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Way back when we began to develop this approach, our objectives were clear.

We aspired to develop a sound, practical theory for organizing the quantizer-

dependent quality of encoding in progressive image transmission. The basic

elements of this theory would be a novel scheme for information prioritization,

the mechanism of bit rate allocation among competing quantizers, and the

strategy for coder performance evaluation.

Introduction

In the coding community the standard approach is often to usethe peak signal to noise ratio

(PSNR) for coder evaluation, the largest reduction in some square error for information prior-

ization, and a theory of (minimal) distortion as a function of rate for bit allocation. Thus, any

coding scheme that does not attempt to minimize some square-error cannot be expected to prove

its worth with a curve of PSNR versus bit rate, which may be a constraint on the formulation of

new coding schemes capable of making an intelligent use of visual information. This may be

justified assuming the correctness of the PSNR, but what are the actual properties of the PSNR?

For example, does it take into account the effectiveness of the information, so discriminating
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relevant structures from unwanted detail and noise? Does itexamine whether the properties

of the original image at significant points are equal to the properties of the decoded output at

corresponding locations? The point is that whereas we have no evident affirmative answer to

these and other questions, the PSNR does not appear capable of predicting visual distinctness

from digital imagery as perceived by human observers.

Regarding the issue of information prioritization, standard schemes prioritize the code bits

often according to their reduction in distortion, and a major objective in this context is to select

the most important information—which yields the largest distortion reduction—to be transmit-

ted first, where the distortion is usually a squared-error metric. Since the quality of the recon-

structions at different bit rates strongly depends on the visual distinctness of the perceived data,

the information selected to be transmitted first by any prioritization scheme at each truncation

time should achieve the largest visual distinctness over still-to-be-transmitted data. The natu-

ral question is whether a squared-error metric is capable torank order visual information with

respect to the visual distinctness as measured by humans, and thus, the largest squared-error

reduction can be used to prioritize, with reliability, the most important information according to

their distinctness.

With respect to the issue of distribution of bits, in the standard approach of Rate-Distortion

Theory (the idea of rate distortion was introduced in 1948 byShannon) a bit rate allocation

problem among competing quantizers (e.g., spatial regions) is optimally solved for a given bit

budget if the marginal change in distortion is the same for all regions. Again, the squared-error

metric is the most popular distortion measure used for continuous alphabets. Its advantages

are its simplicity and its relationship to least squares prediction. To our understanding, the

problem with the standard approach of rate (square-error) distortion is that there exist some

questions yet to be answered concerning the properties thatobey its solution for bit allocation

among competing regions. For example, if we view the regionsas citizens of a society, does this
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solution respect the views of the regions (citizens)? Is this solution blind to the kind of objects

that the regions contain? Could it be interpreted as a fair aggregation of individual interests?

Does the solution of the distribution problem change by virtue of a change in the scale of the

benefits regions receive from their respective allocations?

Developing an Axiomatic Approach for Rationality in Progres-
sive Transmission

Here we propose that a different approach to solve the problems of evaluation, prioritization, and

distribution can be to first state some general principles that the solution of the problem in each

case must obey, and then derive the solution that satisfies exactly the principles. The axioms

may, of course, be incompatible. It is not rare that one wouldlike to impose more axioms that

are jointly compatible. It may also happen that the axiomatic solution resulting from a list of

axioms that all seem appealing is found to behave unsatisfactorily in some significant example.

To overcome this problem, one must formalize the example andstate an additional axiom that

specifies how the solution should behave in this situation, and finally determine the greatest

subset of axioms from the original list that are compatible with the new axiom. Of course,

compatibility may hold for several distinct such subsets. In any case, the critical difference

with respect to the approaches discussed above is that we will be able to predict exactly the

behavior of the axiomatic solution according to its principles. For example, the principles of

rationality avoid certain forms of behavioral inconsistency in situations in which choices are to

be made among available quantizers for their prioritization; the principles of cooperation among

quantizers may be needed to increase their risk tolerance invariable-resolution compression,

and the principle of justice provides conditions for fair quantizer formation.

In a rational system for transmission, a discrete wavelet transform provides a representation

of the original image. A tree structure, called a spatial orientation tree, naturally defines the
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spatial relationship in the pyramid that results from the transformation. Each node of the tree

corresponds to a pixel, and its direct descendants (offspring) correspond to the pixels of the

same spatial orientation in the next finer level of the pyramid. Transform coefficients in a

spatial orientation tree correspond to a particular regionof the original image, and thus, each

spatial orientation tree is associated with one spatial region. Individual trees may be grouped

together to form a reduced number of quantizers that convey structural information about the

picture to the rational transmission. A “just” quantizer formation will give no tree a cause for

“reasonable regret” in rational progressive transmission(Reference (1)).

That is, they are all able to achieve the same overall success. The basic assumption is that

justice requires compensating individual spatial orientation trees for aspects of their prioriti-

zation for which they are not responsible and which hamper their achievement of whatever is

valuable in their own transmission. Differences for which they are responsible may be ruled by

rationality (Reference (2)).

A simple condition to perform a just quantizer formation canbe the equality of the a priori

importance of the spatial orientation trees that are grouped together in one quantizer, from which

we understand the key role of the a priori importance of a treein the development of a theory

for just quantizer formation.

A prioritization protocol whereby the ordering of importance is determined within a rational

approach, chooses at each truncation time among alternative quantizers for further transmission

in such a way as to avoid certain forms of behavioral inconsistency (Reference (2)). The system

may exhibit either a risk-seeking posture with respect to “gambles” on quantizer-dependent

quality of encoding or risk-averse behavior.

By changing its risk attitude within a rational approach that avoids certain forms of behav-

ioral inconsistency, a quantizer may modify the gain in benefit that results from a particular bit

stream candidate to be transmitted at a truncation time. At medium and high bit rates, quantiz-
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ers exhibit only low risk tolerance since they are aware thatthe next truncation time might be

the last one (Reference (4)).

Anyway, since at extremely low bit rates the target bit rate may be far away, quantizers are

able to exhibit higher risk tolerance, and as a consequence,they will have a greater possibility

of accelerating their benefit gain. The cooperation among subsets of the quantizers may be

needed to increase the risk tolerance at very low bit rates within a rational approach and still

prioritize first the more relevant pieces of information at each truncation time (References (3)):

The members of any coalition of quantizers can then negotiate a feasible change in the risk

attitudes of the quantizers of the coalition that would benefit them all. The final risk tolerance

of different quantizers comes from the balance of power among the coalitions of quantizers;

and the prioritization protocol chooses to transmit, at each truncation time, a bit stream for the

quantizer that receives the highest payment (per coding bit) in a coalitional game that minimizes

the dissatisfaction of coalitions.

Experimental results should illustrate the comparative performance of the rational system

against the state of the art in progressive transmission. Reference (6) shows the principles of a

visual distinctness measure that can be used to evaluate image compression methods. The book

ends with an epilogue that summarizes the key results and conclusions plus four appendixes

containing basic background material.

All software (with documentation) developed in the book maybe accessed on the Internet

sitehttp://decsai.ugr.es/cvg/REWIC or by anonymous ftp todecsai.ugr.es

with the pathpub/cvg/software. All material is made available to other researchers for

academic use only.

This is intended to be a simple and accessible study on the role of rationality, cooperation,

and justice in progressive image transmission. From the above discussion, it is clear that we

were drawn to the problem of progressive transmission from backgrounds in theories of dis-
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tributive justice and game theory, because of the difficultyof capturing the concept of relative

information for predicting visual distinctness from 2D digital images. We hope that you find

a few key ideas and techniques that provide intuition towardnew questions, and also that our

answers to problems of evaluation, prioritization, and distribution allow extensive interpreta-

tion. For example, the information theoretic measure for predicting visual distinctness and the

expected increase in utility for information prioritization are related (Reference (7)).

Experimental Results

We have developed an algorithm, named after REWIC, following the rational approach to pro-

gressive transmission as described in (2). Also we have developed an algorithm called “Rational

Embedded coder with CONstraints (RECON)” (see (5)), which implements the rational system

for transmission at very low bit rates.

Here we firstly provide a set of psychophysical experiments to test the comparative sub-

jective quality of images reconstructed using the state of the art in progressive transmission,

SPIHT (8), REWIC, and RECON. Second, we perform a thorough comparison of RECON and

SPIHT on a data set of 100 test images using an objective coderselection procedure.

0.1 Subjective coder evaluation

0.1.1 Experiment 1

Here we perform a comparison of subjective performance of the state-of-the-art coder in pro-

gressive transmission SPIHT with RECON and REWIC, using a psychophysical experiment.

To this aim, test image#24 (Fig. 1) was first compressed to the same very low bit rates us-

ing the three compression methods. Figure 2 shows the respective reconstructions at 0.0156,

0.0312, 0.0625, and 0.08 bpp.

Fifteen volunteers subjectively evaluated the reconstructed images following an ITU-R Rec-
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#2#1 #3 #4 #6 #9#7 #8 #10#5

#12#11 #13 #14 #16 #19#17 #18 #20#15

#22#21 #23 #24 #26 #29#27 #28 #30#25

#32#31 #33 #34 #36 #39#37 #38 #40#35

#42#41 #43 #44 #46 #49#47 #48 #50#45

#52#51 #53 #54 #56 #59#57 #58 #60#55

#62#61 #63 #64 #66 #69#67 #68 #70#65

#72#71 #73 #74 #76 #79#77 #78 #80#75

#82#81 #83 #84 #86 #89#87 #88 #90#85

#93 #94 #96 #99#97 #98 #100#95#91 #92

Figure 1: Data set of standard 512 × 512 grayscale test images.
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REWIC

0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

SPIHT

0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

RECON

Figure 2: Reconstructions of the test image # 24 using SPIHT, REWIC, and RECON at 0.08,
0.0625, 0.03125, and 0.015625 bpp.
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Table 1: Quality factors given by human observers.

bpp
MEAN QUALITY FACTOR

SPIHT REWIC RECON

0.015625 1.00 1.07 1.33
0.03125 1.27 2.07 2.07
0.0625 1.80 2.27 2.47

0.08 2.33 2.93 2.73

MEAN 1.60 2.09 2.15

ommendation 500-10. Table 1 summarizes mean quality factors for reconstructions illustrated

in Fig. 2. As can be seen from this table, quality factors predict a better visual fidelity using RE-

CON than with the SPIHT reconstructions. We know that the visual quality of SPIHT decoded

outputs is bad at 0.0625, 0.03125, and 0.015625 bpp. However, the visual quality of RECON

reconstructions is bad only at 0.015625 bpp.

Computational times (in seconds) for REWIC and RECON on several test images of the

database are shown in Table 2. The times here are for an Intel Pentium IV at 2.4 GHz.

0.1.2 Experiment 2

The test image#3 (Fig. 1) was first compressed at 0.0156, 0.0312, 0.0625, and 0.08 bpp using

SPIHT and RECON. Figure 3 shows the respective reconstructions.

Fifteen volunteers nonexpert in image compression subjectively evaluated the reconstructed

images using ITU-R Recommendation 500-10. Table 3 summarizes the mean quality factors

for different decoded outputs using the compression methods.

Figure 4 shows plots of rate vs. PSNR and rate vs. CG for SPIHT and RECON at 0.0156,

0.0312, 0.0625, and 0.08 bpp. As can be seen from these plots,the PSNR predicts that the

SPIHT results in a higher image fidelity than RECON, which does not appear to correlate with

the subjective quality estimated by human observers (see Table 3). On the contrary, the overall
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Table 2: Computational time for REWIC and RECON.

Computational time (in seconds) for REWIC and RECON
IMAGE Rate (bpp) REWIC RECON

# 3

0.015625

0.03125

0.0625

0.125

0.25

0.5

1.3

1.3

1.3

1.3

1.3

1.4

1.5

1.7

1.9

1.9

1.9

2.0

# 24

0.015625

0.03125

0.0625

0.125

0.25

0.5

1.2

1.2

1.2

1.3

1.3

1.3

1.5

1.6

1.8

1.8

1.8

1.9

# 65

0.015625

0.03125

0.0625

0.125

0.25

0.5

1.1

1.1

1.1

1.2

1.2

1.2

1.3

1.5

1.7

1.7

1.7

1.8
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0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

RECON

0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

SPIHT

Figure 3: Reconstructions of the test image #3 using SPIHT and RECON at 0.0156, 0.0312,
0.0625, and 0.08 bpp.
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Table 3: Quality factors given by human observers.

bpp
MEAN QUALITY FACTOR

SPIHT RECON

0.015625 1.00 1.07
0.03125 1.47 1.87
0.0625 1.80 2.47
0.08 2.47 2.93

MEAN 1.69 2.09
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Figure 4: Plots of rate vs. PSNR and rate vs. CG for SPIHT and RECON at 0.0156, 0.0312,
0.0625, and 0.08 bpp.

impression is that, as predicted by the CG, RECON results in ahigher image fidelity than

SPIHT, which correlates with subjective fidelity by human observers in Table 3. Recall that an

optimal coder in the CG sense tends to produce the lowest value of the CG.

0.1.3 Experiment 3

A new test image was compressed using the SPIHT and RECON coders. Figure 5 shows the re-

spective reconstructions at 0.0156, 0.0312, 0.0625, and 0.08 bpp. A psychophysical experiment

was also performed, and again, 15 volunteers subjectively evaluated the reconstructed images

using the ITU-R Recommendation 500-10. Table 4 summarizes the mean quality factors that
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Table 4: Quality factors given by human observers.

bpp
MEAN QUALITY FACTOR

SPIHT RECON

0.015625 1.00 1.07
0.03125 1.13 1.87
0.0625 2.20 2.87
0.08 3.13 3.13

MEAN 1.87 2.24

were provided by this subjective evaluation.

Figure 6 shows plots of rate vs. PSNR and rate vs. CG for RECON and SPIHT at 0.08,

0.0625, 0.03125, and 0.015625 bpp. The PSNR predicts that SPIHT results in a higher image

fidelity than RECON, which does not appear to correlate with the subjective quality estimated

by human observers (Table 4). On the contrary, as can be seen from Fig. 6, the CG predicts

that RECON results in a higher image fidelity than SPIHT, which correlates with the subjective

fidelity by human observers given in Table 4.

0.2 Objective coder evaluation

Here we perform a more thorough comparison of RECON and SPIHT, based on the objective

coder selection procedure presented in (6). Tests reported here were performed on the data set

composed of 100 standard512 × 512 grayscale test images shown in Fig. 1.

Tables 5 and 6 summarize the results of this experiment on thetest images of the data set in

Fig. 1: 25 out of 100 test images (25%) have passed conditions(1) and (2) in the coder selection

procedure. Hence, RECON is significantly better than SPIHT with a high confidence level for

25% of the data set of test images, whereas SPIHT is better than RECON for 1% of the images.
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0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

RECON

0.0156 bpp

0.0312 bpp

0.0625 bpp

0.08 bpp

SPIHT

Figure 5: Reconstructions of test image #65 using SPIHT and RECON at 0.0156, 0.0312,
0.0625, and 0.08 bpp.
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Figure 6: For image #65, plots on rate vs. PSNR and rate vs. CG for RECON and SPIHT at
0.08, 0.0625, 0.03125, and 0.015625 bpp.

Table 5: Coder selection procedure.

CODER SELECTION PROCEDURE WITH % CONFIDENCE (SPIHT/RECON)
Condition 1 Condition 2

Image Number (y/n) (y/n) Confidence

16, 25, 26, 27, 35, 39, 41,

42, 49, 55, 63, 65, 66, 71,

77, 81, 88, 89, 93, 95

y y 99%

2 y y 95%
36, 57, 61, 67 y y 90%

Table 6: Comparative performance of RECON and SPIHT.

Total Percentage of Images at which RECON/SPIHT
is Significantly Better than SPIHT/RECON

with at Least 90% Confidence
RECON better than SPIHT 25%
SPIHT better than RECON 1%
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