL
method and the Thrift and P-FCS1 methods
in the electrical problem) and a global seman-
tic is considered (compared to the P-FCS1
method).

Focusing on the five proposed methods, we
may observe that, usually, the simultaneous
learning (methods CML, C+ML, and CL-M)
attains slightly better accuracy degrees than
the sequential learning (methods C+ML and
C+M-L). It is because the strong dependency
existing among the different components is
properly considered. Only in the problem P₂
the behavior is reversed. This fact seems to
be related with the problem nature. Once the
discontinuities existing in this problem are ad-
dressed, the learning of the fuzzy rules with
the best cooperation is as simple that the two-stage sequential approach performs better.
Thus, the second phase deals with a re-
duced search space that allows the method to
obtain good solutions.

As regards the used learning technique (bas-
ic GAs or cooperative coevolution), the ob-
tained results are contradictory. Only in
the problem P₁ the cooperative coevolution
is more appropriate, while in the remaining
cases the basic GAs shows a similar or even
better behavior.

Finally, analyzing the linguistic models gener-
at by our methods we may observe that the
excellent accuracy degrees are obtained with-
out losing an excessive interpretability. For
example, Figure 1 depicts the model obtained
by the CL-M method in the problem P₁. As
may be notice, the semantics and linguistic
hedges used preserve an interesting symmetry
that allow us to easily interpret the behavior
of the model.

5 Concluding Remarks and
Further Work

This paper has broached an analysis that
currently is increasing in importance: the
hybridization of components based on fuzzy
logic with the evolutionary computation. To
do that, three mechanisms to improve the ac-
curacy in LFM have been proposed and five
different combinations have been raised.

From the performed experimental study we
can obtain some interesting conclusions. Gen-
erally, the fact of simultaneously perform the
different improvements increases the accuracy
degree since their strong interdependencies
are properly considered. Furthermore, the use
of more advanced search techniques such as
the cooperative coevolution to treat the hy-
bridization does not show significative results.
Although they seems to be appropriate tools
for such purposes, their design becomes very
complex. Finally, we have verified that if the
hybridization of the accuracy improvements is
Table 1: Results obtained by the analyzed methods in the four considered applications

<table>
<thead>
<tr>
<th></th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$#R$ MESEperc MESEtot</td>
<td>$#R$ MESEperc MESEtot</td>
</tr>
<tr>
<td>Thrift</td>
<td>49</td>
<td>1.069590</td>
</tr>
<tr>
<td>MOGUL</td>
<td>85</td>
<td>0.300626</td>
</tr>
<tr>
<td>P-FCSI</td>
<td>48</td>
<td>1.318336</td>
</tr>
<tr>
<td>C4-ML</td>
<td>49</td>
<td>0.213164</td>
</tr>
<tr>
<td>C4-M-L</td>
<td>49</td>
<td>0.250022</td>
</tr>
<tr>
<td>CML</td>
<td>49</td>
<td>0.244006</td>
</tr>
<tr>
<td>C-M-L</td>
<td>49</td>
<td>0.216077</td>
</tr>
<tr>
<td>CL-M</td>
<td>49</td>
<td>0.179944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$#R$ MESEperc MESEtot</th>
<th>$#R$ MESEperc MESEtot</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>18</td>
<td>0.004949</td>
</tr>
<tr>
<td>MOGUL</td>
<td>6</td>
<td>0.001075</td>
</tr>
<tr>
<td>P-FCSI</td>
<td>51</td>
<td>0.000595</td>
</tr>
<tr>
<td>C4-ML</td>
<td>17</td>
<td>0.000958</td>
</tr>
<tr>
<td>C4-M-L</td>
<td>17</td>
<td>0.000952</td>
</tr>
<tr>
<td>CML</td>
<td>25</td>
<td>0.000479</td>
</tr>
<tr>
<td>C-M-L</td>
<td>25</td>
<td>0.000504</td>
</tr>
<tr>
<td>CL-M</td>
<td>26</td>
<td>0.000561</td>
</tr>
</tbody>
</table>

As further work, we propose to improve the cooperative coevolution by performing a better interaction scheme of the species and considering more than two species for a proper decomposition of the problem. This latter approach involves a geometric growth of the complexity that is difficult to address with the current coevolutionary proposals. Moreover, a deeper hybridization study including other combinations of soft computing partnerships is necessary.

References

Figure 1: Linguistic model generated by the CL-M method in the problem P_1.
(#R=49, $\text{MSE}_{\text{tra/tot}} = 0.1799/44 /0.203371$)

