Visual Information Processing Group
Home Members Publications Projects Events Resources Ph. D.

Sparse Bayesian Methods for Low-Rank Matrix Estimation


D. Babacan, M. Luessi, R. Molina, and A.K. Katsaggelos, “Sparse Bayesian Methods for Low-Rank Matrix Estimation”, IEEE Transaction on Signal Processing, vol. 60, no. 8, 3964-3977, 2012. [BibTeX entry][ (3180 KB.)]


Recovery of low-rank matrices has recently seen significant activity in many areas of science and engineering, motivated by recent theoretical results for exact reconstruction guarantees and interesting practical applications. In this paper, we present novel recovery algorithms for estimating low-rank matrices in matrix completion and robust principal component analysis based on sparse Bayesian learning (SBL) principles. Starting from a matrix factorization formulation and enforcing the low-rank constraint in the estimates as a sparsity constraint, we develop an approach that is very effective in determining the correct rank while providing high recovery performance. We provide connections with existing methods in other similar problems and empirical results and comparisons with current state-of-the-art methods that illustrate the effectiveness of this approach.


Matlab source code.


The programs are granted free of charge for research and education purposes only. Scientific results produced using the software provided shall acknowledge the use of the BAL implementation provided by us. If you plan to use it for non-scientific purposes, don't hesitate to contact us.

Because the programs are licensed free of charge, there is no warranty for the program, to the extent permitted by applicable law. except when otherwise stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. the entire risk as to the quality and performance of the program is with you. should the program prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright holder, or any other party who may modify and/or redistribute the program, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

Visual Image Processing
University of Granada