Variational approach to parameter estimation in blind deconvolution

Rafael Molina

Universidad de Granada
Outline

• Problem formulation
• Bayesian modelling
 • Image, blur and formation models
 • Hyperparameter models
• Bayesian Inference
• Variational methods
• Estimation
 • Image and blur estimation
 • Parameter estimation
 • Unrelated variances of prior distributions
 • Relating variances of prior distributions
• Experimental section
• Appendix: Calculating mean values
1 Problem Formulation

Blind deconvolution refers to a class of problems of the form

\[g(x) = h(x) \ast f(x) + n(x), \quad x = (x_1, x_2) \in I, \quad (1) \]

\(I \subset \mathbb{R}^2 \) is the support of the image

\(f(x) \) unknown original image

\(g(x) \) observed image

\(h(x) \) unknown blur or psf

\(n(x) \) observation noise.

\((\ast) \) denotes the 2-D convolution
GOAL

To estimate the original image and blur simultaneously.
2 Bayesian modelling

2.1 Image, blur and formation models

Prior model for f

$$p(f|\alpha_{\text{im}}) \propto \alpha_{\text{im}}^{N/2} \exp\left\{-\frac{1}{2} \alpha_{\text{im}} \parallel C f \parallel^2\right\}, \quad (2)$$

- C denotes the laplacian operator
- $N = P \times Q$ is the size of the column vector denoting the image, lexicographically ordered by rows
- α_{im}^{-1} is the variance of the Gaussian distribution

N or $N - 1$?
Prior model for h

$$p(h|\alpha_{bl}) \propto \alpha_{bl}^{M/2} \exp\left\{-\frac{1}{2}\alpha_{bl} \| Ch \|^2\right\}, \quad (3)$$

- C denotes the laplacian operator
- $M = U \times V$ is the known size of the support of the blur
- h is the column vector of size N lexicographically ordered by rows denoting the blur (this vector has all its components equal to zero outside its support)
- α_{bl}^{-1} is the variance of the Gaussian distribution.
Degradation model of the observed image g, given f and h: the one defined in equation (1) with unknown blur approximated by a block circulant matrix and Gaussian noise $n(x)$ with zero mean and variance β^{-1}. That is,

$$p(g \mid f, h, \beta) \propto \beta^{N/2} \exp \left[-\frac{1}{2} \beta \| g - Hf \|^{2} \right],$$

(4)

where we have used H to denote the $N \times N$ blurring matrix corresponding to the blurring vector h.
Important: Throughout the paper we will use capital letters to denote convolution matrices corresponding to column vectors, H for h and F for f. Note that according to this convention the degradation equation (4) can also be written

$$p(g \mid f, h, \beta) \propto \beta^{N/2} \exp \left[-\frac{1}{2} \beta \|g - Fh\|^2 \right]. \quad (5)$$
2.2 Hyperparameter models

When α_{im}, α_{bl} and β are unknown, the hierarchical Bayesian paradigm uses two stages

- First stage: Formulation of $p(f|\alpha_{im})$, $p(h|\alpha_{bl})$ and $p(g|f, h, \beta)$, already studied.
- Second stage: formulation of the hyperprior $p(\alpha_{im}, \alpha_{bl}, \beta)$

Outcome: $p(\alpha_{im}, \alpha_{bl}, \beta, f, h, g)$.
3 Bayesian Inference

GOAL
Calculating (or estimating)

\[p(\alpha_{im}, \alpha_{bl}, \beta, f, h | g) \] \hspace{1cm} (6)

to perform inference on the unknown hyperparameters, blur and image.
Remember that in the classical restoration problem (blur known) we had

\[p(\alpha_{im}, \beta, f|g) \]

and first we calculated (no approximation was needed in general but see medical images)

\[
\hat{\alpha}_{im}, \hat{\beta} = \arg \max_{\alpha_{im}, \beta} p(\alpha_{im}, \beta|g)
\]

\[
= \arg \max_{\alpha_{im}, \beta} \int f p(\alpha_{im}, \beta, f|g) df
\]

Then we calculated

\[
\hat{f} = \arg \max_{f} p(f|g, \hat{\alpha}_{im}, \hat{\beta})
\]
For the blind deconvolution problem we cannot easily calculate

\[p(\alpha_{im}, \alpha_{bl}, \beta | g) \]

and

\[p(f, h | g, \alpha_{im}, \alpha_{bl}, \beta). \]

WHY?

And we will have to approximate these distributions.

Note that instead of modes of posterior distributions we could also use mean values.
Let us use

\[\Theta = (\alpha_{\text{im}}, \alpha_{\text{bl}}, \beta, f, h) \quad (7) \]

We want to approximate \(p(\Theta | g) \).
Following the variational approach,

we approximate \(p(\Theta | g) \) by \(q(\Theta) = q(\Omega)q(f)q(h) \quad (8) \)

\(q(f) \) and \(q(h) \) denote distributions on \(f \) and \(h \)
\(q(\Omega) \) is a distribution on

\[\Omega = (\alpha_{\text{im}}, \alpha_{\text{bl}}, \beta) \quad (9) \]

where usually

\[q(\Omega) = q(\alpha_{\text{im}})q(\alpha_{\text{bl}})q(\beta) \quad (10) \]
The criterion we use to find $q(\Theta)$ is to minimize the Kullback-Leibler divergence:

$$
C_{KL}(q(\Theta) \parallel p(\Theta|g)) = \int_\Theta q(\Theta) \log \left(\frac{q(\Theta)}{p(\Theta|g)} \right) d\Theta
= \int_\Theta q(\Theta) \log \left(\frac{q(\Theta)}{p(\Theta, g)} \right) d\Theta + \text{const.}
$$

(11)

We note that

$$
C_{KL}(q(\Theta) \parallel p(\Theta|g)) \geq 0 \quad \forall \ q(\Theta)
$$

$$
C_{KL}(q(\Theta) \parallel p(\Theta|g)) = 0 \quad \text{iff} \ q(\Theta) = p(\Theta|g)
$$
\[C_{KL}(q(\Theta) \parallel p(\Theta|g)) = C_{KL}(q(\Omega)q(f)q(h) \parallel p(\Theta|g)) \]

\[= \int_f q(f) \left(\int_{\Omega,h} q(\Omega)q(h) \log \left(\frac{q(\Omega)q(f)q(h)}{p(\Omega, f, h, g)} \right) \, d\Omega \, dh \right) \, df \]

+ const (12)

\[= \int_h q(h) \left(\int_{\Omega,f} q(\Omega)q(f) \log \left(\frac{q(\Omega)q(f)q(h)}{p(\Omega, f, h, g)} \right) \, d\Omega \, df \right) \, dh \]

+ const (13)

\[= \int_\Omega q(\Omega) \left(\int_{f,h} q(f)q(h) \log \left(\frac{q(\Omega)q(f)q(h)}{p(\Omega, f, h, g)} \right) \, df \, dh \right) \, d\Omega \]

+ const (14)
For \(\omega \in \{ \Omega, f, h \} \), \(\Theta_\omega \) is the subset of \(\Theta \) with \(\omega \) removed.

For example, if \(\omega = f \) then \(\Theta_f = (\Omega, h) \).

From the previous equations we have

\[
C_{KL}(q(\omega)q(\Theta_\omega)) \parallel p(\Theta|g)) \\
= \int_\omega q(\omega) \left(\int_{\Theta_\omega} q(\Theta_\omega) \log \left(\frac{q(\omega)q(\Theta_\omega)}{p(\omega, \Theta_\omega, g)} \right) d\Theta_\omega \right) d\omega + \text{const}
\]

(15)

Given \(q(\Theta_\omega) \), in order to obtain

\[
\hat{q}(\omega) = \arg\min_{q(\omega)} C_{KL}(q(\omega)q(\Theta_\omega)) \parallel p(\Theta|g)) ,
\]

we differentiate equation (15) with respect to \(q(\omega) \)

Given q(\Theta_\omega), in order to obtain

\[
\hat{q}(\omega) = \arg\min_{q(\omega)} C_{KL}(q(\omega)q(\Theta_\omega)) \parallel p(\Theta|g)) ,
\]

we differentiate equation (15) with respect to q(\omega)
\[\frac{\partial C_{KL}(q(\omega)q(\Theta_\omega) \parallel p(\Theta|g))}{\partial q(\omega)} \]

\[= \int_{\Theta_\omega} q(\Theta_\omega) \log \left(\frac{q(\omega)q(\Theta_\omega)}{p(\omega, \Theta_\omega, g)} \right) d\Theta_\omega + \text{constant} \]

\[= \log q(\omega) - \mathbb{E} \left[\log p(\Theta)p(g|\Theta) \right]_{q(\Theta_\omega)} + \text{cst} \]

and so the solution of

\[\hat{q}(\omega) = \arg \min_{q(\omega)} C_{KL}(q(\omega)q(\Theta_\omega) \parallel p(\Theta|g)), \]

is

\[\hat{q}(\omega) = \text{const} \times \exp \left(\mathbb{E} \left[\log p(\Theta)p(g|\Theta) \right]_{q(\Theta_\omega)} \right), \quad (17) \]

where

\[\mathbb{E} \left[\log p(\Theta)p(g|\Theta) \right]_{q(\Theta_\omega)} = \int_{\Theta_\omega} \log [p(\Theta)p(g | \Theta)] q(\Theta_\omega) d\Theta_\omega. \]
The above equations suggest the following iterative procedure to find $q(\Theta)$.

Algorithm 1

Given $q^1(h)$ and $q^1(\Omega)$, current estimates of the distributions $q(h), q(\Omega)$,

For $k = 1, 2, \ldots$ until an stopping criterion is met:

1. **Find**

 $$q^k(f) = \arg\min_{q(f)} C_{KL}(q^k(\Omega)q(f)q^k(h) \parallel p(\Omega, f, h|g)), \quad (18)$$

2. **Find**

 $$q^{k+1}(h) = \arg\min_{q(h)} C_{KL}(q^k(\Omega)q^k(f)q(h) \parallel p(\Omega, f, h|g)), \quad (19)$$

3. **Find**

 $$q^{k+1}(\Omega) = \arg\min_{q(\Omega)} C_{KL}(q(\Omega)q^k(f)q^{k+1}(h) \parallel p(\Omega, f, h|g)) \quad (20)$$
5 Variational approaches of the posterior distribution

5.1 Known hyperparameters

Let us first assume that $\Omega = (\alpha_{im}, \alpha_{bl}, \beta)$, is known and proceed to estimate $q(f)$ and $q(h)$.

Let us denote by Ω the known value of Ω, knowing Ω is equivalent to assume

$$q^k(\Omega) = \begin{cases}
1 & \text{if } \Omega = \Omega \\ 0 & \text{otherwise}
\end{cases},$$ \hspace{1cm} (21)

In what follows we will not underline Ω for simplicity but we will assume that remains unchanged during the estimation process.
5.1.1 Approximation of $p(f, h|g)$ by random distributions on f and h

Let us now assume that

$$q_{BR}^k(h) = \mathcal{N}(h \mid E_{BR}^k(h), \text{cov}_{BR}^k(h))$$

We are using the subscript BR to denote that the distributions on f and h are random (non-degenerate).

From equation (17) $q_{BR}^k(f)$ satisfies:

$$-2 \log q_{BR}^k(f) = \text{const} + \alpha_{im} \| Cf \|^2 + \beta E[\| g - Hf \|^2]q_{BR}^k(h)$$

$$= \text{const} + \alpha_{im} \| Cf \|^2 + \beta \| g - E_{BR}^k(H)f \|^2$$

$$+ \beta f^t [\text{cov}_{BR}^k(h)] f,$$

(22)
So we have

\[q^k_{BR}(f) = \mathcal{N} \left(f \mid E^k_{BR}(f), \text{cov}^k_{BR}(f) \right), \quad (23) \]

In order to calculate the mean and covariance of the normal distribution we note that the mean is the solution of

\[\frac{\partial}{\partial f} 2 \log q^k_{BR}(f) = 0, \quad (24) \]

and the covariance is given by

\[- \frac{\partial^2}{\partial f^2} 2 \log q^k_{BR}(f) = \left[\text{cov}^k_{BR}(f) \right]^{-1}. \quad (25) \]
We obtain

\[
E_{BR}^k(f) = \left(\alpha_{im} C^t C + \beta E_{BR}^k(H)^t E_{BR}^k(H) + \beta \text{cov}_{BR}^k(h) \right)^{-1} \\
\times \beta E_{BR}^k(H)^t g,
\]

(26)

\[
cov_{BR}^k(f) = \left(\alpha_{im} C^t C + \beta E_{BR}^k(H)^t E_{BR}^k(H) + \beta \text{cov}_{BR}^k(h) \right)^{-1} \\
\times \beta \text{cov}_{BR}^k(h),
\]

(27)

When \(q^k(f) \) has been calculated, we obtain

\[
q_{BR}^{k+1}(h) = \mathcal{N}(h \mid E_{BR}^{k+1}(h), \text{cov}_{BR}^{k+1}(h)),
\]

(28)

with

\[
E_{BR}^{k+1}(h) = \left(\alpha_{bl} C^t C + \beta E_{BR}^k(F)^t E_{BR}^k(F) + \beta [\text{cov}_{BR}^k(f)] \right)^{-1} \\
\times \beta E_{BR}^k(F)^t g,
\]

(29)

\[
cov_{BR}^{k+1}(h) = \left(\alpha_{bl} C^t C + \beta E_{BR}^k(F)^t E_{BR}^k(F) + \beta [\text{cov}_{BR}^k(f)] \right)^{-1}.
\]

(30)
5.1.2 Approximation of $p(f, h|g)$ by a degenerate distribution on h and a random distribution on f

Let us now try to find the best combination of distributions $q(f)$, random on f, and $q(h)$ deterministic on h that best approximate $p(f, h | g)$.

Let us assume that h^k is the value of the blurring function where $q^k_{OR}(h)$ is degenerate

$$q^k_{OR}(h) = \begin{cases}
1 & \text{if } h = h^k \\
0 & \text{otherwise}
\end{cases},$$ \hspace{1cm} (31)

we are using the subscript OR to denote that only the distribution on f is non-degenerate.
We then have

\[E^k_{OR}(h) = h^k \quad \text{and} \quad cov^k_{OR}(h) = 0 \]

(32)

We then obtain from equation (17) and using equation (32) in equations (26) and (27) that

\[q^k_{OR}(f) = \mathcal{N}(f \mid E^k_{OR}(f), cov^k_{OR}(f)) \]

(33)

where

\[E^k_{OR}(f) = \left(\alpha_{im}C^tC + \beta E^k_{OR}(H)^t E^k_{OR}(H) \right)^{-1} \times \beta E^k_{OR}(H)^t g, \]

(34)

\[cov^k_{OR}(f) = \left(\alpha_{im}C^tC + \beta E^k_{OR}(H)^t E^k_{OR}(H) \right)^{-1}. \]

(35)
Given now the distribution $q_{OR}^k(f)$, the best estimation of the conditional distribution of the blur is given by

$$
q_{OR}^{k+1}(h) = \mathcal{N}(h \mid E_{OR}^{k+1}(h), cov_{OR}^{k+1}(h)),
$$

with

$$
E_{OR}^{k+1}(h) = \left(\alpha_{bl} C^t C + \beta E_{OR}^k(F)^t E_{OR}^k(F) + \beta [cov_{OR}^k(f)] \right)^{-1} \times \beta E_{OR}^k(F)^t g,
$$

$$
cov_{OR}^{k+1}(h) = \left(\alpha_{bl} C^t C + \beta E_{OR}^k(F)^t E_{OR}^k(F) + \beta [cov_{OR}^k(f)] \right)^{-1}.
$$

Note that q^{k+1}_{OR} is not a degenerate distribution.

The degenerate distribution $q_{OR}^{k+1}(h)$ is given by

$$
q_{OR}^{k+1}(h) = \begin{cases}
1 & \text{if } h = E_{OR}^{k+1}(h) \\
0 & \text{otherwise}
\end{cases}
$$
5.1.3 Approximation of \(p(f, h|g) \) by degenerate distributions on \(f \) and \(h \)

Let us assume that \(q(f) \) and \(q(h) \) are degenerate.

Let \(E_{BD}^k(h) \) be the current blur estimation where we assume that the degenerate distribution \(q_{BD}^k(h) \) is located (we use the subscript \(BD \) to denote that the distributions of \(f \) and \(h \) are both deterministic).

We have

\[
E_{BD}^k(f) = \left(\alpha_{\text{im}} C^t C + \beta E_{BD}^k(H)^t E_{BD}^k(H) \right)^{-1} \times \beta E_{BD}^k(H)^t g, \tag{40}
\]

\[
E_{BD}^{k+1}(h) = \left(\alpha_{\text{bl}} C^t C + \beta E_{BD}^k(F)^t E_{BD}^k(F) \right)^{-1} \times \beta E_{BD}^k(F)^t g, \tag{41}
\]
Note that this iterative procedure is equivalent to solving

\[
E_{BD}^k(f) = \arg \min_{f} \alpha_{\text{im}} \| Cf \|^2 + \beta \| g - E_{BD}^k(H)f \|^2 ,
\]

(42)

and then

\[
E_{BD}^{k+1}(h) = \arg \min_{h} \alpha_{\text{bl}} \| Ch \|^2 + \beta \| g - E_{BD}^k(F')h \|^2 .
\]

(43)
5.2 Parameter estimation

Let us now assume that the hyperparameter vector \(\Omega = (\alpha_{bl}, \alpha_{im}, \beta) \) is unknown.

For \(\omega \in \Omega \) we will use gamma distributions, \(\Gamma(a, b) \), as hyperpriors, that is,

\[
p(\omega) = \frac{b^a}{\Gamma(a)} \omega^{a-1} \exp[-b \omega], \tag{44}\]

\(b > 0 \) is the scale parameter and \(a > 0 \) is the shape parameter.

This distribution has the following properties

\[
E[w] = \frac{a}{b} \quad \text{and} \quad Var[w] = \frac{a}{b^2}. \tag{45}
\]
5.2.1 A priori unrelated variances of the distributions

Let us assume that the hyperparameters have the following independent prior distributions

\[p(\omega) = \Gamma(\omega | a_\omega, b_\omega) \] \hspace{1cm} (46)

\(\omega \in \Omega \)

In order to find \(q^{k+1}(\omega), \omega \in \Omega \) in equation (20) of Algorithm 1 we have to calculate

\[E \left[\log p(g | \Theta)p(\Theta) \right] q^k(f)q^{k+1}(h) \] \hspace{1cm} (47)

see equation (17).
We have

\[
E \left[\log p(g|\Theta)p(\Theta) \right] q^k(f)q^{k+1}(h)
\]

\[
= \text{const} + \sum_{\omega \in \{\alpha_{\text{bl}}, \alpha_{\text{im}}, \beta\}} \left((a_\omega - 1) \log \omega - \omega b_\omega \right)
\]

\[
+ \frac{N}{2} \log \alpha_{\text{im}} + \frac{M}{2} \alpha_{\text{bl}} + \frac{N}{2} \log \beta
\]

\[
- \frac{1}{2} \alpha_{\text{im}} E \left[\| Cf \|^2 \right] q^k(f) - \frac{1}{2} \alpha_{\text{bl}} E \left[\| Ch \|^2 \right] q^{k+1}(h)
\]

\[
- \frac{1}{2} \beta E \left[\| g - Hf \|^2 \right] q^k(f)q^{k+1}(h). \]
From the above equations we have

\[q^{k+1}(\omega) = \Gamma(\omega | a_{\omega}^{k+1}, b_{\omega}^{k+1}) \]

(50)

where \(a_{\omega}^{k+1} \) and \(b_{\omega}^{k+1} \) are

\[a_{\alpha, \text{im}}^{k+1} = a_{\alpha, \text{im}} + \frac{N}{2} \]

(51)

\[b_{\alpha, \text{im}}^{k+1} = b_{\alpha, \text{im}} + \frac{1}{2} E \left[\| Cf \|^{2} \right] q^{k}(f) \]

(52)

\[a_{\alpha, \text{bl}}^{k+1} = a_{\alpha, \text{bl}} + \frac{M}{2} \]

(53)

\[b_{\alpha, \text{bl}}^{k+1} = b_{\alpha, \text{bl}} + \frac{1}{2} E \left[\| Ch \|^{2} \right] q^{k+1}(h) \]

(54)

\[a_{\beta}^{k+1} = a_{\beta} + \frac{N}{2} \]

(55)

\[b_{\beta}^{k+1} = b_{\beta} + \frac{1}{2} E \left[\| g - Hf \|^{2} \right] q^{k}(f)q^{k+1}(h) \]

(56)
The process to re-estimate the image and blur once $q^{k+1}(\omega), \omega \in \Omega$ has been found is the same as the one described in section 5.1 using now as known hyperparameters the mean values of the distributions $q^{k+1}(\omega)$ which are, see equation (45), $a^{k+1}_\omega / b^{k+1}_\omega$.

The only remaining problem is the calculation of $E [\| Cf \|^2] q^k(f)$, $E [\| Ch \|^2] q^{k+1}(h)$, and $E [\| g - H f \|^2] q^k(f) q^{k+1}(h)$ this is done in Appendix A.
5.2.2 Relating variances of the prior distributions

A simple observation of the problem makes us aware of the fact that at least α_{im} and α_{bl} vary in very different ranges.

Let

$$\sum_{g} = \sum_{i} g_{i},$$

we could assume a priori that f/\sum_{g} and h have the same probabilistic properties.
A priori

\[[Cf]_i = \varepsilon_i \quad \text{and} \quad [Ch]_j = \mu_j \quad (58) \]

where all \(\varepsilon_i, i = 1, \ldots, N \) and \(\mu_j, j = 1, \ldots, M \) are independent with variances \(\alpha_{im}^{-1} \) and \(\alpha_{bl}^{-1} \) respectively.

We could write

\[
\frac{1}{(\sum g)^2} \frac{1}{\alpha_{im}} = \frac{1}{\alpha_{bl}} \quad (59)
\]

which is equivalent to

\[
\alpha_{bl} \approx (\sum g)^2 \alpha_{im}. \quad (60)
\]
Following a regularization based approach, You and Kaveh suggest the following relationship between the prior variances of the image and blur

\[\alpha_{bl} \approx (\max_j f_j) \sum_g \alpha_{im} \]

(61)

where we are assuming that \(\sum_g = \sum_f \) and usually \(\max_j f_j = 255 \).

What it is clear from the above discussion is that we can write

\[\alpha_{bl} \approx \gamma \alpha_{im} \]

(62)

where \(\gamma \) is a known a priori value.
We are not writing

\[\alpha_{\text{bl}} = \gamma \alpha_{\text{im}} \]

in this case we would have only two hyperparameters \(\beta \) and \(\alpha_{\text{im}} \) and we could use the previously described methodology to estimate the \(\beta, \alpha_{\text{im}}, \) image and blur.

To take into account the existent relationship between the image and blur prior variances, see equation (62), we define a new set of hyperparameters

\[\Psi = (\beta, \mu, \nu) \] \hspace{1cm} (63)

the precise meaning of these hyperparameters will be made clear shortly.
Then use $\rho \sim \Gamma(a_\rho, b_\rho)$ as hyperpriors for $\rho \in \Psi$ and the following priors for image and blur

\begin{align}
p(f|\mu) &\propto \mu^{N/2} \exp \left[-\frac{\mu}{2} \| Cf \|^2 \right] \quad (64) \\
p(h|\mu, \nu) &\propto (\mu \nu)^{M/2} \exp \left[-\frac{\mu \nu}{2} \| Ch \|^2 \right]. \quad (65)
\end{align}

From the above definitions,

$$\alpha_{\text{im}} = \mu \quad \text{and} \quad \alpha_{\text{bl}} = \mu \nu$$

(66)

ν is used to relate the priors image and blur variances.

Note that the distribution on ν will be used to assess our confidence on the parameter γ in equation (62).
Our blind deconvolution modelling is now

\[
p(\beta, \mu, \nu, f, h, g) = p(\beta)p(\mu)p(\nu)p(f|\mu)p(h|\mu, \nu)p(g|f, h, \beta)
\]

Updating the distributions \(q^{k+1}(\rho), \rho \in \Psi\) in parallel

\[
a^{k+1}_\mu = a_\mu + \frac{N + M}{2}
\]

\[
b^{k+1}_\mu = b_\mu + \frac{1}{2}E[\| Cf \|^2]q^k(f) + \frac{1}{2}E[\nu]q^k(\nu)E[\| Ch \|^2]q^{k+1}(h)
\]

\[
a^{k+1}_\nu = a_\nu + \frac{M}{2}
\]

\[
b^{k+1}_\nu = b_\nu + \frac{1}{2}E[\mu]q^k(\mu)E[\| Ch \|^2]q^{k+1}(h)
\]

\[
a^{k+1}_\beta = a_\beta + \frac{N}{2}
\]

\[
b^{k+1}_\beta = b_\beta + \frac{1}{2}E[\| g - Hf \|^2]q^k(f)q^{k+1}(h)
\]
From the obtained updated posterior distributions of the hyperparameters we have

\[
E[\mu]_{q^{k+1}(\mu)} = \frac{a_\mu + \frac{N+M}{2}}{b_\mu + \frac{1}{2}E[\| Cf \|^2]q^{k}(f) + \frac{1}{2}E[\nu]q^{k}(\nu) E[\| Ch \|^2]q^{k+1}(h)}
\]

\[
E[\nu]_{q^{k+1}(\nu)} = \frac{a_\nu + \frac{M}{2}}{b_\nu + \frac{1}{2}E[\mu]q^{k}(\mu) E[\| Ch \|^2]q^{k+1}(h)}
\]

\[
E[\beta]_{q^{k+1}(\beta)} = \frac{a_\beta + \frac{N}{2}}{b_\beta + \frac{1}{2}E[\| g - Hf \|^2]q^{k}(f)q^{k+1}(h)}
\]
while, using equations (52)-(56) the posterior distributions of the hyperparameters in section 5.2.1 were

\[
E[\alpha_{im}]_{q^{k+1}(\alpha_{im})} = \frac{a_{\alpha_{im}} + \frac{N}{2}}{b_{\alpha_{im}} + \frac{1}{2}E[\| Cf \|^2]q^k(f)}
\]

\[
E[\alpha_{bl}]_{q^{k+1}(\alpha_{bl})} = \frac{a_{\alpha_{bl}} + \frac{M}{2}}{b_{\alpha_{bl}} + \frac{1}{2}E[\| Ch \|^2]q^{k+1}(h)}
\]

\[
E[\beta]_{q^{k+1}(\beta)} = \frac{a_{\beta} + \frac{N}{2}}{b_{\beta} + \frac{1}{2}E[\| g - Hf \|^2]q^k(f)q^{k+1}(h)}
\]
In our experiments we will use non-informative priors for all our hyperparameters $\eta \in \Omega \cup \Psi - \{\nu\}$, that is, $a_\eta \approx 0$ and $b_\eta \approx 0$.

To introduce the relationship between the prior variances in equation (62) we assume that the parameters defining the hyperprior distribution of ν are

$$a_\nu = \gamma S/2 \quad \text{and} \quad b_\nu = S/2$$

(67)

Since $E[\nu] = \gamma$ and $\text{var}[\nu] = 2\gamma/S$, S measures the confidence on the relationship between the image and blur variances.

If S tends to infinity $E[\nu]_{q^k(\nu)} = \gamma \quad \forall k$

which is equivalent to assume $\alpha_{bl} = \gamma \alpha_{im}$

In our experiments we will use $S = N^0, N^1, N^2$ as measure of our prior confidence on the provided estimate of γ.
A Calculating the mean values

In this appendix we calculate the values of $E[\| Cf \|^2]q^k(f)$, $E[\| Ch \|^2]q^{k+1}(h)$, and $E[\| g - Hf \|^2]q^k(f)q^{k+1}(h)$ for the distributions of f and h discussed in section 5.1.

\[
E[\| Cf \|^2]q^k_{BR}(f) = \| CE^k_{BR}(f) \|^2 + \text{trace}(C^t C \text{cov}^k_{BR}(f))
\]

\[
E[\| Ch \|^2]q^{k+1}_{BR}(h) = \| CE^{k+1}_{BR}(h) \|^2 + \text{trace}(C^t C \text{cov}^k_{BR}(h))
\]

\[
E[\| g - Hf \|^2]q^k_{BR}(f)q^{k+1}_{BR}(h) = \| g - E^{k+1}_{BR}(h)E^k_{BR}(f) \|^2 + \text{trace}(\text{cov}^k_{BR}(f) \text{cov}^{k+1}_{BR}(h))
\]

\[+ \text{trace}(E^k_{BR}(F)^t E^k_{BR}(F) \text{cov}^{k+1}_{BR}(h))
\]

\[+ \text{trace}(E^{k+1}_{BR}(H)^t E^{k+1}_{BR}(H) \text{cov}^k_{BR}(f))
\]
\[E \left[\| \mathbf{Cf} \|_2^2 \right] q_{OR}^k(f) = \| CE_{OR}^k(f) \|^2 + \text{trace}(C^t Cov_{OR}^k(f)) \]

\[E \left[\| \mathbf{Ch} \|_2^2 \right] q_{OR}^{k+1}(h) = \| CE_{OR}^{k+1}(h) \|^2 \]

\[E \left[\| \mathbf{g} - \mathbf{Hf} \|_2^2 \right] q_{OR}^k(f) q_{OR}^{k+1}(h) = \| g - E_{OR}^{k+1}(H) E_{OR}^k(f) \|^2 \]

\[+ \text{trace}(E_{OR}^{k+1}(H)^t E_{OR}^{k+1}(H) Cov_{OR}^k(f)) \]

\[E \left[\| \mathbf{Cf} \|_2^2 \right] q_{BD}^k(f) = \| CE_{BD}^k(f) \|^2 \]

\[E \left[\| \mathbf{Ch} \|_2^2 \right] q_{BD}^{k+1}(h) = \| CE_{BD}^{k+1}(h) \|^2 \]

\[E \left[\| \mathbf{g} - \mathbf{Hf} \|_2^2 \right] q_{BD}^k(f) q_{BD}^{k+1}(h) = \| g - E_{BD}^{k+1}(H) E_{BD}^k(f) \|^2 \]