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Abstract. A framework for recovering high-resolution video sequences from 
sub-sampled and compressed observations is presented. Compression schemes 
that describe a video sequence through a combination of motion vectors and 
transform coefficients, e.g. the MPEG and ITU family of standards, are the 
focus of this paper. A multichannel Bayesian approach is used to incorporate 
both the motion vectors and transform coefficients in it. Results show a 
discernable improvement in resolution in the whole sequence, as compared to 
standard interpolation methods. 

1 Introduction 

High-frequency information is often discarded during the acquisition and processing 
of an image. This data reduction begins at the image sensor, where the original scene 
is spatially sampled during acquisition, and continues through subsequent sampling, 
filtering or quantization procedures. Recovering the high-frequency information is 
possible though, as multiple low-resolution observations may provide additional 
information about the high-frequency data. This information is introduced through 
sub-pixel displacements in the sampling grid, which allows for the recovery of 
resolution. 

Although work has been devoted to the problem of reconstruction of one high 
resolution image from a sequence of low resolution ones (see for instance [1-5] and 
[6] for a review), not much work has been reported on the problem of increasing the 
resolution of a whole image sequence simultaneously (see however [7-9]). 

In this paper we present a new method to obtain a whole high resolution sequence 
from a set of low resolution observations. The method will use the relationship 
between the high resolution images in the sequences and also the process to obtain the 
low resolution compressed ones from their corresponding high resolution images. 

The rest of this paper is organized as follows: In section 2, we formulate the 
problem within the Bayesian framework, define the acquisition system to be 
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considered and the prior information we are going to use on the high resolution image 
sequence. In section 3, we introduce an iterative algorithm for estimating the high-
resolution sequence. In section 4, we present results from the proposed procedure. 
Conclusions are presented in section 5. 

2 System Model 

When images from a single camera are captured at closely spaced time instances, then 
it is reasonable to assume that the content of the frames is similar. That is, we can say 
that  
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where fl(x,y) and fk(x,y) are the gray level values at spatial location (x,y) in the high-
resolution images at times l and k, respectively,  and  comprise the 
displacement that relates the pixel at time k to the pixel at time l, and n
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l,k(x,y) is an 
additive noise process that accounts for any image locations that are poorly described 
by the displacement model. 

The expression in (1) can be rewritten in a matrix-vector form as 
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where  and f  are formed by lexicographically ordering each image into an one-
dimensional vector, C(d

lf k

l,k) is the two-dimensional matrix that describes the 
displacement across the entire frame, d  is the column vector defined by 
lexicographically ordering the values ( ) and n
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When the images are PMxPN arrays, then fl, fk, dl,k and nl,k are column vectors with 
length PMPN and C(dl,k) has dimension PMPNxPMPN.  

The conversion of a high-resolution frame to its low-resolution and compressed 
observation is expressed as 
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where yk is a vector that contains the compressed low-resolution images with 
dimension MNx1, fk is the high-resolution data, vk,i is the motion vector transmitted by 
the encoder that signals the prediction of frame k from previously compressed frame i, 
C(vk,i) represents the prediction process with a matrix (for images said to be “intra-
coded”, the prediction from all frames is zero), A is an MNxPMPN matrix that sub-
samples the high-resolution image, H is an PMPNxPMPN matrix that filters the high-
resolution image, TDCT and T-1

DCT are the forward and inverse DCT calculations, and 
Q represents the quantization procedure. 

Let F be the vector (  that contains all the high-resolution frames 
and let Y be the vector that contains all the low-resolution frames 
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. We propose to follow a maximum a posteriori (MAP) 
estimation approach in recovering the high resolution information from the low 
resolution compressed observations. Towards this task, we will use the following 
approximation for the conditional distribution of the observed low resolution images 
given the high resolution sequence 
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where 
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This conditional distribution enforces similarity between the compressed low 
resolution image and its high resolution image (through a process of blurring and 
downsampling, represented by H and A respectively). With λ4 we control this 
resemblance. 

In this paper we assume that the high resolution motion vectors dl,k have been 
previously estimated (see [6] for different approaches to perform this task).  

In the literature about motion estimation there are methods based on optical flow 
(see [10] and [11]), block matching [12], and feature matching. Simoncelli in [13] 
uses the optical flow equation but also adds an uncertainty model to solve the 
extended aperture problem and a Gaussian pyramid to deal with big displacements. 
Another interesting method was proposed by Irani and Peleg (see [14]) using an 
object based approach. The motion parameters and the location of the objects (it is 
supposed that there are several moving objects in the image sequence) are computed 
sequentially taking into account only one object at a time by using segmentation. A 
Gaussian pyramid from coarse to finer resolution is also used to avoid problems with 
the displacements. 

In our implementation the motion field has been computed, for all the compressed 
low resolution frames, mapping the previous frame into the current one, and then 
interpolating the resulting low resolution motion field to obtain the high resolution 
motion field. Better motion field estimation procedures, which probably would 
provide better reconstruction results, are currently under study. 

From equation (2) ,assuming smoothness within the high resolution images and 
trying to remove the blocking artifacts in the low resolution uncompressed images, we 
use the following prior model to describe the relationship between the high resolution 
images: 
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In the first term of the above prior distribution we are including the quality in the 
prediction (if the prediction of our frame fi from the previous one is a good prediction, 
this term will be small). The second and third terms represent smoothness constraints, 
where Q1 represents a linear high-pass operation, Q2 represents a linear high-pass 
operation across block boundaries, and λ2 and λ3 control the influence of the two 
norms. By increasing the value of λ2, the density describes a smoother image frame, 
while increasing the value of λ3 results in a frame with smooth block boundaries.  
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After having defined the prior and degradation models, several points are worth 
mentioning. First, note that the degradation process (see equations (4) and (5)) relate 
each low resolution observation to its corresponding high resolution one and so no 
prediction of high resolution images is included in it. Due to this fact, this model is 
different from the one currently used in most high resolution methods (see Segall et 
al. [6] for a review). Note also that the prior model is responsible for relating the high 
resolution images and so a change in a high resolution image will enforce (through 
the prior model) changes in the other high resolution images. Finally, note that, 
although it is also possible to include prior models over the high-resolution motion 
vectors, in this work we assume that they have been estimated previously to the 
reconstruction process, see however [15-16] for the simultaneous estimation of high-
resolution motion and images. Work on prior motion models which are consistent 
over time will be reported elsewhere. 

 

3 Problem Formulation and Proposed Algorithm 

The maximum a posteriori (MAP) estimate provides the necessary framework for 
recovering high-resolution information from a sequence of compressed observations. 
Following the Bayesian paradigm the MAP high resolution sequence reconstruction 
satisfies 

( ) ( ){ }FYFF |maxargˆ
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Applying logarithms to equation (7) we find that the high resolution image sequence 
estimate F  satisfies ˆ
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In order to find the MAP we propose the following iterative procedure. Let F  be an 
initial estimate of the high resolution sequence. Then given the sequence 

 we obtain, for l=1,…,L the high resolution image 1f  at 
step n+1 by using the following equation  
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The relaxation parameter αfl determines convergence as well as the rate of 
convergence of the iteration. It is important to note that for the first and last frames in 
the sequence, f1 and fL respectively, the frames f0 and fL+1 do not exist and so the 
above equation has to be adapted by removing the presence of f0 and fL+1 respectively. 
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4 Experimental Results 

The performance of the algorithm is illustrated by processing frames from the Mobile 
sequence. Each original image is 704x576 pixels and it is decimated by a factor of 
two in each dimension, cropped to a size of 176x144 pixels and compressed with an 
MPEG-4 encoder operating at 1024Kbps. Three frames from the compressed bit-
stream are then sequentially provided to the proposed algorithm, Q1 is a 3x3 discrete 
Laplacian, Q2 is a difference operation across the horizontal and vertical block 
boundaries, and the model parameters were experimentally chosen to be λ1=100, 
λ2=0.01, λ3=0.002, λ4=1, and αfl=0.125. The algorithm is terminated when 

722
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The performance of the algorithm is defined in terms of the improvement in signal-to-
noise ratio, defined by  
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where Y  is the zero-order hold of image Y . A representative algorithm result is 
presented in the Figs. 1-4. The original image is shown in Fig. 1, the compressed 
observation after bi-linear interpolation in Fig. 2, and the image provided by the 
proposed algorithm is depicted in Fig. 3. Fig. 4 zooms a part of the image obtained by 
bi-linear interpolation (Fig. 4a) and our proposed method (Fig. 4b). The sign “Maree” 
unreadable in the image shown in Fig. 4a whereas is almost readable in Fig. 4b. The 
smoothness constraint also performs well, as can be observed in the left area of the 
images. The corresponding ISNR values for Fig. 2 and 3 are 30.4123dB and 
31.1606dB, respectively. These figures, as well as the visual inspection, demonstrate 
the improvement obtained by the proposed algorithm. Figure 5 plots the value of the 
stopping criterium of the algorithm (see equation (10)) as a function of the number of 
iteration k, demonstrating the convergence of the algorithm. 

 

 
Fig. 1. Cropped part of the original image from the sequence before decimation and 
compression. The proposed method´s aim is to estimate all these images at the same time.
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Fig. 2. Decoded observations after bi-linear interpolation. The compression artifacts are easily 
noticeable. 

 
Fig. 3. Image obtained by the proposed method. The comparison should be established between 
this figure and Fig. 2. 

 
 
 
 
 
 
 
 
 

a)                                                                              b) 

Fig. 4. a) Decoded image after bi-linear interpolation. b) The improvement achieved by the 
method. The sign “Maree” unreadable in the image a) whereas is almost readable in b). The 
smoothness constraint works well, as can be observed in the left area of the images.
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Fig. 5. Convergence plot of the iterative procedure. The implemented method guarantees 
convergence. 

5 Conclusions 

In this paper we have proposed a new iterative procedure to estimate a high resolution 
video sequence from low resolution observations. The method uses fidelity to the low 
resolution data and smoothness constraints whithin and between the high resolution 
images to estimate the sequence. Incorporating temporal coherence of the high 
resolution motion vectors as well as the development of a parallel implementation of 
the algorithm are currently under study. The proposed method has been 
experimentally validated.  
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