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a b s t r a c t

In this paper we propose a space-variant blur estimation and effective denoising/deconvolution method
for combining a long exposure blurry image with a short exposure noisy one. The blur in the long expo-
sure shot is mainly caused by camera shake or object motion, and the noise in the underexposed image is
introduced by the gain factor applied to the sensor when the ISO is set to an high value. Due to the space
variant degradation, the image pair is divided into overlapping patches for processing. The main idea in
the deconvolution algorithm is to incorporate a combination of prior image models into a spatially-vary-
ing deblurring/denoising framework which is applied to each patch. The method employs a kernel and
parameter estimation method to choose between denoising or deblurring each patch. Experiments on
both synthetic and real images are provided to validate the proposed approach.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The removal of the blur caused by camera shake and object mo-
tion is still a challenging problem, even more when images are ta-
ken in dim environments or when the sensors are too small to
capture enough photons of a scene as common with in mobile
phone cameras. A long exposure time is required in these situa-
tions. However, any motion of the camera during the long expo-
sure causes significant blurring in the the recorded image. Using
a tripod can remove the camera shake but it is not useful when
there are moving objects in the scene; furthermore it is not practi-
cal and cumbersome to use in many cases. Some hardware-based
solutions attempt to reduce the blur in long exposure shots by
increasing the sensor gain (ISO parameter) which leads to noise
amplification, or by opening the aperture at the expense of a
smaller depth of field. Additionally, many digital cameras incorpo-
rate optical image stabilizers which may help to reduce camera
shake.

Unfortunately, none of these solutions are sufficient in dim
environments and especially with dynamic scenes with moving
objects. A possible solution is to apply single image blind deconvo-
lution on the long exposure image. However, this is a challenging
problem with a number of problems to be addressed including
spatially-varying blur, and saturated pixels. Utilizing an accompa-

nying short exposure image for the deconvolution provides
valuable information that significantly improves the restoration.
Although this additional image contains accurate information
about image edges, it is generally contaminated with a high level
of noise and color information might be lost. Since both images
do not have the same output levels, and may not be taken at
exactly the same moment, a misalignment is likely to appear
between the images and hence the image pair must be photomet-
rically and geometrically calibrated.

A number of methods have been developed that use different
exposed image pairs for blind deconvolution [1–3]. In [1], the
long-exposure image and the denoised version of the short-expo-
sure image are utilized to estimate a sharp kernel. However, accu-
rate knowledge of the noise variance in the short exposure image is
necessary to apply the denoising method, since an inaccurate noise
variance could cause over-smoothing and over-suppression of de-
tails. A Bayesian framework to model the unknown image and blur,
as well as the parameters associated to the models, is proposed in
[2,3]. Using this framework, image, blur and parameters are esti-
mated without user intervention. In [3], a procedure to combine
three observation models corresponding to the long exposure
image, the short exposure image and a combination of the long
and short exposure image model is proposed. All these previous
works assume a space-invariant blur, which seldom occurs in
practice. It has been lately shown that even the optical system of
the camera generates significant space-variant blur [4]. The
assumption of invariant blur might lead to significant artifacts in
some regions. Recent works [5–7] attempt to overcome this
limitation by introducing a more sophisticated non-uniform kernel
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modeling. In [5], the authors use a single kernel to develop a para-
metrically non-uniform blur which allows a wider class of blurs to
be modeled, but it is only applicable to static scenes. In [6,7] space-
variant blur modeling and estimation are utilized. The images are
divided into patches and independent blur kernels are estimated
for each patch. The deconvolution process in [6] was improved in
[7] by incorporating a term taking into account the short exposure
image. The restored images obtained in [6,7] can suffer from block-
ing artifacts in adjacent patches due to blur changes, and further-
more, all model parameters have to be selected manually.

Image fusion methods are proposed in [8–10]. The method in
[8] classifies the pixels in both images as blurry or sharp, and
fuses them by a linear combination. In a more recent work [9],
the authors propose an algorithm that can be applied to a set
of images with different exposure times taken by mobile cameras.
The algorithm aims at obtaining a (probably blurred) high
dynamic range (HDR) image and then fusing it with a noisy
image. It uses wavelet decomposition to select, at each scale
and orientation, the information from the HDR image to be
included in the noisy one. In [10], an image fusion algorithm is
described based on the idea of quantifying the importance of
regions and fusing them according to some metrics, such as con-
trast, size, and shape of region.

In this paper, we propose a new method1 to combine a long
exposure blurry image with a short exposure noisy one to obtain a
sharp restoration that is both noiseless and free of blur. The devel-
oped method is suitable for both camera shake and moving objects
blurs. First, we divide the input images in overlapping patches and
estimate the blur kernel in each patch. We then employ a Bayesian
fully-automatic procedure which combines two image priors to esti-
mate the unknown image from the estimated kernels and the ob-
served image pair.

When blur estimate is not sufficiently accurate due to, for in-
stance, object motion or weak textures in the patch, the algorithm
may fail to correctly apply deconvolution on the patch. We devel-
oped a method to detect such cases and correct them by using in-
stead a denoised version of the short exposure patch. Finally, the
estimation of the overlapped patches is combined using a window-
ing function to obtain a restoration without blocking artifacts.
Experimental results demonstrate that the proposed approach pro-
vides both high quality space variant blur and image estimates
even in challenging datasets.

The rest of this paper is organized as follows. In Section 2 we de-
scribe in detail each stage of our algorithm. Synthetic and real
experiments are compared and depicted in Section 3. Finally con-
clusions are drawn in Section 4.

2. Proposed algorithm

Our approach to space-variant deblurring is summarized in the
following algorithm.

Algorithm 1. Main Algorithm

The images are represented in the YCbCr colorspace. The restora-
tion method is applied only on the luminance component and the
restoration is fused with the chrominance component of the
blurred image. In the present paper, we assume that the blurred
image captured under dim conditions is correctly exposed (i.e.,
there is no saturated pixels) and, hence, its color information is
preserved. If that were not the case, we could use the color infor-
mation from the noisy image where reliable. The stages of the algo-
rithm are explained in detail in the following sections.

2.1. Preprocessing

As mentioned before, the image pair with different exposure
conditions must be photometrically and geometrically registered.
For photometric calibration, we apply histogram equalization
[12] on the luminance of the short-exposure image using the
histogram of the long-exposure image. Histogram equalization
technique is suitable for our purpose since it works with accumu-
lative histograms, neglecting the geometry of the scene.

Once both images are photometrically calibrated, we proceed
with the geometric calibration. This is performed by first extracting
Surf features [13] from both images and removing the outliers
using RANSAC [14], and then computing the homography matrix
with the DLT [15] algorithm to finally stitch the images. The quality
of the restoration highly depends on the accuracy of this stage.

Next, we divide the images into overlapping patches, which al-
lows us to model a space-variant kernel, computing a different ker-
nel function per patch. This framework also helps us to improve
the memory allocation and computation speed, since it utilizes
blocks of reduced size. The block size Bx � By in horizontal and ver-
tical directions are computed as

Bz ¼
Nz

ð1� overlapÞpz þ overlap

� �
; z 2 fx; yg;

with Nx and Ny the size of the images in horizontal and vertical
dimensions, 0 6 overlap < 1 is the overlapping factor and px and py

are the number of patches in the horizontal and vertical directions,
respectively. For instance, for an image of size Ny = 800, Nx = 600 pix-
els, with a number of patches py = 8 and px = 6 and a overlap percent-
age of 50% (overlap = 0.5), the block size is By = 177 and Bx = 171.

2.2. Kernel estimation

Once the observations have been calibrated and divided into
patches, we assume a linear and space-invariant degradation model
as in [2], so that the observation process of each patch p of each im-
age can be mathematically expressed in matrix–vector notation as

yp
1 ¼ Hpxp þ n1; ð1Þ

yp
2 ¼ xp þ n2; ð2Þ

where yp
1 and yp

2 are the By � Bx observed long- and short-exposure
image patches, respectively, represented as column vectors of size
(By � Bx) � 1. The unknown original image patch is xp, Hp is the

unknown (By � Bx) � (By � Bx) space-invariant blur convolution
matrix, and n1 and n2 are assumed to be zero mean white Gaussian
noise components.

1 Preliminary results of this work were presented at Internal Symposium on Image
and Signal Processing and Analysis (ISPA), 2011 [11].
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The space-variant kernel is estimated per patch from the ob-
served patches yp

1 and yp
2 where p = (p1, p2) with 1 6 p1 6 py and

1 6 p2 6 px. Thus the matrix Yp
2 represents the image patch yp

2 writ-
ten as a (By � Bx) � (hy � hx) convolution matrix, where the blur
size (hy, hx) is provided by the user and finally, hp represents the
blur kernel in patch p.

Using (1) and (2), the estimate ĥp of a kernel hp is found by
solving

ĥp ¼ arg min
hp

yp
1 � Yp

2hp�� ��2
; ð3Þ

subject to the constraints 0 6 hp
i 6 1;

P
ih

p
i ¼ 1; i ¼ 1; . . . ; ðhx � hyÞ.

This problem can easily be solved using a constrained linear
least-squares solver (we used the lsqlin routine implemented in
MATLAB). The boundary problem in the convolutions is solved by
using the image values in the neighboring patches, when available,
or by replicating the pixel values in the patch boundaries for the
image borders.

Kernel estimation may fail in patches with weak texture or sat-
urated pixels, i.e., when there is not enough available information
for the kernel estimation. The estimates will also be unreliable in
patches with mixed blur, such as patches with moving objects or
with objects at different distances. Several kernel correction algo-
rithms have been proposed to address these problems (see, e.g.,
[6] or [16]). In this paper, instead of correcting the estimating ker-
nels, we take an alternative approach: The proposed deconvolution
algorithm is able to provide information that can be used to deter-
mine if the patch was successfully deconvolved using the esti-
mated kernel. This information helps us to make our method
robust to poor blur estimates (Section 2.4) and, in cases where
the deconvolved patch is not of sufficient quality, we obtain a bet-
ter patch estimate by denoising the noisy short exposure image
patch.

2.3. Deconvolution

Once the kernel for each patch has been estimated, we need to
obtain accurate estimates of the image for each patch. For this
purpose, we adopt the principle of model combination to develop
a Bayesian deconvolution algorithm for the dual exposure
problem.

The key idea consists of modeling the unknown image within a
hierarchical Bayesian formulation using a combination of a sparse
and a non-sparse prior image. Specifically, we use the combination
of a Total Variation (TV) model [17] with a simultaneous autore-
gressive (SAR) prior [18]. The idea of model combination has been
successfully utilized also in other areas, such as image restoration
[19], super-resolution [20] or image decomposition [21].

The goal behind the model combination is to preserve as many
details as possible from both observations by incorporating the
advantages of TV and SAR image models together. The TV image
model has a good edge preservation capability but tends to smooth
out textured areas, whereas the SAR model preserves the textures
better but sharp transitions such as the image edges are oversmoo-
thed. Our goal is to preserve both the texture and the sharp edges
by combining both models. We provide a description of the indi-
vidual prior distributions used to model the unknowns in the
following.

The TV image prior is given by

p1 xpjap
1

� �
/ ap

1

� �B=2 exp �ap
1

XB

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du

j ðxpÞ
� 	2

þ Dv
j ðxpÞ

� 	2
r" #

; ð4Þ

where j ¼ 1; . . . ;B; ap
1 is the model parameter, and the operators

Du
j ðxÞ and Dv

j ðxÞ correspond to horizontal and vertical first order

differences at pixel j, respectively. The non-sparse SAR model is de-
fined as

p2 xpjap
2

� �
/ ap

2

� �B=2 exp �ap
2

2
kCxpk2


 �
; ð5Þ

where C is the Laplacian operator and ap
2 is the model parameter.

Notice that in principle we could have considered a single prior
model, combination of the two above, of the form

p xpjap
1;a

p
2

� �
¼ 1

Z ap
1;a

p
2

� �
� exp �ap

1

XB

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du

j ðxpÞ
� 	2

þ Dv
j ðxpÞ

� 	2
r

�ap
2

2
kCxpk2

" #
:

ð6Þ

However, the estimation of the parameters is very hard for this
image prior model, since the partition function Z ap

1;a
p
2

� �
is un-

known and difficult to approximate.
From (1) and (2), and assuming that the noise np

1 and np
2 follow

independent Gaussian distributions of zero mean and variances
bp

1

� ��1 and bp
2

� ��1, respectively, we write the conditional probabil-
ity distribution of the observations as

p yp
1; y

p
2jxp; bp

1;b
p
2

� �
/ bp

1

� �B=2
bp

2

� �B=2

� exp � bp
1

2
kyp

1 �Hpxpk2 � bp
2

2
kyp

2 � xpk2

 �

;

ð7Þ

where B = By � Bx is the patch size.
The proposed prior combination and observation model depend

on a set of parameters whose values have to be estimated together
with the image. For their modeling we employ improper non infor-
mative priors, pðnÞ / const; n 2 ap

1;a
p
2; b

p
1; b

p
2

� 

, over (0, 1).

Finally, combining the observation model Eq. (7) and the
non informative priors for the parameters with the priors
models in Eqs. (4) and (5) we obtain the joint probability
distributions

p1 X;a1; y
p
1; y

p
2

� �
¼ p xpjap

1

� �
p ap

1

� �
p yp

1; y
p
2jX

� �
p bp

1

� �
p bp

2

� �
; ð8Þ

p2 X;a2; y
p
1; y

p
2

� �
¼ pðxpjap

2Þp ap
2

� �
p yp

1; y
p
2jX

� �
p bp

1

� �
p bp

2

� �
; ð9Þ

where X ¼ xp;bp
1;b

p
2

� 

.

This joint distribution is used to estimate both the unknown im-
age patches xp and all algorithmic parameters. In this work, we em-
ploy a variational approach to obtain an approximation of the
posterior distribution of the image patch and the parameters,
which is described next. Let us denote by H the set of unknowns,
i.e., H ¼ X;ap

1;a
p
2

� 

. The goal is to approximate the posterior distri-

bution p Hjyp
1; y

p
2

� �
by another distribution q(H) which allows a

tractable analysis. Generally, the only assumption made in varia-
tional Bayesian analysis is that the approximating distribution
q(H) is factorizable. In this work, we use the following
factorization:

qðHÞ ¼ qðXÞq ap
1

� �
q ap

2

� �
; ð10Þ

with qðXÞ ¼ qðxpÞq bp
1

� �
q bp

2

� �
. The approximating distribution q (H)

is then found by minimizing the Kullback–Leibler (KL) divergence
between q(H) and p Hjyp

1; y
p
2

� �
, which is given by

q̂ðHÞ ¼ arg min
qðHÞ

X2

k¼1

kk CKL qðXÞq ap
k

� �
kpk X;ap

kjy
p
1; y

p
2

� �� �
; ð11Þ

with kk P 0, k1 + k2 = 1, and the KL divergence [22] given by
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CKL qðXÞq ap
k

� �
kpk X;ap

k jy
p
1; y

p
2

� �� �
¼
Z

qðHÞ log
qðXÞq ap

k

� �
pk X;ap

k; y
p
1; y

p
2

� �
 !

dHþ const; for k ¼ 1;2:

ð12Þ

The estimation of k1 and k2 will not be addressed in this paper
but we will show experimentally that a non-degenerate combina-
tion of divergences (e.g., 0 < k1 < 1) provides better results than
either k1 = 0 or k1 = 1.

The expression in (11) can be rewritten as

q̂ðHÞ ¼ arg min
qðHÞ

Z
qðHÞ

� log
qðXÞ

p yp
1; y

p
2jX

� �
p bp

1

� �
p bp

2

� �Y2

k¼1

q ap
k

� �
pk xpjap

k

� �
p ap

k

� �
" #kk

0
@

1
AdH:

ð13Þ

Unfortunately, the variational Bayesian analysis cannot be di-
rectly utilized with the image prior used in this work, since the
TV prior leads to an integral in (13) which cannot be calculated.
The problems caused by the TV prior can be avoided by utilizing
a majorization–minimization (MM) approach, whose details are gi-
ven in [17]. This method finds a bound for the distribution in Eq.
(4) and makes the analytical derivation of the Bayesian inference
tractable. Here we also employ this approach for inference, and
provide an outline in the following.

Let us consider the functional M ap
1;x

p;wp
� �

, where wp 2 (R+)B is
a B-dimensional vector and components wj, j = 1, . . . ,B,

M ap
1; x

p;wp
� �

¼ ap
1

� �B=2

� exp �ap
1

2

XB

j¼1

Du
j ðxpÞ

� 	2
þ Dv

j ðxpÞ
� 	2

þwjffiffiffiffiffiffi
wj
p

2
64

3
75:
ð14Þ

The auxiliary vector wp needs to be computed simultaneously
with the image and has a direct relation with the gradients of
the latent image patch xp. It can be shown (see [17] for the details)
that the functional M ap

1;x
p;wp

� �
is a lower bound of the image

prior p1 xpjap
1

� �
, that is:

p1 xpjap
1

� �
P M ap

1;x
p;wp

� �
: ð15Þ

Using Eq. (15), a lower bound of the joint probability distribu-
tions in Eq. (9) can be found, that is:

p1 X;ap
1; y

p
1; y

p
2

� �
P M ap

1; x
p;wp

� �
p ap

1

� �
p yp

1; y
p
2jX

� �
p bp

1

� �
p bp

2

� �
¼ F X;ap

1;w
p; yp

1; y
p
2

� �
; ð16Þ

which leads to the following upper bound for the KL divergence in
Eq. (12)

CKL qðXÞq ap
1

� �
kp1 X;ap

1; y
p
1; y

p
2

� �� �
6 min

wp
CKL qðXÞq ap

1

� �
kF X;ap

1;w
p; yp

1; y
p
2

� �� �
: ð17Þ

Before we proceed to calculate the approximation to the poster-
ior distribution, we first observe that to calculate q(ak), k = 1, 2, we
only have to take into account the divergence where that distribu-
tion appears. Thus, we can write

q ap
1

� �
¼ const� expð log F X;ap

1;w
p; yp

1; y
p
2

� �� �
XÞ; ð18Þ

q ap
2

� �
¼ const� expð log p2ðX;a

p
2; y

p
1; y

p
2Þ

� �
XÞ; ð19Þ

where h � iX = Eq(X)[ � ], the expectation with respect to the distribu-
tion q(X).

Furthermore, to calculate the rest of the distributions, q(x),
x 2X, we have to take into account both divergences, obtaining

qðxÞ¼const�exp logp yp
1;y

p
2jX

� �
p bp

1

� �
p bp

2

� �
� M ap

1;x
p;wp

� �
p ap

1

� �� �kD�
p2ðxpjap

2Þp ap
2

� �� �1�k
E

Xx

�
; ð20Þ

where Xx denotes the set of unknown with x removed, and k = k1

and, hence, k2 = 1 � k.
Calculating the above distributions for each unknown results in

an iterative procedure, which converges to the best approximation
of the true posterior distribution pðHjyp

1; y
p
2Þ by distributions of the

form in Eq. (11). In this work, we utilize the means of these distri-
butions as the point estimates of the unknowns. Let us now make
explicit the form of each of these distributions.

The distribution q(xp) is calculated from Eq. (20) as the multi-
variate Gaussian distribution qðxpÞ ¼ N xpjhxpi;Rp

x

� �
where its

mean and covariance matrix are given by

xph i ¼ Rp
x bp

1

� �
ðHpÞtyp

1 þ bp
2

� �
yp

2

� �
; ð21Þ

ðRp
xÞ
�1 ¼ k ap

1

� �
ððDuÞtWpDu þ ðDvÞtWpDvÞ þ ð1� kÞ ap

2

� �
CtC

þ bp
1

� �
ðHpÞtHp þ bp

2

� �
I; ð22Þ

whereDu and Dv are the discrete approximations to the gradient
operator in the horizontal and vertical directions, respectively, Wp

is the B � B diagonal matrix of the form Wp ¼ diag wp
j

� 	�1
2

� �
, for

j = 1, . . . ,B with

wp
j ¼ ðDu

j ðxpÞÞ2 þ Dv
j ðxpÞ

� 	2
� �

; j ¼ 1; . . . ;B: ð23Þ

The matrix Wp can be interpreted as a spatially varying weight-
ing matrix that provides spatial adaptivity to the model controlling
the amount of smoothing at each pixel location depending on the
intensity variation at that pixel. The parameter k controls the con-
tribution from each prior model. The value of k = 0 leads to the
classical SAR restoration model while k = 1 leads to the TV restora-
tion model. A sensible combination of both models allows to re-
cover the textures of the image while preserving sharp edges [19].

The rest of parameter estimates are found as the means of the
distributions from Eqs. (18)–(20) given by

ap
1

� �
¼ B

2
PB

j¼1

ffiffiffiffiffiffi
wp

j

q ; ð24Þ

ap
2

� �
¼ B

hkCxpk2i
; ð25Þ

bp
1

� �
¼ B

kyp
1 �Hpxpk2

D E ; ð26Þ

bp
2

� �
¼ B

kyp
2 � xpk2

D E : ð27Þ

The explicit forms of the expectations above are given by

Du
j ðxpÞ

� 	2
þ Dv

j ðxpÞ
� 	2

� �
¼ Du

j ð xph iÞ
� 	2

þ Dv
j ð xph iÞ

� 	2

þ trace ððDuÞtDu þ ðDvÞtDvÞRp
x

� �
;

ð28Þ

hkCxpk2i ¼ kChxpik2 þ trace CtCRp
x

� �
; ð29Þ

kyp
1 �Hpxpk2

D E
¼ yp

1 �Hp xph i
�� ��2 þ trace HtHRp

x

� �
; ð30Þ

yp
2 � xp

�� ��2
D E

¼ yp
2 � xph i

�� ��2 þ trace Rp
x

� �
: ð31Þ

To simplify the calculations we assume, for the estimation of the
parameters, that the distribution on xp is a degenerate distribution
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and, hence, the expectations in (28)–(31) can be calculated without
taking into account the contribution of the corresponding traces.

To select the best value of k we find estimates of the image
patch xp by varying k from 0 to 1 in steps of 0.1, and select the va-
lue of k, and the restoration xp

k , that minimizes yp
1 �Hpxp

k

�� ��2.
The overall iterative procedure is summarized in Algorithm 1.

Using the initial image estimate xp ¼ yp
1, the algorithm alternates

between the estimation of the parameters using (23)–(27) and
estimating the image patches xp by solving (21) using the conju-
gate gradient method to avoid the explicit computation of Rp

x.

Algorithm 1. Proposed Deconvolution Method.

2.4. Robustness to poor blur estimates

The proposed deconvolution method results in high-quality
estimates if the blur is invariant within each patch. However, as
other deconvolution algorithms, it may fail to accurately estimate
the image if blur estimate is not precise. As mentioned before, this
problem may occur in weak textured patches with not enough
structural information, and in patches where the blur varies across
the patch, such as areas with moving objects or multiple objects at
different distances.

To overcome these problems, we select for each patch either the
deconvolution result provided by Algorithm 1 or a denoised ver-
sion of the noisy patch yp

2. Due to the short exposure time, it is ex-
pected that the image yp

2 will not be affected by motion blur. As a
result, better image estimates can be obtained by denoising yp

2 than
by deconvolving yp

1 in areas with inaccurate kernel estimations.
However, as will be shown in the experiment section, denoising
the whole image does not provide accurate enough results. This
is because many details are lost during denoising in regions with
high spatial activity due to the high amount of noise.

In patches where the blur estimates are poor, the deconvolved
patch will be quite different from the original one and the estima-
tion of bp

2 (the noise precision in the short exposure image) gener-
ally results in an extremely small value. We utilize this information
to decide between deconvolving or denoising the patches. Specifi-
cally, we compute the mean value �bp

2 of the estimates of bp
2 for all

the patches, and apply denoising in all patches where t � bp
2 is smal-

ler than this mean value. In our experiments we found that t = 1.5
is an appropriate value. Denoising is performed by the BM3D
method in [23]. This method requires the estimation of the noise
variance which is obtained as the mean value of bp�1

2 for all the
blocks where deblurring is selected, that is, not taking into account
the patches where t � bp

2 <
�b2.

It should be emphasized, however, that a poor blur estimation
does not necessarily lead to a poor deconvolved patch, since the
deconvolution process takes into account both long and short
exposure patches. Hence, it may compensate for a poor blur

estimate by giving priority to the information from the short
exposure patch. However, patches with a value of bp

2 much smal-
ler than the mean value �b2 are always poorly deconvolved
patches and therefore substituting them by the denoised version
of the patch yp

2 improves the restoration quality.

2.5. Postprocessing

After all image patches are processed, we merge the restored
patches using a normalized windowing function s to avoid block-
ing artifacts as

x ¼
XP

p

spxp; ð32Þ

XP

p

sp
l ¼ 1 6 ðNx � NyÞ; ð33Þ

with P the number of patches. A number of windowing functions
can be used (Gaussian, rectangular and Hann). Empirically, we
found that a Hann window function over each patch provided the
best results, which was also successfully utilized in [24].

3. Experiments

In this section, we analyze the performance of the developed
algorithm on synthetic and real image pairs acquired in dim
environments with different digital cameras. In order to generate
a synthetic dataset, we divide the images into non overlapping
patches and apply a locally invariant blurring function to each
block which leads to a globally variant blur. The objective of this
experiment is, assuming a locally invariant but globally variant
kernel, to evaluate both the kernel estimation and the accuracy
of the deconvolution algorithm. Note that the deconvolution pro-
cedure exploits information from both the blurred and short
exposure images.

A set of blurred images simulating long exposure shots are ob-
tained as follows. The original image, depicted in Fig. 1a, of size
800 � 600, was divided in 4 � 3 non-overlapping patches. We gen-
erated four different blurred images, shown in the top row of Fig. 2,
by convolving each one of the original image patches with the four
different set of kernels, depicted in Fig. 2. Each blur kernel is of size
15 � 15.

In order to simulate a realistic under-exposed image, we follow
the image acquisition pipeline described in [25] and simulate the
under-exposure corruption in the irradiance domain. First, the ori-
ginal image in Fig. 1a was converted into the irradiance domain by
undoing the gamma correction using c = 2.2. Then, we assumed
that the short exposure image had an exposure value (EV) six steps
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lower than the original image and divided each pixel value by 64.
Gaussian noise corresponding to a signal-to-noise-ratio (SNR) of
10 dB was added to simulate the camera noise. The resulting image
was then gamma corrected and a quantization to eight bits was ap-
plied to obtain the under-exposed image. Finally, the images are
photometrically calibrated using histogram equalization with the
histogram of the corresponding blurred image. The obtained noisy
observation, calibrated with the histogram of the blurred image in
Fig. 2c, is depicted in Fig. 1b.

The proposed method was run using threshold = 10�5 to stop the
iterative procedure in Algorithm 1. The estimated kernels are plot-
ted in the last row of Fig. 3. It is clear that the proposed method
accurately recovers the blurring kernels. This was expected since
each block contains a single, space-invariant blur and, hence, none
of the deblurred patches were replaced by their denoised versions
in any of the four synthetic experiments. To obtain the best possi-
ble restoration results, depicted in the first row of Fig. 3, the value k
was adjusted, varying k from 0 to 1 in steps of 0.1, to its optimal

value (in PSNR) for each block. The results when the values of k
are estimated using the proposed algorithm are shown in the sec-
ond row of Fig. 3. Examining both results it is difficult to find any
differences except that the restorations obtained with the optimal
values of k seems to be slightly sharper. The optimal and estimated
values of k for each patch in Fig. 3c are shown in Table 3. As is clear
from the table, both estimated and optimal values are quite close,
which confirms that the proposed estimation method for k is
accurate.

We compared the proposed algorithm with pure denoising
using the method in [23], the Richardson–Lucy (RL) based blind
deconvolution method, implemented by deconvblind routine in
MATLAB, and a state-of-the-art dual exposure blind deconvolution
presented in [2]. All of these deconvolution methods assume a
space-invariant blur. For a fair comparison, we also applied those
algorithms in our space-variant approach by substituting the
deconvolution step in the proposed algorithm by those methods
to restore each patch of the image.

The PSNR and SSIM metrics for the restored images obtained
by the proposed method and the competing algorithms are given
in Table 1. The set of kernels also were numerically evaluated
using PSNR and the results are shown in Table 2. As an important
example, we present the results of applying all methods on the
pair of images in Fig. 2c and 1b. The results show that denoising
the noisy image is not sufficient to obtain good reconstructions
due to the oversmoothing of the small details. We ran deconv-

blind specifying an array of 1’s as initial blur, which then defines
a uniform blur, as suggested by MATLAB. The resulting blurs,
whose numerical results are presented in Table 2, were very poor.
We initialized deconvblind with the PSF estimates obtained by
our method and ran the algorithm for 20 iterations. Results in
Table 2 confirmed that deconvblind was not able to improve
the provided kernel estimates. The restoration results, shown in
Fig. 4b and c for the spatially-variant and spatially-invariant ap-
proaches, respectively, exhibit strong ringing, more noticeable
close to the borders, especially for the spatially-variant approach.
The method proposed in [2] provides poor numerical results when
applied with the space-variant blur, although the visual quality of

Fig. 2. Blurred images simulating long-exposure shots. The set of PSFs used to generate each image is shown below the corresponding image. The values of the PSFs are
mapped to the range [0,255] for visualization purposes.

Fig. 1. (a) Original image, (b) simulated short-exposure image calibrated to the
image in Fig. 2c.
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the images is quite good (see Fig. 4d). This is due to the blur
estimation that needs a high amount of data to provide accurate
results and provides crisp but noisy results when used on small
patches. When this method is used assuming a spatial-invariant
blur (Fig. 4e), the results are better but show some staircase effect

due to the TV image prior and some ringing appears at patch
boundaries due to the spatial-invariant blur assumption. How-
ever, it produces very good results when the blur is spatially
invariant and needs no user intervention since all the parameters
are automatically estimated.

Fig. 3. Restoration results using the proposed algorithm on the synthetic images in Fig. 2. Top: using the optimal values of k. Center: using the estimated values of k. Bottom:
Estimated kernels.

Table 1
Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) figures of merit for the images of the synthetic experiments in Fig. 2.

Set of blurring kernels

a b c d

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Blurred 23.88 0.75 23.79 0.75 20.99 0.51 20.80 0.49
Noisy 22.80 0.85 22.80 0.85 22.71 0.85 22.77 0.85
Denoising [23] 24.41 0.89 24.40 0.89 24.07 0.89 24.25 0.89
deconvblind (space-var.) 22.95 0.87 21.87 0.88 22.07 0.85 22.10 0.89
deconvblind (space-invar.) 22.30 0.78 22.06 0.78 18.76 0.80 18.57 0.83
Method in [2] (space-var.) 17.42 0.74 15.95 0.74 17.76 0.76 19.50 0.82
Method in [2] (space-invar.) 21.65 0.77 21.30 0.77 19.79 0.76 19.63 0.79
Proposed with k = 0 25.46 0.85 25.48 0.87 20.51 0.58 20.19 0.56
Proposed with k = 1 27.77 0.94 28.49 0.94 27.45 0.93 28.31 0.94
Proposed (estimated k) 28.26 0.95 29.15 0.95 28.26 0.95 28.74 0.95
Proposed (optimal k) 28.62 0.95 29.53 0.96 29.08 0.96 30.74 0.97
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The proposed method with k = 0 (i.e., using only the SAR prior
model) produces oversmoothed restorations, as can be observed
in Fig. 4f. When using only the TV prior model (k = 1), the sharp
edges are better preserved, as can be seen from the image estimate
in Fig. 4g. When k is estimated, and also when it is adjusted to its
optimal value for each block, better results are obtained compared
to using a single prior (see, for instance, the texture on the jacket of
G. Washington in Fig. 4h).

Table 4 shows the computing times for the experiment on the
image in Fig. 2c for the compared algorithms on a Core 2 duo
laptop at 2.13 GHz. Note that the current implementation of the

Table 2
Peak Signal to Noise Ratio (PSNR) comparison for the set of kernels estimated in the
synthetic experiments.

Set of blurring kernels

a b c d

deconvblind (standard initialization) 36.01 84.20 84.67 84.00
deconvblind (initialized with our PSF) 57.10 95.09 92.39 91.51
Method in [2] 56.93 89.63 89.10 89.18
Proposed method 57.10 94.99 92.39 91.49

Fig. 4. Restoration results on the synthetic images in Figs. 2c and 1b: (a) denoised image using the method in [23], (b) deconvblind assuming a space-variant blur, (c)
deconvblind assuming a space-invariant blur, (d) method in [2] assuming a space-variant blur, (e) method in [2] assuming a space-invariant blur, (f) proposed method with
k = 0, (g) proposed method with k = 1, (h) proposed method.
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proposed method and the method in [2] are MATLAB non-opti-
mized ones. They could be made faster by utilizing a more elabo-
rated implementation.

Finally, we analyzed the effect of the threshold t on the restora-
tion results. We run the proposed method on the 4 images in Fig. 2
and Fig. 1b considering 7 � 5 blocks and an overlap of 50%. This im-
plies that 4 � 3 blocks will have a single blur, since they coincide
with the non-overlapping patches in the image. The other blocks
will have parts affected by different blurs. In this experiment we
show that, when the deconvolution process does not work appro-
priately for a particular patch (usually due to a poor estimation of
the blur in patches affected by different blurs) taking into account
only the information from the short exposure image provides bet-
ter results. The PSNR values when varying t from 1 to 2 are plotted
in Fig. 5a for the Fig. 2b. Notice that the curve for the other images
had either similar shape or always increased until no block was re-
placed. For all cases, a value of t between 1.3 and 1.5 provided the
best results. We use t = 1.5 to give a slightly higher confidence to
the deblurred blocks. The PSF estimates are shown in Fig. 5b. Using
t = 1.5, the image depicted in Fig. 5d is obtained. Note that the four
blocks replaced by their denoised version, (Fig. 5c), correspond to
blocks affected by different blurs.

In the next set of experiments, we apply the proposed method
to three real image pairs acquired in dim environments with differ-
ent hand-held cameras. The images are depicted in Figs. 6–8a and
b. The observed images have been photometrically and geometri-
cally registered as described in Section 2.1. Note that, in our
algorithm, histogram equalization is performed only on the
luminance band. However, to display Figs. 6b, Fig 7b and Fig. 8b,
the chrominance bands of the short-exposure image were also

photometrically calibrated using the histogram equalization tech-
nique. In all the experiments we used a patch overlap percentage
of 50%, threshold = 10�5 to stop the deconvolution algorithm and
a Hann window for the postprocessing step. We compare the
proposed algorithm with the state-of-the-art dual exposure image
fusion methods presented in [8,7].

The first experiment is conducted on the image pair of size
512 � 512 depicted in Fig. 6a and b, which was originally pub-
lished in [9]. This experiment shows the behavior of the proposed
algorithm on a scene with object motion and a small camera shake.
The exposure time is 1/4 s for the blurred image and 1/15 s with
exposure compensation EV �2 for the dim image, and ISO is 400
in both images. Since the blur is not severe, we used a kernel size
of 15 � 15 pixels and 8 � 8 patches. The estimated kernel for each
patch is depicted in Fig. 9a. Patches that cannot be accurately
deconvolved, represented in white color in Fig. 9b, are replaced
by the corresponding patch of the denoised image by the proposed
algorithm. Note that the algorithm deconvolved correctly some
patches with moving objects, as the children on the right hand side
of the image in Fig. 6a, since it prioritized the information from the
noisy observation. The resulting image, displayed in Fig. 6f, pre-
sents a higher contrast than the denoised image in Fig. 6c with
no background noise, more realistic results than the obtained ones
with the method in [2] (see, the man and the child on the bikes at
the left hand side of the image distorted due to spatially variant
blur) and slightly better details than the image restored with the
method in [8], depicted in Fig. 6e (see, for instance, the tree in
the background).

The second experiment, conducted on the image pair of size
512 � 512 shown in Fig. 7a and b, shows the performance of the
algorithm in situations with a severe motion blur and a high level
of noise in the short-exposure image. The exposure time for the
blurred image is 1.3 s at ISO 100 and 1/100 s at ISO 400 for the
dim image. The number of blocks is set to 6 � 6, with a kernel size
of 47 � 47. The noise in the calibrated short exposure image is so
severe that denoising only helps to recover some details around
the cup where noise is less noticeable (see Fig. 7c). The method in
[2] (Fig. 7d) did not provide a good estimate of the kernel due to
the large smooth areas in the image and the restored image is overs-
moothed The restored image obtained by the method in [8], shown
in Fig. 7e, recovered the image details around the cup and the vase.
However, it oversmoothed both objects and produced some false
contours at the bottom of the vase, and the background is noisier
and dimmer than the image obtained by the proposed method,
which is shown in Fig. 7f. The proposed method accurately decon-
volved the vase and the books behind it, thanks to the estimation

Table 3
Optimal (left) and estimated (right) value of k for each patch of the image in Fig. 2c.

Table 4
Computation time (in seconds) for the experiment on the image in Fig. 2c for the
compared method.

Denoising [23] deconvblind (space-var.) Method in [2] Proposed

6.9 13.5 326 288

Fig. 5. (a) PSNR evolution for different values of t using the estimated values of k. (b) Estimated PSF. (c) Denoised patches with t = 1.5. (d) Restored image with t = 1.5.
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of the blur that is able to recover the small rotation of the camera
during the capture process (see Fig. 9c). It can be seen that the meth-
od preferred the denoised version of the blocks around the vase area
(Fig. 9d) instead of the deconvolved ones. Note that small details
such as the letters in the cup or in the book behind the vase are
now visible, and the reflections in the vase are recovered.

The last experiment is performed on the image pair of size
800 � 600 depicted in Fig. 8a and b. This long exposure image

exhibits two types of blur, one due to global camera shake and
one produced by a reduced depth of field (DOF). The exposure time
in the blurred image is 1/10 s and 1/160 s with exposure compen-
sation EV �4 for the dim image, and ISO is 100 with both images.
We used a kernel size of 31 � 31 pixels and 8 � 6 patches. The
short-exposed image in Fig. 8b contains a strong level of quantiza-
tion noise that is not eliminated by denoising as shown in Fig. 8c.
The restoration by the proposed method (Fig. 8f) is much sharper

Fig. 6. (a) Observed long-exposure image and (b) observed short-exposure image, (c) denoised image using [23], (d) restored image with the method in [2], (e) restored image
with the method in [8] and (f) restored image with the proposed method.
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image than the image obtained by [7] (Fig. 8e) and [2] (Fig. 8d). The
proposed method solves the reduced depth of field problem and
replaces the bright streetlamp in the front by its denoised version.
Notice that it was not possible to obtain a good kernel estimate in
the blocks around the bright streetlamp due to saturation, and our
method correctly decides to use denoising in these areas. Denois-
ing was also chosen in the area with the trees and the wall with

two different blurs due to different depths (see Fig. 9f for the deci-
sion map).

4. Discussion and conclusions

In this paper we proposed a method to restore blurred images
taken in dim environment with the help of a short-exposure sharp

Fig. 7. (a) Observed long-exposure image and (b) observed short-exposure image, (c) denoised image using ([23]), (d) restored image with the method in [2], (e) restored
image with the method in [8] and (f) restored image with the proposed method.
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but noisy image. The developed algorithm can be applied to both
camera shake and object motion blur, since it employs a space var-
iant kernel estimation by utilizing the noisy image. The proposed
method is also suitable in case of reduced depth of field. The meth-
od minimizes blur artifacts and noise propagation in the recovery
process. We have shown that, using a combination of prior models
into the hierarchical Bayesian paradigm, the proposed restoration

method provides better results than the method using only a TV
prior, producing an image with better texture while preserving
sharp edges. In addition, the parameters in the image estimation
step are automatically estimated without the need for user inter-
vention. Future work will include the use of dynamic patch size
and to incorporate the estimation of the parameter k into the
Bayesian formulation.

Fig. 8. (a) Observed long-exposure image and (b) observed short-exposure image, (c) denoised image using [23], (d) restored image with the method in [2], (e) restored image
with the method in [7] and (f) restored image with the proposed method.
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