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ABSTRACT

We propose a new color de-quantizing method for paletted
images based on maximizing the sparseness of the overcom-
plete wavelet analysis of the estimation within the consistency
set defined by the observation. The sparsity is enforced by
minimizing the `0-norm of the coefficients of the wavelet
analysis representation. The resulting method iterates be-
tween hard-thresholding of the linear response of current
estimate and a new proposed consistency projection onto the
Voronoi cells defined by color quantization. Results indicate
that our method outperforms those based on linear diffusion
and minimization of̀ 1-norm.

1. INTRODUCTION

Color quantization reduces the number of colors in a RGB
image by replacing each of them with that color from a given
representative set (palette) which minimizes some distance
measure. We call de-quantizing to the process of estimating
the original image from a quantized version. Usually, the ar-
tifacts derived from quantization are close or even below the
visibility threshold, but they can become evident in a num-
ber of situations. For example, if the local luminance range is
stretched for detail inspection, or as a previous step for blurred
image restoration when the main source of noise is quantiza-
tion. It can be also used previously to feature extraction, like
the gradient of the luminance.

De-quantizing in a transformed domain has been widely
approached, specially in the context of post-processing com-
pressed images (e.g., [2, 3]). Only recently there has been
a growing interest in approaching the problem in the image
domain. Up to our knowledge, current existing techniques
for color de-quantizing are based in constrained diffusion
(e.g., [4, 5]). However, this type of strategies, although
resulting in efficient algorithms, are too simple to provide
satisfactory results. It is known that natural images typically
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produce sparse distributions of their wavelet coefficients, i.e.,
their energy is mostly concentrated in a small proportion of
coefficients [6]. This knowledge has been often incorporated
to the image prior by using Generalized Gaussian distribu-
tions (GGD) with exponentp to characterize the wavelet
response (e.g. [7, 8]). Within GGDs, convex versions (p ≥ 1)
have been traditionally more popular because global mini-
mum can be achieved efficiently. However, local solutions
with non-convex GGD priors (0 ≤ p < 1) have been recently
shown to provide better performance in a wide range of image
processing applications (e.g., [9, 10]).

This paper proposes a new color image de-quantizing
method based on maximizing the sparseness in the overcom-
plete wavelet linear representation of images consistent with
the observation. The sparsity is enforced by using a GGD
prior with p = 0 for the coefficients of the wavelet analysis
representation. The resulting method iterates between hard-
thresholding of the linear response of the current estimate
and a new proposed consistency projection onto the Voronoi
cells defined by color quantization. Through real examples,
results indicate that our proposed method outperforms those
based on linear diffusion strategies and also methods based
on minimization of̀ 1-norm.

2. COLOR DEQUANTIZING BY SPARSE AND
CONSISTENT APPROXIMATION

Let X be an original RGB image of sizeN × 3, where each
column is a lexicographically ordered color channel. We de-
noteXi to the color vector at thei-th pixel ofX. We denote
P to the pallete, which is aC× 3 matrix whereC representa-
tive colors are stored. Given some distance measure,d(a, b),
between two colorsa andb (e.g., Euclidean distance), then
the color space is partitioned intoC non-overlapped Voronoi
regions{VPk

}k=1,··· ,C , each one defined as:

VPk
= {Xi ∈ R3 : d(Xi,Pk) ≤ d(Xi,Pm) ∀ m = 1, . . . , C}

Then, the observed imageY is obtained byY = f(X),
where eachf(Xi) = Pk if Xi ∈ VPk

. Note that each color



Yi corresponds to the centroid of a Voronoi region.

2.1. Consistency with observation

Given an observedY, we can define the consistency set
R(Y,P, d) as all those imagesX where the colors at each
pixel Xi belongs to the Voronoi region (defined by paletteP
and distanced) centered atYi:

R(Y,P, d) = {X : Xi ∈ VYi
∀ i = 1, . . . , N}.

Our observation model is then based on giving uniform proba-
bility to images within the consistency set, and no probability
otherwise. This leads to the following degenerate distribution:

p(Y|X) =
{

K if Y = f(X)
0 otherwise.

whereK is a real positive number.

2.2. Sparsity-based prior model

Let Φt be a full column rankM × N matrix with M > N .
Here,Φt andΦ represent, respectively, the analysis and syn-
thesis operation of an overcomplete Parseval frame (ΦΦt =
I). In this work, we assume that each color channel is inde-
pendent from each other. We notexζ , whereζ ∈ {R,G,B},
to the correspondingN × 1 RGB channel of imageX. Our
image prior is based on expecting that eachΦtxζ = aζ + rζ ,
whereaζ are sparse vectors andrζ Gaussian correction terms.
Then, by concatenating the column vectorsaζ intoM×3 ma-
trix A, we define the following prior distributions:

p(X|A) ∝
∏

ζ∈{R,G,B}

exp(
−1
2σ2

r

‖Φtxζ − aζ‖2
2),

p(A) ∝
∏

ζ∈{R,G,B}

exp(−γ‖aζ‖0).

It is important to note that we can define in a similar way our
signal model in any other orthogonal color space.

2.3. Problem formulation

We want to maximize the posterior probabilityp(X,A|Y).
By Bayes rule, this is equivalent to maximize the joint prob-
ability p(X,A,Y), which we factorize asp(X,A,Y) =
p(Y|X)p(X|A)p(A). Then, by minimizing the negative
logarithm ofp(X,A,Y), we want to solve:

(X̂, Â) = arg min
X,A

{
∑

ζ∈{R,G,B}

(
‖aζ‖0 + λ‖Φtxζ − aζ‖2

2

)
(1)

s.t.Y = f(X)},

whereλ = 1
2σ2

rγ .

3. A BLOCK COORDINATE DESCENT APPROACH

It is easy to see that minimizing the cost function of Eq. (1)
in A for a givenX results in the hard-thresholding ofΦtxζ ,
for eachζ, with thresholdθ = λ−

1
2 (e.g. [9, 10]), which con-

sists of setting to zero all coefficients inΦtx whose ampli-
tude is below the threshold. We noteS(θ)Φtx to this opera-
tion, whereS(θ) is aM × M diagonal matrix whose entries
Sii(θ) = 1 if φt

ix ≥ θ andSii(θ) = 0 otherwise.
On the other hand, it can be proven that minimizing the

cost function of Eq. (1) inX for a givenA results in an or-
thogonal projection onto the consistency set.

But project onto Voronoi cells can be quite complicate,
because we do not know, in general, onto which face of the
polyhedron will fall the projection. We have approximated the
projection by the following procedure. For each pixel outside
its corresponding Voronoi cell, we do a linear search in the
line between it and its corresponding centroid looking for the
nearest point to the pixel which lies in the proper Voronoi cell,
which can be checked by applying the quantization.

Finally, from an initialX̂(0) our method iterates as:

Z(n) = ΦS(θ)ΦtX̂(n),

X̂(n+1) = P⊥
R(Y)(Z

(n)).

whereP⊥
B is the orthogonal projection onto a setB. See sec-

tion 4 for more details about the algorithm.

4. IMPLEMENTATION

Representation used. We have seen a good comparative per-
formance by using the8-scale Dual-Tree Complex Wavelet
Transform (DT-CWT, [1]). The redundancy factor is4. The
real and imaginary part of complex coefficients are sepa-
rated and treated as if they were independent coefficients.
Both analysis and synthesis operations were performed
on an orthogonal color domain obtained through matrix
T = [ 1√

3
1√
3

1√
3
; 1√

2
−1√

2
0; −1√

6
−1√

6
1√
6
].

Algorithmic parameters. One of the critical issues of these
kind of methods is choosing a value for parameterλ. During
the last years, dynamic strategies based on beginning with a
small value (equivalently, a high value of the thresholdθ),
which provides a high degree of sparsity, and increasing it at
each iteration (decreasingθ) have provided excellent results
in a wide variety of applications (e.g.,[7, 8, 10]). In [10], we
justified the use of an exponential decay ofθ for the sparse
approximation case as a deterministic annealing-like strategy
based on minimizing in successively less smoothed versions
of the highly non-convex original cost function.

This is also the strategy used in this work. In the results
below, we begin with and initialθ(0) equal to the maximum
amplitude of the coefficientsΦtyζ , for ζ ∈ {R,G,B}, and at
each iterationn we multiply θ(n) by β = 0.8. The iterations
are stopped when currentθ(n) is below1.



5. RESULTS AND DISCUSSION

Our test images are real gif images quantized with 256 colors.
The images were downloaded from the web1. We compare
here our proposed method vs.`1-norm minimization and con-
strained diffusion strategies. The former can be easily derived
similarly to our`0-norm method, but using̀1-norm in Eq. (1)
instead. This leads to a method consisting of iterated dynamic
soft-thresholding and projection onto consitency set. The al-
gorithmic parameter setting is the same as for our proposed
method. On the other hand, constrained diffusion represents
the most popular approach to color de-quantizing in the lit-
erature. We have implemented a method consisting of con-
volving, at each iteration, the current estimate withvtv/256,
with v = [1 4 6 4 1], and then projecting back to the consis-
tency set. This is a much faster algorithm, and we saw that15
iterations were enough to converge in all the cases.

Figure 1 shows an example where the quantization arti-
facts are strongly visible both in the smooth parts (sky) and
in the textured areas (floor). Note that both`1-norm mini-
mization and our proposed method are able to recover better
the edges, which results in a more appropriate contrast of the
trees with respect to the background and also of the textured
areas. However,̀1-norm minimization is not able to recover
properly the original smoothness of the clouds, whereas con-
strained diffusion gives a too smooth result, loosing some de-
tails, like at the. Then, our method outperforms clearly the
rest in this example.

Figure 2 shows another example, where strong artifact can
be seen in the sky and in the crowd. Again, the result from
constrained diffusion is too smooth and much texture is lost,
whereas the result from̀1-minimization is too sharp and the
quantization artifact are not properly removed. Our method
provides a more appropriate estimate, at the same time pre-
serving well the edges due to the use of hard instead of soft
thresholding but also removing the quantization artifacts even
better than constrained diffusion.

6. CONCLUSIONS

We have proposed a new color de-quantizing method based on
maximizing the compressibility of the response of overcom-
plete wavelets to images inside the consistency set with the
degraded observation. Our observation model assumes uni-
form probability over the images within the consistency set,
and zero probability outside. Our image model reflects the
fact that most coefficients in the wavelet response are close
to zero. Resulting method consists of iterated hard thresh-
olding with a decreasing threshold at each iteration, followed
by a projection onto the consistency set. We have provided
some real examples showing that our method outperforms
both `1-norm minimization and constrained diffusion tech-

1Unfortunately, the original URL seems to be now missing. Fig. 1. From top to bottom: quantized observed image, result
of constrained diffusion, result of`1-minimization, our result.



Fig. 2. From top to bottom: quantized observed image, result
of constrained diffusion, result of`1-minimization, our result.

niques. More precisely, it is able to remove quantization arti-
facts effectively while preserving the sharpness of real edges.
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