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ABSTRACT

Pansharpening is a technique that fuses a low resolution multispec-
tral image and a high resolution panchromatic image, to obtain a
multispectral image with the spatial resolution and quality of the
panchromatic image while preserving spectral information of the
multispectral image. In this paper, we present a new pansharpening
method based on super-resolution and contourlet transform. The ex-
perimental results show that the proposed method not only enhances
the spatial resolution of the pansharpened image, but also preserves
the spectral information of the original multispectral image.

Index Terms— pansharpening, super-resolution, contourlets,
multispectral image, remote sensing

1. INTRODUCTION

Pansharpening is a technique for fusing the information of a low
resolution multispectral (MS) image and a high resolution panchro-
matic (PAN) image, usually remote sensing images, to provide a
high resolution MS image with the level of detail of the PAN image.
In the literature, this task has been addressed from different points of
view (see [1] and [2] for a description and comparison of pansarpen-
ing methods). In recent years, Contourlet-based algorithms, specif-
ically non-subsampled contourlet transform (NSCT)[3] based ones,
are becoming popular[4]. The contourlet transform provides a com-
plete shift-invariant and multiscale representation, with a fast imple-
mentation. The main problems of the classical methods based on
contourlet are the control of the noise in the images and their depen-
dency on an initial interpolation but they efficiently preserve texture
and contour information.

Recently, a new super-resolution (SR) approach has been pro-
posed [5]. Within the Bayesian formulation, this method incorpo-
rates prior knowledge on the expected characteristics of MS images
using a Total Variation prior, and considers the sensor characteristics
to model the observation process of both PAN and MS images. How-
ever, the MS bands which are not covered by PAN image cannot be
improved properly using this method and some color bleeding may
appear.

In this paper we propose a new pansharpening method that
combines the super-resolution technique presented in [5] with non-
subsampled contourlet transform in order to obtain a method that
efficiently preserves the texture and contour information of the PAN
image while improving all the bands of the image, even those that
are not covered by the PAN image. This paper is organized as fol-
lows. In section 2 the Bayesian SR using contourlet approach is
described and the used notation introduced. Section 4 describes the
inference of the high resolution MS image. Experimental results
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and comparison are presented in section 5 for synthetic and SPOT
images and finally, section 6 concludes the paper.

2. PROBLEM FORMULATION

Let us assume that y, the unknown high resolution MS image we
would have observed under ideal conditions, has B bands, yb, b =
1, ..., B, each one centered on a narrow spectral band, of size p =
m × n, that is, y = [yt

1, y
t
2, ..., y

t
B ]t, where each band of this image

is expressed as a column vector by lexicographically ordering the
pixels in the band, and t denotes the transpose of a vector or matrix.
The observed low resolution MS image Y has B bands Yb, b =
1, ..., B, each of size P = M ×N pixels, with M < m and N < n.
These images are also stacked into the vector Y = [Y t

1 , Y t
2 , ..., Y t

B ]t,
where each band of this image is also expressed as a column vector
by lexicographically ordering the pixels in the band. The sensor also
provides us with a panchromatic image x of size p = m × n, that
contains reflectance data in a single band that covers a wide area of
the spectrum.

Using the contourlet transform, these images can also be ex-
pressed in NSCT domain, as

x =
∑

j

Cjx + Crx, yb =
∑

j

Cjyb + Cryb, (1)

where Cjx and Cjyb are the NSCT coefficients for the PAN and MS
bands, respectively, at a level of decomposition j and Crx and Cryb

are the residual (low pass filtered version of original) image of PAN
and MS bands, respectively.

Following [5], we define the relationship between high resolu-
tion MS image and its low resolution counterpart as

Yb = Hyb + nb, (2)

where the P × p degradation matrix H combines the subsampling,
integration and blur present in the image and nb is the capture noise
assumed to be independent white Gaussian of known variance β−1

b .
The panchromatic image contains the details of the high reso-

lution MS image but lacks of its spectral information. Following
the wavelet and contourlet based pansharpening methods, see [2, 4],
the PAN image is considered here as a combination of the high fre-
quency details of the high resolution MS bands, plus a residual, low
pass filtered image, which have an unknown relationship with the
MS bands. The relationship between the PAN and the high resolu-
tion MS images is defined in this paper as

xd =
∑

j

Cjx =
1

B

B∑
b=1

∑
j

Cjyb + v, (3)

where xd contains the details of the PAN image, obtained using the
contourlet transform, which is able to effectively extract the details
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of an image and v is the noise that is assumed to be Gaussian with
zero mean and known variance γ−1. Note that this model doesn’t
take into account the residuals of the NSCT, in a similar way as the
additive wavelet or contourlet methods do. So, we are assuming that
the objects structure is present in all the bands but, since the PAN
image doesn’t cover all the spectral range of the multispectral image
covers, its intensities will not necessarily coincide with the MS bands
intensities and, hence, we are not forcing this similarity.

3. BAYESIAN FORMULATION

The Bayesian formulation starts with the definition of the joint dis-
tribution p(y, Y, xd) = p(y)p(Y, xd|y) and then performs the in-
ference based on p(y|Y, xd) = p(y, Y, xd)/p(Y, xd). Also assum-
ing that Y and xd are independent, for a given y, p(Y, xd|y) =
p(Y |y)p(xd|y).

Let us now describe these probability distributions. For the MS
image, we choose the Total Variation (TV) prior given by

p(y) =
B∏

b=1

p(yb) ∝
B∏

b=1

α
p/2
b exp[−αbTV (yb)], (4)

with TV (yb) =
∑p

i=1

√
(Δh

i (yb))2 + (Δv
i (yb))2, where Δh

i (yb)
and Δv

i (yb) represent the horizontal and vertical first order differ-
ences at pixel i respectively, and αb is the model parameter of the
band b.

From the degradation model in Eq. (2), we obtain the probability
distribution of the observed image Y , given y,

p(Y |y)=
B∏

b=1

p(Yb|yb)∝
B∏

b=1

β
P/2
b exp

{
−1

2
βb ‖Yb − Hyb‖2

}
. (5)

The probability distribution of the details of the PAN image, xd,
given y, from Eq. (3), is written as

p(xd|y)∝γp/2 exp

⎧⎨
⎩−1

2
γ

∥∥∥∥∥xd− 1

B

B∑
b=1

∑
j

Cjyb

∥∥∥∥∥
2
⎫⎬
⎭ . (6)

4. BAYESIAN INFERENCE

In order to extract conclusions from the posterior distribution
p(y|Y, xd) we need to calculate p(Y, xd). However, p(Y, xd) cannot
be calculated analytically and we will apply the variational method-
ology to approximate the posterior distribution by another one, q(y),
that minimizes the Kullback-Leibler (KL) divergence [6], defined as

CKL(q(y)||p(y|Y, xd)) =

∫
q(y) log(

q(y)

p(y|Y, xd)
)dy (7)

=

∫
q(y) log(

q(y)

p(y, Y, xd)
)dy + const = M(q(y)) + const,

which is always non negative and equal to zero only when q(y) =
p(y|Y, xd).

Unfortunately, the integral in Eq. (7) cannot be directly eval-
uated due to the TV prior but we can approximate it by using
the Majorization-Minimization approach[7] that converts a non-
quadratic problem to a quadratic problem by the introduction of a
new parameter that also needs to be estimated. Let us consider the
inequality, also used in [5], which states that, for any w ≥ 0 and
z > 0 √

w ≤ w + z

2
√

z
, (8)

and use it with w = (Δh
i (yb))

2 + (Δv
i (yb))

2 and z = ub(i) to
approximate the probability distribution p(yb) in Eq. (4) as

M(yb, ub)=α
p/2
b exp

[
−αb

∑
i

(Δh
i (yb))

2+(Δv
i (yb))

2 + ub(i)

2
√

ub(i)

]
,

(9)
where ub is a p−dimensional vector, ub ∈ (R+)p with components
ub(i), i = 1, ..., p and that, as we will show later, has a tight rela-
tionship with the image. Substituting Eq. (9) into Eq. (4), we obtain
p(y) ≥ c.

∏B
b=1 M(yb, ub). This leads to the following lower bound

for the joint probability distribution

p(y, Y, xd) ≥ c.

[
B∏

b=1

M(yb, ub)

]
p(Y |y)p(xd|y) = F (y, Y, xd, u),

(10)

where u =
[
ut

1, u
t
2, ..., u

t
B

]t
.

By defining, M̃(q(y), u) =
∫

q(y)log
(

q(y)
F (y,Y,xd,u)

)
dy, and

using Eq. (10), we obtain

M(q(y)) ≤ min
u

M̃(q(y), u). (11)

The Majorization-Minimization algorithm repeatably constructs
an upper concave bound for M(q(y), u) that is iteratively tighten-
ing until convergence. In particular, it computes a sequence of pa-
rameters vector uk that minimizes M̃(q(y), u) and then, for a fixed
uk, it creates the new estimation of q(y), qk(y), that minimizes
CKL(q(y)||p(y|Y, xd)). Hence the following algorithm can be used
to find the estimations of q(y) and u.
Algorithm 1 Majorization-Minimization algorithm for the estima-
tion of the posterior distribution.
Given u1 ∈ (R+)Bp, for k = 1, 2, ...

1. Find

qk(y)= arg min
q(y)

∫
q(y) × log

(
q(y)

F (y, Y, xd, uk

)
dy.

(12)

2. Find

uk+1 = arg min
u

∫
qk(y) × log

(
qk(y)

F (y, Y, xd, u

)
dy.

(13)

until a stopping criterion is met.
The solution of Eq. (13) is given by

uk+1
b (i) = Eqk(y)

[
(Δh

i (yb))
2 + (Δv

i (yb))
2
]
, (14)

for i = 1, ..., p. Note that uk+1
b represents the local spatial activity of

yb and they will be high for pixels in a neighborhood with high level
of detail, thus preserving the image structures, and low for zones
with low spatial activity where the quadratic term in Eq. (9) will
keep it smooth.

By differentiating the integral on the right hand side of Eq. (12)
with respect to q(y) and setting it equal to zero, we obtain

qk(y) = N (y|Eqk(y)[y], covqk(y)[y]), (15)

with
covqk(y)[y] = A−1(uk) (16)

and
Eqk(y)[y] = covqk(y)[y]φk, (17)
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Measure Band NSCT in [4] SR in [5] Proposed
COR R 0.91 0.84 0.97

G 0.91 0.98 0.97

B 0.90 0.62 0.95
SSIM R 0.79 0.90 0.96

G 0.81 0.94 0.96
B 0.81 0.85 0.95

PSNR R 26.75 32.68 37.25
G 27.17 35.50 37.51
B 27.65 30.15 36.13

ERGAS - 5.76 3.12 1.85

Table 1. Synthetic Image Quantative Results

where φk is the (B × p) × 1 vector,

φk = (diag(β) ⊗ Ht)Y +
γ

B
(1B ⊗

∑
j

Ct
jxd), (18)

where 1B is the column vector of size 1 × B with all its elements
equal to one, and

A =

⎛
⎜⎜⎜⎝

α1ς(u
k
1) 0p · · · 0p

0p α2ς(u
k
2) · · · 0p

...
...

. . .
...

0p 0p · · · αBς(uk
B)

⎞
⎟⎟⎟⎠ (19)

+diag(β) ⊗ HtH +
γ

B2
(1B×B ⊗

∑
j,k

Ct
jCk),

where 1B×B is a B × B matrix with all its elements equal to one,
IB is a B × B identity matrix, ⊗ is the Kronecker product, β =
(β1, β2, ..., βB)t and

ς(uk
b ) = (Δh)tW (uk

b )(Δh) + (Δv)tW (uk
b )(Δv), (20)

for b = 1, ..., B, where Δh and Δv represent p × p convolution
matrices associated with the first order horizontal and vertical differ-
ences, respectively, and

W (uk
b ) = diag

(
uk

b (i)−
1
2

)
, (21)

is a p × p diagonal matrix, for i = 1, ..., p. This is a spatial adap-
tivity matrix since it controls the amount of smoothing at each pixel
location depending on the strength of the intensity variation at that
pixel, as expressed by the horizontal and vertical intensity gradient
[5].

5. EXPERIMENTAL RESULTS

In order to test the proposed method, we used both a synthetic color
image and a real SPOT5 image. We compared the proposed SR us-
ing contourlets method with the SR method in [5] and the additive
NSCT method [4]. To assess the spatial improvement of the pan-
sharpened images we use the correlation of the high frequency com-
ponents (COR) [1] which takes values between zero and one (the
higher the value the better the quality of the pansharpened image).
Spectral fidelity was assessed by means of the peak signal-to-noise
ratio (PSNR), the Structural Similarity Index Measure (SSIM) [8],
an index ranging from −1 to +1 with +1 corresponding to exactly
equal images, and the erreur relative globale adimensionnelle de

(a) Original image (b) Observed PAN image

(c) Observed MS image (d) NSCT method in [4]

(e) SR method in [5] (f) proposed method.

Fig. 1. Results for the synthetic image

synthése (ERGAS) [9] index, a global criterion for what the lower
the value, specially a value lower than the number of bands in the
image, the higher the quality of the pansharpened image.

In order to conduct experiments where the ground truth is
known, we used synthetic multispectral observations, obtained from
the color image, displayed in Fig. 1(a), by convolving it with mask
0.25 × 12×2 to simulate sensor integration, and then downsampling
it by a factor of two by discarding every other pixel in each direction
and adding zero mean Gaussian noise with variance 16. For the
PAN image we used the luminance of the original color image and
zero mean Gaussian noise of variance 9 was added. The observed
PAN image and MS image, scaled to the size of the PAN image for
displaying purposes, are shown in Fig. 1(b) and (c), respectively.

The proposed algorithm was run until the criterion ‖yk −
yk−1‖2/‖yk−1‖2 < 10−4 was satisfied, where yk denotes the
mean of qk(y), which typically is reached within 5 iterations. The
values of parameters were experimentally chosen to be αb = 0.045,
βb = 1/16, b = 1, 2, 3 and γ = 1/9. We are working on the
method that it can estimate the parameters automatically. The re-
sulted images corresponding to the reconstruction of the synthetic
image using the NSCT method in [4], the SR method in [5], and the
proposed method are displayed in Fig. 1(d)-(f), respectively, and Ta-
ble 1 shows the corresponding quantitative results. The highlighted
value in the table presents the highest value for each measure. The
proposed method provides better results for each measure except
for the COR of band 2 (green) where a very high value, similar to
the one obtained by the method in [5] is obtained. The COR values
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reflect that all methods are able to incorporate the details of the PAN
image into the pansharpened one, although the SR method in [5],
see Fig. 1(e), introduced less details in the band 3 (blue) since the
blue band contributes only a 10% to the PAN image and more into
the band 2 since it has the highest contribution, a 60%, which is
reflected as a greenish color near the edges of the image. The NSCT
method in [4] incorporates details in all the bands but produces a
noisy image, see Fig. 1(d). The proposed method (Fig. 1(f)) is able
to incorporate detail in all the bands while controlling the noise. The
spectral fidelity measures show that the proposed method performs
better than the competing method, which is also clear from the im-
age in Fig. 1(f), producing an image that is not as noisy as the NSCT
method in [4] (Fig. 1(d)) and preserves better the colors than the SR
method in [5] (Fig. 1(e)), while better controlling the noise. It is
remarkable the high SSIM and low ERGAS values which reflect the
high quality of the resulting images. Note also that the PSNR for the
proposed method is about 10dB higher than NSCT method in [4]
and from 2 to almost 6 dB higher than for the SR method in [5].

In a second experiment, the method was tested on real SPOT5
dataset, where the MS image covers a region of interest of 256 by
256 pixels with pixel resolution of 10 m, while the PAN image is
512 by 512 pixels with a pixel resolution of 5 m. The MS image
consists of four bands from the visible and infrared region corre-
sponding to green (b1: 0.50-0.59 μm), red (b2: 0.61-0.68 μm), Near
IR (b3: 0.78-0.89 μm), Mid IR(b4: 1.58-1.75 μm), while the PAN
image consists of a single band covering the visible and NIR (0.48-
0.71 μm). Figure 2(a) shows a region of the RGB color image repre-
senting bands 1 to 3 of the MS image. Its corresponding PAN image
is depicted in Fig. 2(b).

Visual inspections of the resulting images, displayed in Figs. 2(c)-
(f), reveals similar conclusions to the obtained for the synthetic
image. The proposed method provides the best result, preserving
the spectral properties of MS image while incorporating the high
frequencies from the panchromatic image and controlling the noise
in the image. Figure 2(c) depicts the bicubic interpolation of the MS
image and although the colors are perfect, no detail is appreciated.
The NSCT method in [4] (Fig.2(d)) provides a detailed image but
quite noisy, the SR method in [5] provides good details for bands 1
and 2, see Fig.2(e), but not for bands 3 and 4 since the PAN image
does not cover those bands. This is why the blue color in Fig.2(e),
seems to be vanished. The proposed method successfully preserves
the colors, incorporates the details from the PAN image into the
pansharpened image and controls the noise in the images.

6. CONCLUSIONS

In this paper, a new pansharpening method based on super-resolution
reconstruction and non subsampled contourlet transform has been
presented. The proposed method preserves the spectral properties
of MS image while incorporating the high frequencies from the
panchromatic image and controlling the noise in the image.

The efficiency of pansharpening methods has been evaluated by
means of visual and quantitative analysis, for synthetic and real data.
Based on the presented experiments, the proposed method does sig-
nificantly outperform NSCT-based and TV-based super-resolution
methods.
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