
SIMULTANEOUS BAYESIAN COMPRESSIVE SENSING AND BLIND DECONVOLUTION

Leonidas Spinoulasa, Bruno Amizica, Miguel Vegab, Rafael Molinac∗, and Aggelos K. Katsaggelosa†

a Dept. of Electrical Engineering and Comp. Sc., Northwestern University, Evanston, IL 60208, USA
b Dept. Lenguajes y Sistemas Informáticos, Univ. de Granada, 18701 Granada, Spain
c Dept. Ciencias de la Computación e I. A., Univ. de Granada, 18071 Granada, Spain

leonisp@u.northwestern.edu, amizic@northwestern.edu, mvega@ugr.es, rms@dcsai.ugr.es, aggk@eecs.northwestern.edu

ABSTRACT

The idea of compressive sensing in imaging refers to the re-
construction of an unknown image through a small number
of incoherent measurements. Blind deconvolution is the re-
covery of a sharp version of a blurred image when the blur
kernel is unknown. In this paper, we combine these two prob-
lems trying to estimate the unknown sharp image and blur
kernel solely through the compressive sensing measurements
of a blurred image. We present a novel algorithm for simul-
taneous image reconstruction, restoration and parameter esti-
mation. Using a hierarchical Bayesian modeling followed by
an Expectation-Minimization approach we estimate the un-
known image, blur and hyperparameters of the global dis-
tribution. Experimental results on simulated blurred images
support the effectiveness of our method. Moreover, real pas-
sive millimeter-wave images are used for evaluating the pro-
posed method as well as strengthening its practical aspects.

Index Terms— Compressive sensing, blind deconvolu-
tion, bayesian method, blur kernel, passive millimeter wave
images.

1. INTRODUCTION

Compressive sensing (CS) has become a fast growing field
in recent years due to its interesting theoretical nature and its
potential aid in numerous practical applications [1, 2]. CS
uses a small number of random incoherent linear projections
of a signal (e.g., an image) and tries to reconstruct the original
signal through a reconstruction algorithm. It is basically an
efficient sampling scheme which avoids collecting redundant
information exploiting the sparsity inherent in many signals
(e.g., natural images, passive millimeter-wave images).

Numerous methods have been proposed for the effective
solution of the CS problem. Some of them are based on en-
ergy minimization, while others, like the one presented here,
follow a Bayesian framework [3, 4, 5, 6].
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CS has proven to be useful in capturing images of low-
energy radiation such as passive millimeter-waves (PMMW),
[3, 7]. The millimeter-wave (MMW) regime lies in the mi-
crowave spectrum in the frequency band between 30 and 300
GHz and has various advantages over conventional (e.g., vis-
ible light or infrared) imaging under adverse conditions. In
environments dominated by clouds, fog, smoke, rain, snow
or dust-storms, PMMW radiation is attenuated multiple or-
ders of magnitude less than visual or infrared radiation [8].
The ability to capture radiation in low-visibility conditions
has led to numerous applications of MMW technology over
the course of years [8]. Furthermore, advances in millimeter-
wave radiometry and integrated circuit design [9] extended
their use while technological breakthroughs led to the devel-
opment of passive-millimeter wave video devices [10]. More
recently, active and passive millimeter-wave scanners have
been successfully used in airports to detect a broad range of
concealed threats [11].

The main reason for exploiting CS techniques in MMW
applications is the high cost of radiometers [12], collecting
the incoming radiation of a scene. In a non-CS setup, one
radiometer is required for the formation of a pixel in the
acquired image, leading to expensive devices even for low
resolution imaging. Therefore, one would wish to mini-
mize the required number of radiometers while still obtaining
comparable imaging quality. On the other hand, such reduc-
tion leads to increased acquisition time since the available
radiometers are now responsible for multiple sequential col-
lective CS measurements which require long integration inter-
vals for acceptable signal-to-noise ratio (SNR). Recently, CS
PMMW imaging systems have been proposed to overcome
this problem by reducing the amount of required measure-
ments utilizing efficient CS matrices (masks) and effective
reconstruction algorithms ([3, 7]).

As in most imaging systems, CS PMMW imagers uti-
lize lenses to focus the low-energy radiation of the scene.
The point spread function (PSF) of these lenses usually intro-
duces blur in the acquired measurements or equivalently the
reconstructed image. Examples of PMMW images captured
through our proposed CS imager were presented in [3], and
more can be found in section 4. It is apparent that all images



have been degraded not only with noise but also with a consid-
erable amount of blur. Moreover, most MMW systems have
narrow depth-of-field [13], the distance over which an object
is considered in focus. Therefore, if the imager is not in the
appropriate distance or if non-stationary targets are observed,
blurring effects also dominate the scene (example images can
be found in [13, 14]). Hence, for improved quality PMMW
imaging, it is essential to compensate for the blur introduced
by CS PMMW systems either by including a known blur in
the reconstruction algorithm or by estimating it during the re-
construction process forming a simultaneous reconstruction
and restoration problem.

The image restoration problem has been studied exhaus-
tively in the literature where various methods for blind de-
convolution (BD) or deblurring have been presented. Recent
algorithms have afforded dramatic progress, yet many aspects
of the problem remain challenging and hard to understand
[15, 16, 17, 18]. A standard formulation of the image degra-
dation model is given in matrix-vector form by:

g = Hx + n, (1)

where g is the N × 1 observation vector, vector x (N × 1)
represents the lexicographically ordered unknown image, n
is an N × 1 acquisition noise vector and H corresponds to
the N × N blurring matrix constructed by the blurring PSF
(denoted by h in vector form). The degradation represented
by the blurring matrix H is generally nonlinear (due to satu-
ration, quantization, etc.) and spatially varying (lens imper-
fections, nonuniform motion, etc.) [15]. However, most of
the relevant work approximates the degradation process by a
linear spatially invariant (LSI) system, where the original im-
age is convolved by the blurring kernel (PSF). In this case the
matrix H can be easily constructed as a block circulant matrix
with circulant blocks. When H is known we refer to a non-
blind deblurring problem, otherwise the deblurring is called
blind.

The goal of this paper is to perform CS measurements of
an unknown blurred image and try to reconstruct it as well as
restore the unknown blurring kernel. The rest of this paper is
organized as follows. In section 2 the Bayesian modeling of
the problem is introduced. Inference is presented in section
3 and experiments on both synthetic and real PMMW images
are conducted in section 4. Finally, conclusions are drawn in
section 5.

2. BAYESIAN MODELING

2.1. Observation Model

Assuming that the image is degraded by a blurring matrix H
we perform M � N measurements using a CS matrix Φ of
size M ×N . Therefore, the full observation model results in:

y = ΦHx + n, (2)

where y is the M × 1 CS measurement vector and n is an
M × 1 acquisition noise vector.

The noise component n is modeled, using the Gaussian
noise assumption, by the conditional distribution:

p(y|x,h, β) ∝ βM/2 exp

[
−β
2
‖y −ΦHx‖2

]
(3)

where β is the inverse noise variance (precision).

2.2. Prior Modeling

The prior used for the image has been previously presented
in [3, 19] and in an earlier form in [20]. The prior assumes
that high-pass filtering of the image x produces an image with
most pixels zero or negligibly small. It basically captures the
sparse edges of an image using various directional derivative
filters and is, in effect, similar to a Total-Variation (TV) prior
with additional degrees of freedom. This behavior is mod-
eled using a sparsity inducing zero-mean multivariate Gaus-
sian distribution that combines the constraints given by a set
of L high-pass filters Dk as follows:

p(x|{Ak}) ∝ |ΣF |−1/2
exp

[
−1

2
xT
(
Σ−1

F

)
x

]
Σ−1

F =

L∑
k=1

DT
k AkDk,

(4)

where Dk, k = 1, 2, ..., L are N × N high-pass filters, and
Ak’s are N × N diagonal matrices containing the hyper-
parameters αki associated with the inverse variance (preci-
sion) of the response of each corresponding filter operator
Dk for any given pixel i. Therefore, Ak = diag(αki), i =
1, 2, ..., N .

As presented in [19], the advantage of this image prior is
twofold. First, it avoids the selection of any specific sparsity
promoting shape for the prior distribution, since such infor-
mation is inherited in the precision hyperparameters. Sec-
ond, by choosing a Gaussian distribution we are able to seek
a tractable inference mechanism.

For the blur prior we use the well-known simultaneous
autoregressive (SAR) model which has been used extensively
in the literature:

p(h|γ) ∝ γNb/2 exp
[
−γ
2
‖Ch‖2

]
, (5)

where C denotes the discrete laplacian operator, γ is the pre-
cision of the Gaussian distribution andNb is the support of the
blur. The SAR model is very efficient in estimating smooth
PSFs. Experimental results, [21], have shown that PMMW
systems have smoothly varying PSFs, hence supporting our
choice of prior.

Finally, the hyperparameters are assigned uniform distri-
butions such that:

p(β) ∝ const, p(γ) ∝ const, p(αki) ∝ const, (6)

for k = 1, . . . , L, i = 1, . . . , N .



3. BAYESIAN INFERENCE

Using equations (3), (4), (5) and (6), the joint distribution
p(y,h,x, {Ak}, β, γ) is defined as:

p(y,h,x, {Ak}, β, γ) =

p(y|h,x, β)p(x|{Ak})p(h|γ)p(β)p(γ)
L∏

k=1

N∏
i=1

p(αki)
(7)

We utilize the Expectation-Maximization (EM) frame-
work to solve for the best image and blur following a similar
approach to [17]. This algorithm alternates between two
separate steps. In the E-step one solves a non-blind deconvo-
lution problem estimating the mean image and its covariance
given the current blur kernel. In the M-step one solves for the
optimal blur kernel given the image and its covariance around
it.

In the E-step the image is estimated as a multivariate
Gaussian distribution q(x) = N (x|µx,Σx) with parameters:

µx = ΣxβHTΦTy (8)

Σ−1
x = βHTΦTΦH +

L∑
k=1

DT
k AkDk (9)

In the M-step, we estimate h minimizing:

Eq(x)

[
β

2
‖y −ΦHx‖2

]
+
γ

2
‖Ch‖2 (10)

Equation (10) is quadratic on the unknown h and its solu-
tion is:

ĥ = argmin
h

1

2
hTAhh− bThh, s.t. h ≥ 0 (11)

with:

Ah(i1, i2) = β

N∑
k=1

N∑
l=1

φTk φlz(k − i1, l − i2) + γC̃(i1, i2)

(12)
z(k−i1, l − i2) = Eq(x) [x(k − i1)x(l − i2)] =

= µx(k − i1)µx(l − i2) + Σx(k − i1, l − i2)
(13)

bh(i1) = β

N∑
k=1

µx(k − i1)yTφk

= β

N∑
k=1

µx(k − i1)
M∑
i=1

y(i)φk(i),

(14)

where i1, i2 denote lexicographically ordered blur kernel in-
dices, φk(i) denotes the i-th component of the k-th column of
Φ = [φ1, . . . , φN ] and C̃ = CTC.

The update for the parameters αki is given (see [19]) by:

α
(l+1)
ki = α

(l)
ki

trace
[
ΣFDT

k JiiDk

](
v
(l)
ki

)2
+ trace

[
ΣxDT

k JiiDk

] , (15)

where vk = Dkµx, Jii is the single-entry matrix with only
one at entry (i, i) and l denotes the iteration index. At the
same time the precision parameters β and γ are estimated by:

β =M/
(
‖y −ΦHµx‖2 + trace

(
HTΦTΦHΣx

))
(16)

γ = Nb/‖Ch‖2 (17)

The algorithm iterates between the unknown image es-
timation (8), the unknown blur estimation (11) and the es-
timation of the hyperparameters (15), (16) and (17) until a
convergence criterion is met. Equations (13,15,16) require
the explicit construction of the N ×N covariance matrix Σx

which is computationally demanding. Hence, as in [3, 19],
we approximate it as a diagonal matrix whose elements are
reciprocals of the diagonal elements of Σ−1

x .

4. EXPERIMENTAL RESULTS

In this section we present CS and BD on both synthetic and
real PMMW images to demonstrate the performance of our
algorithm. For the synthetic experiments we utilized the stan-
dard “Shepp-Logan" image which has similar appearance to
common PMMW images. However, due to the computational
complexity of the algorithm we use a smaller version of size
65× 65 pixels. The image is blurred with a Gaussian-shaped
function of variance 3.5 and white Gaussian noise is added
to the CS measurements to obtain degraded observations with
signal-to-noise ratio (SNR) 40dB.

For the real experiments we use PMMW images which
constitute a practical reconstruction/restoration application
for the proposed method. The real PMMW images were
provided by the Argonne National Laboratory (ANL). The
images have size 49× 49 pixels.

For the synthetic experiments we employ six filters Dk

(second order horizontal and vertical as well as first and sec-
ond order diagonal) while for the real PMMW images only
four first order (horizontal - vertical - diagonal) filters are uti-
lized. The choice of filters was based on resulting image qual-
ity. The quantitative measure of performance for the synthetic
experiments is the ISNR defined as 10 log10(‖x− xb‖2/‖x−
µx‖2) where xb is the blurred image. The only qualitative
measure utilized for the real experiments is visual inspection.
For all experiments, the convergence criterion used for the ter-
mination of the algorithm is ‖xl − xl−1‖2/‖xl−1‖2 < 10−4

where l denotes the iteration number. Additionally, the sup-
port of the blur was set a priori to 17× 17. All measurement
vectors y are acquired through binary CS matrices to verify
the applicability of the method in a real CS setup. The ini-
tial blur for all test cases is set to a Gaussian of variance 1
while the hyperparameters β and γ are given initial values 1
and 105, respectively. Finally, for all results reported here the
covariance matrix, Σx, was not utilized in the calculation of
equation (13).



Fig. 1: Example restorations of the Shepp-Logan image. 1st row
shows the original (left) and blurred (middle) images as well as the
17 × 17 original blur kernel; 2nd row shows the blind restoration
results for 50%, 60% and 70% of CS measurements, respectively,
from left to right; 3rd row shows the estimated blur kernels for each
restoration, respectively. The corresponding ISNRs are reported in
Table 1. Note that for illustration purposes (higher contrast) the in-
tensity of the blur kernels has been normalized.

Table 1: ISNR values (in dB) for the blind and non-blind recon-
struction of the Shepp-Logan image degraded by a Gaussian PSF of
variance 3.5 at SNR = 40dB.

CS ratio 0.3 0.4 0.5 0.6 0.7 0.8
Blind 2.67* 2.98* 3.16 4.19 3.61 3.20

Non-Blind 3.73 3.94 3.88 4.39 4.23 4.30

The synthetic original, degraded and restored images,
together with their corresponding blur kernels are presented
in Fig. 1. Table 1 compares the resulting ISNR of the blind
and non-blind reconstructions for various compressive ratios.
The non-blind achievable ISNR is not necessarily improving
while the percentage of measurements increases. This be-
havior can be explained due to the CS setting of the method,
where performance depends on the particular selection of
measurement matrices, which is random for each CS ratio.
The blind case ISNR shows acceptable performance for CS
ratios greater than 0.4 while exhibiting analogous fluctuations
over increasing ratios. For lower percentages, the estimation
of the blur may fail. However, empirical weighting of the
hyperparameters β and γ has provided acceptable ISNRs as
the ones reported in Table 1 with *. This leads us to the idea
of using varying confidence weights to the hyperparameters
based on the CS ratio, since, as the ratio reduces the prob-
lem becomes highly underdetermined. Further research is
required and will be conducted towards this direction.

The degraded and restored real PMMW images are pre-

(a) (b) (c) (d)

(e) (f) (g) (h)

(j) (k) (l)

Fig. 2: Example restorations of real PMMW images depicting cars,
a pair of scissors and a metallic mask with hollow geometric shapes.
1st column represents the original uncompressed blurred observa-
tion; 2nd, 3rd, and 4th columns correspond to the resulting restora-
tion for 40%, 60% and 80% of CS measurements, respectively.

sented in Fig. 2. Through our experiments we demon-
strate that PMMW images are effectively enhanced, de-
picting the scene in higher detail. Moreover, the usage of
first order filters results in piecewise-smooth images which
effectively recover sharp edges (note the detection of the
wheels of the second car or the circular geometric shape at
the lower right corner of the metallic mask). Unfortunately,
due to unavailability of equivalent simultaneous methods,
no comparisons are reported. However, the CS reconstruc-
tion stage of the algorithm has been previously proven to
provide superior performance compared to state-of-the-art
TV-minimization schemes [3]. Hence, it is expected that a
sequential reconstruction-deconvolution algorithm utilizing
our proposed reconstruction step would provide improved
restoration compared to other CS methods.

5. CONCLUSIONS

In this paper we proposed a novel algorithm for simultaneous
compressive sensing reconstruction and blind deconvolution
of images. The algorithm employs Bayesian modeling and the
Expectation-Minimization approach to estimate an unknown
sharp image and its blur kernel simultaneously. Simulations
prove that solely compressive sensing measurements can po-
tentially recover both the image and the degrading PSF. Fur-
thermore, the method has practical applications in CS imag-
ing setups such as for PMMW images whose restoration was
presented here. The resulting images prove that modeling of
the unknown blur kernel is desirable when restoring images
obtained through a lens-based CS system.



6. REFERENCES

[1] Y. Tsaig and D.L. Donoho, “Compressed sensing,”
IEEE Trans. Inform. Theory, vol. 52, pp. 1289–1306,
2006.

[2] E.J. Candés, J. Romberg, and T. Tao, “Robust un-
certainty principles: exact signal reconstruction from
highly incomplete frequency information,” Information
Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489 –
509, feb. 2006.

[3] S.D. Babacan, M. Luessi, L. Spinoulas, A.K. Katsagge-
los, N. Gopalsami, T. Elmer, R. Ahern, S. Liao, and
A. Raptis, “Compressive passive millimeter-wave imag-
ing,” in Image Processing (ICIP), 2011 18th IEEE In-
ternational Conference on, sept. 2011, pp. 2705 –2708.

[4] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sens-
ing,” Signal Processing, IEEE Transactions on, vol. 56,
no. 6, pp. 2346 –2356, june 2008.

[5] L. He and L. Carin, “Exploiting structure in wavelet-
based bayesian compressive sensing,” Signal Process-
ing, IEEE Transactions on, vol. 57, no. 9, pp. 3488 –
3497, sept. 2009.

[6] M.W. Seeger and N. Hannes, “Compressed sensing
and bayesian experimental design,” in Proceedings of
the 25th international conference on Machine learning,
New York, NY, USA, 2008, ICML ’08, pp. 912–919,
ACM.

[7] N. Gopalsami, S. Liao, T. Elmer, A. Heifetz, and A. C.
Raptis, “Compressive sampling in active and passive
millimeter-wave imaging,” in Proc. 36th Int Infrared,
Millimeter and Terahertz Waves (IRMMW-THz) Conf,
2011, pp. 1–2.

[8] L. Yujiri, “Passive millimeter wave imaging,” in Proc.
IEEE MTT-S Int. Microwave Symp. Digest, 2006, pp.
98–101.

[9] H.P. Moyer, J.J. Lynch, J.N. Schulman, R.L. Bowen,
J.H. Schaffner, A.K. Kurdoghlian, and T.Y. Hsu, “A
low noise chipset for passive millimeter wave imaging,”
in Proc. IEEE/MTT-S Int. Microwave Symp, 2007, pp.
1363–1366.

[10] J.A. Lovberg, C. Martin, and V. Kolinko, “Video-rate
passive millimeter-wave imaging using phased arrays,”
in Proc. IEEE/MTT-S Int. Microwave Symp, 2007, pp.
1689–1692.

[11] O. Martinez, L. Ferraz, X. Binefa, I. Gomez, and C. Dor-
ronsoro, “Concealed object detection and segmentation
over millimetric waves images,” in Proc. IEEE Com-
puter Society Conf. Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2010, pp. 31–37.

[12] N. Gopalsami, S. Bakhtiari, T. W. Elmer II, and A. C.
Raptis, “Application of millimeter-wave radiometry for
remote chemical detection,” vol. 56, no. 3, pp. 700–709,
2008.

[13] J.N. Mait, D.A. Wikner, M.S. Mirotznik, J. van der
Gracht, G.P. Behrmann, B.L. Good, and S.A. Mathews,
“94-ghz imager with extended depth of field,” Antennas
and Propagation, IEEE Transactions on, vol. 57, no. 6,
pp. 1713 –1719, june 2009.

[14] N.M. Joseph, D.A. Wikner, M.S. Mirotznik, and
C. Fernandez-Cull, “New technologies to enable
millimeter-wave imaging,” in Imaging Systems. 2010,
p. IMB4, Optical Society of America.

[15] S.D. Babacan, R. Molina, and A.K. Katsaggelos, “Vari-
ational bayesian blind deconvolution using a total vari-
ation prior,” Image Processing, IEEE Transactions on,
vol. 18, no. 1, pp. 12 –26, jan. 2009.

[16] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, “Un-
derstanding and evaluating blind deconvolution algo-
rithms,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, june 2009, pp.
1964 –1971.

[17] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, “Ef-
ficient marginal likelihood optimization in blind decon-
volution,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, june 2011, pp. 2657
–2664.

[18] R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, and
W.T. Freeman, “Removing camera shake from a single
photograph,” in ACM SIGGRAPH 2006 Papers, New
York, NY, USA, 2006, SIGGRAPH ’06, pp. 787–794,
ACM.

[19] E. Vera, M. Vega, R. Molina, and A.K. Katsaggelos, “A
novel iterative image restoration algorithm using nonsta-
tionary image priors,” in Image Processing (ICIP), 2011
18th IEEE International Conference on, sept. 2011, pp.
3457 –3460.

[20] S.D. Babacan, R. Molina, and A.K. Katsaggelos,
“Sparse bayesian image restoration,” in Image Process-
ing (ICIP), 2010 17th IEEE International Conference
on, sept. 2010, pp. 3577 –3580.

[21] Y. Li, J.W. Archer, J. Tello, G. Rosolen, F. Ceccato, S.G.
Hay, A. Hellicar, and Y.J. Guo, “Performance evaluation
of a passive millimeter-wave imager,” Microwave The-
ory and Techniques, IEEE Transactions on, vol. 57, no.
10, pp. 2391 –2405, oct. 2009.


