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ABSTRACT

There has been a significant interest in the recovery of low-rank ma-
trices from an incomplete of measurements, due to both theoretical
and practical developments demonstrating the wide applicability of
the problem. A number of methods have been developed for this
recovery problem, however, a principled method for choosing the
unknown target rank is generally missing. In this paper, we present
a recovery algorithm based on sparse Bayesian learning (SBL) and
automatic relevance determination principles. Starting from a ma-
trix factorization formulation and enforcing the low-rank constraint
in the estimates as a sparsity constraint, we develop an approach
that is very effective in determining the correct rank while provid-
ing high recovery performance. We provide empirical results and
comparisons with current state-of-the-art methods that illustrate the
potential of this approach.

Index Terms— Low-rank matrix completion, Bayesian meth-
ods, automatic relevance determination.

1. INTRODUCTION

The problem of low-rank matrix completion (and approximation) re-
cently received significant interest due to new theoretical advances
[1,2] as well as interesting practical problems (e.g., the Netflix prize).
Matrix completion finds application in many areas of engineering,
including system identification [3], sensor networks [4], machine
learning [5], computer vision [6], and medical imaging [7].

The matrix completion problem is formulated as follows. Let
X ∈ R

m×n be an unknown matrix with rank r � min(m,n).
Suppose that we only observe a subset Ω of its entries, that is, {Yij =
Xij : (i, j) ∈ Ω}. The cardinality of Ω is pmn with 0 < p ≤
1. It has been shown in [1] that most matrices X can be recovered
very accurately under certain conditions by solving the affine rank
minimization problem

minimize rank(X)
subject to PΩ(Y) = PΩ(X),

(1)

where PΩ is the projection operator such that the (i, j)th component
of PΩ(X) is equal to Xij if (i, j) ∈ Ω and zero otherwise, and Y are
the observations. Since this problem is NP-hard, a popular approach
is to utilize the convex relaxation based on the nuclear norm. When
the observations are corrupted with noise, this problem can be stated
as

minimize ‖X‖∗
subject to ‖ PΩ(Y)− PΩ(X) ‖2F < ε,

(2)

where ‖X‖∗ is equal to the sum of the singular values of X and
‖ · ‖F denotes the Frobenius norm.

A number of methods have been proposed for the low-rank ma-
trix recovery problem. The nuclear norm based optimization prob-
lem can be recast as a semidefinite program, and can be solved
with interior-point solvers [3]. Singular value thresholding [8] pro-
vides an attractive alternative in terms of computation. FPCA [9]
introduced an efficient nuclear norm-based regularized least-squares
method, whereas OPTSPACE [10] developed a method based on
optimization over the Grasmann manifold with a theoretical perfor-
mance guarantee for the noiseless case. A greedy approach is pro-
posed in ADMIRA [11]. Finally, Bayesian methods have also been
developed: a nonparametric approach for symmetric positive defi-
nite matrices is proposed in [12], and a variational Bayes method is
developed for collaborative filtering in [13].

Although several methods have been developed for this problem,
a principled method for choosing the unknown target rank is gener-
ally not motivated. In this paper, we present a recovery algorithm
based on sparse Bayesian learning (SBL) principles. Based on the
low-rank factorization of the unknown matrix, we employ indepen-
dent sparsity priors on the individual factors with a common sparsity
profile which favors low-rank solutions and simultaneously explain
the observed data. Our formulation offers a few advantages over
other approaches. Firstly, prior knowledge on the rank of the matrix
is not required; the proposed formulation implicitly estimates the
rank of the unknown matrix similarly to the automatic relevance de-
termination principle in machine learning [14]. This property is not
present in most of the proposed approaches (for instance, [10, 11]).
Second, algorithmic parameters are treated as stochastic quantities
in the proposed approach, and are handled with the combination
of prior distributions and a fully-Bayesian inference procedure. In
this regard, this type of formulation frees the user from extensive
parameter-tuning and data- and application-dependent supervision.
Finally, empirical results demonstrate that the proposed method pro-
vides very good reconstruction performance compared to existing
methods while accurately estimating the unknown effective rank.

This paper is organized as follows. We present the proposed
modeling of the problem in Section 2. Section 3 develops the estima-
tion algorithm based on variational Bayesian inference. We provide
empirical results in Section 4, and conclude in Section 5.

2. PROPOSED MODELING

Assume that the unknown m× n matrix X is of rank r. Our model-
ing is based on the following parametrization of X

X = ABT , (3)
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where A is an m × r matrix, and B an n × r matrix, such that
rank(X) = r ≤ min(m,n). The factors A and B can then be
estimated using

minimize ‖ A ‖2F + ‖ B ‖2F
subject to ‖ PΩ(Y)− PΩ(X) ‖2F< ε,

(4)

The equivalence of this optimization problem to (2) is easy to show
(see [15]). We formulate the problem (4) using the Bayesian method-
ology as follows. X is the sum of outer-products of the columns of
A and B, that is,

X =
k∑
i

a·ib·i
T , (5)

where we use a·i and ai· to denote the ith column and row of A,
respectively. Notice that each outer-product contributes at most one
to the rank to X. Since a low-rank estimate of X is sought, our goal
is to achieve column sparsity in A and B, such that most columns
in A and in B are set equal to zero. To this end, we associate the
columns of A and B with Gaussian priors of variances γi, that is,

p(A|γ) =
k∏

i=1

N (a·i|0, γiI) , (6)

p(B|γ) =
k∏

i=1

N (b·i|0, γiI) . (7)

Thus, the columns of A and B have the same sparsity profile en-
forced by the common variances γi. As shown later, many of the
variances γi will assume very small values during inference, which
effectively removes the corresponding outer-products from X, and
hence reduces the rank of the estimate. This formulation therefore
is the analog of sparse Bayesian learning formulation (or automatic
relevance determination) [14] successfully utilized for compressive
sensing reconstruction, where sparsity-inducing Gaussian priors are
employed on each of the coefficients of the unknown vector.

As the observation model we follow the standard assumption
and incorporate white Gaussian noise on the observations PΩ(Y),
such that

p(PΩ(Y)|A,B, β) =
∏

(i,j)∈Ω

N (
yij |xij , β

−1) , (8)

with β = 1/ε the noise precision. The joint distribution, therefore,
is expressed as

p(PΩ(Y),A,B,γ, β) = p(PΩ(Y)|A,B, β)

× p(A|γ) p(B|γ) p(γ) p(β) . (9)

In addition to (6) and (7), we incorporate the conjugate inverse
Gamma hyperprior on the variances γi

p(γi) ∝
(

1

γi

)a+1

exp

(
− b

γi

)
. (10)

In this work, the parameters a and b are treated as deterministic
whose values are set by the user.

3. APPROXIMATE BAYESIAN INFERENCE

Exact Bayesian inference for all unknowns A,B,γ and β using
the joint distribution in (9) is intractable, since p(y) cannot be
computed. Therefore, approximation methods must be utilized. In
this work, we present an inference procedure based on mean field
variational Bayes [16]. Our goal is to compute posterior distri-
bution approximations by minimizing the Kullback-Leibler (KL)
divergence in an alternating fashion for each latent variable. Let
z = (A,B,γ, β) be the vector of all latent variables. The posterior
approximation q(zk) of each latent variable zk ∈ z is found using

log q(zk) = 〈 log p(PΩ(Y),A,B,γ, β)〉z\zk + const, (11)

where we have employed the factorization q(z) =
∏

q(zk) and
z\zk denotes the set z with zk removed. Thus, for each latent vari-
able, the expectations of all parameters (excluding the current one)
in the joint distribution (9) are taken with respect to their most re-
cent distributions, and the result is normalized to find the approxi-
mate posterior distribution. Since all distributions in the hierarchical
model presented in the previous section are in the conjugate expo-
nential family, the calculation of each posterior approximation is rel-
atively straightforward. We present the update rules resulting from
this inference scheme in the following subsections.

3.1. Estimation of factors A and B

With some algebra, it follows from (11) that the approximation to
the posterior distributions of A and B decompose as independent
distributions of their rows. By combining the prior in (6) and the
observation model in (8), the posterior density of the ith row ai· of
A is found as

q(ai·) = N (ai·|〈ai·〉,Σa
i ) , (12)

with mean and covariance

〈ai·〉T = βΣa
i 〈Bi〉T yi·

T , (13)

Σa
i =

(
β 〈BT

i Bi〉+ Γ
)−1

, (14)

where Γ = diag(γ−1
i ) and the matrix Bi contains only the jth rows

of B for which (i, j) ∈ Ω, such that,

〈BT
i Bi〉 =

∑
j:(i,j)∈Ω

〈bj·
T bj·〉 =

∑
j:(i,j)∈Ω

〈bj·
T 〉〈bj·〉+Σb

j ,

with Σb
j the posterior covariance of jth row of B. Additionally, the

row vector yi· contains the observed entries in the ith row of Y.
Similarly, by combining the prior in (7) and the observation model
in (8), the posterior density of the jth row bj· of B is found as a
normal distribution

q(bj·) = N
(
bj·|〈bj·〉,Σb

j

)
(15)

with parameters

〈bj·〉T = βΣb
j 〈Aj〉T y·j , (16)

Σb
j =

(
β 〈AT

j Aj〉+ Γ
)−1

, (17)

where Aj contains the ith rows of A for which (i, j) ∈ Ω, and the
vector y·j is constructed from the observed entries in the jth column
of Y. It can be observed that the uncertainty in the estimate of B is
incorporated in the estimation of A through the covariance matrices
Σb

i (and vice versa).
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3.2. Estimation of hyperparameters γ

By combining p(A|γ), p(B|γ) and p(γi), the posterior density of
γi becomes an inverse Gamma distribution

q(γi) ∝
(

1

γi

)a+1+m+n
2

exp

(
−2b+ 〈a·iTa·i〉+ 〈b·iTb·i〉

2γi

)

(18)

with mean

〈γi〉 = 2b+ 〈a·iTa·i〉+ 〈b·iTb·i〉
2a+m+ n

. (19)

The required expectations are given by

〈a·i
Ta·i〉 = 〈a·i〉T 〈a·i〉+

∑
j

(
Σa

j

)
ii
, (20)

〈b·i
Tb·i〉 = 〈b·i〉T 〈b·i〉+

∑
j

(
Σb

j

)
ii
. (21)

3.3. Estimation of noise precision β

Assuming a conjugate Gamma prior for p(β) with parameters c and
d, the posterior approximation assumes a Gamma distribution with
the mean

〈β〉 = 2d+ pmn

2c+ 〈 ‖ PΩ(Y)− PΩ (ABT ) ‖2F 〉 , (22)

However, this estimation may lead to identifiability problems, and
the calculations of the expectations are computationally complex and
have high memory requirements. In practice, we found out that the
algorithm is quite robust to this parameter and setting it to a reason-
able value leads to good empirical results.

In summary, the algorithm proceeds as first estimating the rows
of A and B using (13) and (16), followed by the estimation of the
variances γi using (19), and (if desired) the noise precision β using
(22). Notice that during inference most of the hyperparameters γi are
driven to zero, which will force the posterior means of the columns
to go to zero as well (see (14) and (17)). In our implementation,
columns of A and B were declared irrelevant if the corresponding
γi < 10−10 for a = 105 and b = 10−5. Other selections of a and b
(including zero values) resulted in similar reconstruction errors but
different convergence speeds. In each case, the threshold value of γi
should be chosen according to minimum value possible in (19) (i.e.,
when 〈a·iTa·i〉 ≈ 0 and 〈b·iTb·i〉 ≈ 0).

The methodology presented in this work resembles the method
in [13] proposed for collaborative filtering, where independent Gaus-
sian priors are placed on the columns of A and B with separate sets
of variances. Although the modeling is similar, the columns of A
and B are not coupled through the use of common variances as in
our work. Employing common parameters is of crucial importance
in removing redundant components from the estimated matrix and
determining the effective rank. In theory, the modeling in (6) and
(7) with common variances is used to represent the correlation be-
tween the columns of A and B, and it also removes possible scale
problems arised due to the use of separate sets of variances.

The computational complexity of the algorithm can be shown to
be O(m ·min(p3n3, k3) + n ·min(p3m3, k3)) with p the fraction
of observed entries (proof not shown for space limitations). The
bottleneck of the algorithm is the computations in (14) and (17).

Note, however, that for instance (17) can also be calculated using
the Woodbury identity as

Σb
j = Γ−1 − Γ−1〈Aj〉T

(
β−1I+ 〈Aj〉Γ−1〈Aj〉T

)−1

〈Aj〉Γ−1.

(23)

Depending on the dimensions of the estimates of A and B, these
two forms can be alternated to achieve faster estimation.

4. EMPIRICAL COMPARISONS

To examine the empirical performance of the proposed method com-
pared to existing algorithms, we performed simulations commonly
used in the literature. Our first example illustrates the effectiveness
of the proposed approach on determining the correct rank. We gen-
erated test matrices X of size 200× 200 of ranks r = 2, . . . , 20 by
randomly sampling 200 × r matrices XL and XR from a standard
normal distribution N (0, 1) and setting X = XLX

T
R. The fraction

of observed entries is 0.2, and they are sampled uniformly at ran-
dom. For each experiment, the relative recovery error is measured as

‖ X̂−X ‖F / ‖ X ‖F , where X̂ is the estimate.
We present comparisons with the following algorithms: OPTSPACE

[10], SVT [8], FPCA [9] and ADMIRA [11]. Our method is denoted
by VSBL. We used the procedure proposed in [10] to estimate the
initial target rank required by ADMIRA and OPT. On the other
hand, other methods automatically estimate the rank of the unknown
matrix. The observed entries are corrupted by zero-mean white
Gaussian noise with standard deviation 0.05. Each simulation re-
sult is obtained by averaging 10 random instances. Figure 1 shows
the relative reconstruction error, running times (on a 3GHz Core2
Duo CPU) and estimated ranks for each algorithm. Among all al-
gorithms, VSBL provides the highest recovery performance for all
ranks, and also estimates the correct rank in each case. As expected,
errors in both the recovery and the estimated rank increase as the
original rank increases. OPTSPACE and ADMIRA consistently
underestimate the rank, whereas FPCA and SVT overestimate it.
Overall, VSBL exhibits a better ability to recover the original matrix
and the correct rank than other methods.

We next consider another set of experimental conditions where
200× 200 matrices of fixed rank of 5 are generated, and the number
of observed entries is varied according to different oversampling de-
grees of freedom. Note that a matrix of size m×n of rank r depends
upon df = r(m+n− r) degrees of freedom, and the oversampling
degrees of freedom (osdf) is defined as pmn/df [17]. Experimen-
tal results for osdf = 2, 3, . . . , 10 are depicted in Figure 2 for the
same noise conditions as above. The corresponding sampling ratios
are p ≈ 0.1, 0.14, 0.20, 0.24, 0.30, 0.34, 0.40, 0.44, 0.50. It is clear
that VSBL provides very accurate reconstructions even with very
low number of observations, for which other algorithms fail to pro-
vide meaningful results. In terms of computation time, ADMIRA
provided the best performance in most of the simulations, whereas
execution times for VSBL were stable throughout the testing condi-
tions and were comparable to compared to the other methods.

5. CONCLUSIONS

In this paper, we have applied sparse Bayesian learning princi-
ples to the low-rank matrix completion problem using a variational
Bayesian perspective. We introduced a formulation where the
low-rank constraint is imposed on the estimate by using its sparse
representation; starting from the factorized form of the unknown
matrix, we enforce a common sparsity profile on its underlying
components using a probabilistic formulation. We then developed

2190



2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Rank

R
el

at
iv

e 
E

rr
or

 

 
VSBL
OPTSPACE
SVT
FPCA
ADMIRA

2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

10
3

True Rank

R
un

ni
ng

 T
im

es
 (

s)

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

True Rank

E
st

im
at

ed
 R

an
k

(a) (b) (c)

Fig. 1. Estimation results with matrices of size 200 × 200 with varying ranks when 20% of the entries are observed. (a) Relative recovery
error, (b) running times, and (c) estimated ranks.

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

osdf

R
el

at
iv

e 
E

rr
or

 

 

VSBL
OPTSPACE
SVT
FPCA
ADMIRA

2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

osdf

R
un

ni
ng

 T
im

es
 (

s)

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

osdf

E
st

im
at

ed
 R

an
k

(a) (b) (c)

Fig. 2. Estimation results with matrices of size 200 × 200 of rank 5 with varying oversampling degrees of freedom. (a) Relative recovery
error, (b) running times, and (c) estimated ranks. Error rates of SVT for osdf = 2 and of FPC for osdf = 8, 9, 10 are very high due to
convergence failures.

an inference method based on mean-field variational Bayes approx-
imating the posteriors of interest. Empirical results suggest that the
proposed approach is very effective in pruning irrelevant dimensions
and recover the correct number of effective components in the ma-
trix estimate, and it outperforms current state-of-the-art approaches
in terms of reconstruction performance.
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