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Way back when we began to develop this approach, our objectives were clear.
We aspired to develop a sound, practical theory for organizing the quantizer-
dependent quality of encoding in progressive image transmission. The basic
elementsof thistheory would be a novel schemefor information prioritization,
the mechanism of bit rate allocation among competing quantizers, and the

strategy for coder performance evaluation.

I ntroduction

In the coding community the standard approach is often tathisgoeak signal to noise ratio
(PSNR) for coder evaluation, the largest reduction in soquaee error for information prior-
ization, and a theory of (minimal) distortion as a functidrrate for bit allocation. Thus, any
coding scheme that does not attempt to minimize some sgueoeeannot be expected to prove
its worth with a curve of PSNR versus bit rate, which may bersst@int on the formulation of
new coding schemes capable of making an intelligent usesofavinformation. This may be
justified assuming the correctness of the PSNR, but whaharadtual properties of the PSNR?

For example, does it take into account the effectiveneshefriformation, so discriminating
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relevant structures from unwanted detail and noise? Doesaimine whether the properties
of the original image at significant points are equal to thepprties of the decoded output at
corresponding locations? The point is that whereas we hawvident affirmative answer to

these and other questions, the PSNR does not appear capabéelicting visual distinctness

from digital imagery as perceived by human observers.

Regarding the issue of information prioritization, starttlschemes prioritize the code bits
often according to their reduction in distortion, and a majojective in this context is to select
the most important information—which yields the largestdition reduction—to be transmit-
ted first, where the distortion is usually a squared-errotrimeSince the quality of the recon-
structions at different bit rates strongly depends on tkaalidistinctness of the perceived data,
the information selected to be transmitted first by any pization scheme at each truncation
time should achieve the largest visual distinctness ovittetbe-transmitted data. The natu-
ral question is whether a squared-error metric is capabtartk order visual information with
respect to the visual distinctness as measured by humanighas, the largest squared-error
reduction can be used to prioritize, with reliability, th@stimportant information according to
their distinctness.

With respect to the issue of distribution of bits, in the stard approach of Rate-Distortion
Theory (the idea of rate distortion was introduced in 19483tynnon) a bit rate allocation
problem among competing quantizers (e.g., spatial regjisrgptimally solved for a given bit
budget if the marginal change in distortion is the same floreglions. Again, the squared-error
metric is the most popular distortion measure used for oootis alphabets. Its advantages
are its simplicity and its relationship to least squaredtéeon. To our understanding, the
problem with the standard approach of rate (square-eriistpidion is that there exist some
guestions yet to be answered concerning the propertie®b®gt its solution for bit allocation

among competing regions. For example, if we view the regeengtizens of a society, does this



solution respect the views of the regions (citizens)? Is slilution blind to the kind of objects
that the regions contain? Could it be interpreted as a faregation of individual interests?
Does the solution of the distribution problem change byuérdf a change in the scale of the

benefits regions receive from their respective allocatons

Developing an Axiomatic Approach for Rationality in Progres-
sive Transmission

Here we propose that a different approach to solve the pmubtd evaluation, prioritization, and
distribution can be to first state some general principlesttine solution of the problem in each
case must obey, and then derive the solution that satisfadlgxhe principles. The axioms
may, of course, be incompatible. It is not rare that one wdikiEglto impose more axioms that
are jointly compatible. It may also happen that the axiomsgilution resulting from a list of
axioms that all seem appealing is found to behave unsatisiizgdn some significant example.
To overcome this problem, one must formalize the examplestai# an additional axiom that
specifies how the solution should behave in this situatiod, fanally determine the greatest
subset of axioms from the original list that are compatibléghvthe new axiom. Of course,
compatibility may hold for several distinct such subsets.ahy case, the critical difference
with respect to the approaches discussed above is that weeavdble to predict exactly the
behavior of the axiomatic solution according to its priegp For example, the principles of
rationality avoid certain forms of behavioral inconsistgin situations in which choices are to
be made among available quantizers for their prioritizgttbe principles of cooperation among
quantizers may be needed to increase their risk tolerangariable-resolution compression,
and the principle of justice provides conditions for fairaqtizer formation.

In a rational system for transmission, a discrete wavedgtsiorm provides a representation

of the original image. A tree structure, called a spatiakotation tree, naturally defines the



spatial relationship in the pyramid that results from thesformation. Each node of the tree
corresponds to a pixel, and its direct descendants (offgpigorrespond to the pixels of the
same spatial orientation in the next finer level of the pydamiransform coefficients in a

spatial orientation tree correspond to a particular regibthe original image, and thus, each
spatial orientation tree is associated with one spatiabregindividual trees may be grouped
together to form a reduced number of quantizers that contregtsral information about the

picture to the rational transmission. A “just” quantizerrf@tion will give no tree a cause for
“reasonable regret” in rational progressive transmisgideferencel)).

That is, they are all able to achieve the same overall sucdéssbasic assumption is that
justice requires compensating individual spatial origatatrees for aspects of their prioriti-
zation for which they are not responsible and which hampeir gchievement of whatever is
valuable in their own transmission. Differences for whibbky are responsible may be ruled by
rationality (Reference?)).

A simple condition to perform a just quantizer formation danthe equality of the a priori
importance of the spatial orientation trees that are grdupgether in one quantizer, from which
we understand the key role of the a priori importance of aimgbe development of a theory
for just quantizer formation.

A prioritization protocol whereby the ordering of importanis determined within a rational
approach, chooses at each truncation time among altegrgaiantizers for further transmission
in such a way as to avoid certain forms of behavioral incdastsy (Reference?)). The system
may exhibit either a risk-seeking posture with respect tarfiples” on quantizer-dependent
quality of encoding or risk-averse behavior.

By changing its risk attitude within a rational approachtteoids certain forms of behav-
ioral inconsistency, a quantizer may modify the gain in biétieat results from a particular bit

stream candidate to be transmitted at a truncation time. édiom and high bit rates, quantiz-



ers exhibit only low risk tolerance since they are aware thatnext truncation time might be
the last one (Referencd)j.

Anyway, since at extremely low bit rates the target bit raegyrbe far away, quantizers are
able to exhibit higher risk tolerance, and as a consequéneg will have a greater possibility
of accelerating their benefit gain. The cooperation amorggets of the quantizers may be
needed to increase the risk tolerance at very low bit ratéisinva rational approach and still
prioritize first the more relevant pieces of information atk truncation time (Reference®));
The members of any coalition of quantizers can then negotidieasible change in the risk
attitudes of the quantizers of the coalition that would lietleem all. The final risk tolerance
of different quantizers comes from the balance of power apntbe coalitions of quantizers;
and the prioritization protocol chooses to transmit, aheagncation time, a bit stream for the
quantizer that receives the highest payment (per codinpgiatcoalitional game that minimizes
the dissatisfaction of coalitions.

Experimental results should illustrate the comparativégosance of the rational system
against the state of the art in progressive transmissiofer&ace 6) shows the principles of a
visual distinctness measure that can be used to evaluateiomempression methods. The book
ends with an epilogue that summarizes the key results andusians plus four appendixes
containing basic background material.

All software (with documentation) developed in the book nbayaccessed on the Internet
sitehtt p: // decsai . ugr. es/ cvg/ REW Cor by anonymous ftp talecsai . ugr. es
with the pathpub/ cvg/ sof t war e. All material is made available to other researchers for
academic use only.

This is intended to be a simple and accessible study on teefahtionality, cooperation,
and justice in progressive image transmission. From thee&lscussion, it is clear that we

were drawn to the problem of progressive transmission frackgrounds in theories of dis-



tributive justice and game theory, because of the difficaftgapturing the concept of relative
information for predicting visual distinctness from 2D d& images. We hope that you find
a few key ideas and techniques that provide intuition towed questions, and also that our
answers to problems of evaluation, prioritization, andribstion allow extensive interpreta-
tion. For example, the information theoretic measure fedpting visual distinctness and the

expected increase in utility for information prioritizati are related (Referenc@)j.

Experimental Results

We have developed an algorithm, named after REWIC, follgwire rational approach to pro-
gressive transmission as describeddn Also we have developed an algorithm called “Rational
Embedded coder with CONstraints (RECON)” (sBp,(which implements the rational system
for transmission at very low bit rates.

Here we firstly provide a set of psychophysical experimeattest the comparative sub-
jective quality of images reconstructed using the statehefdrt in progressive transmission,
SPIHT @), REWIC, and RECON. Second, we perform a thorough compaas&ECON and

SPIHT on a data set of 100 test images using an objective setkstion procedure.

0.1 Subjective coder evaluation
0.1.1 Experiment 1

Here we perform a comparison of subjective performance @fsthte-of-the-art coder in pro-
gressive transmission SPIHT with RECON and REWIC, usingy&ipgphysical experiment.
To this aim, test imageé#t24 (Fig. 1) was first compressed to the same very low bit rates us-
ing the three compression methods. Figure 2 shows the regpeeconstructions at 0.0156,
0.0312, 0.0625, and 0.08 bpp.

Fifteen volunteers subjectively evaluated the reconggditnages following an ITU-R Rec-



Figure 1: Data set of standard 512 x 512 grayscale test images.



SPIHT REWIC RECON

0.0156 bpp 0.0156 bpp 0.0156 bpp

0.0312 bpp

0.0625 bpp 0.0625 bpp 0.0625 bpp

0.08 bpp pp

Figure 2: Reconstructions of the test image # 24 using SPIHT, REWIC, and RECON at 0.08,
0.0625, 0.03125, and 0.015625 bpp.



Table 1: Quality factors given by human observers.

MEAN QUALITY FACTOR

bpp
SPIHT [ REWIC [ RECON
0.015625 1.00 1.07 1.33
0.03125 1.27 2.07 2.07
0.0625 1.80 2.27 2.47
0.08 2.33 2.93 2.73

| MEAN || 160 [ 209 | 215 |

ommendation 500-10. Table 1 summarizes mean quality méboreconstructions illustrated
in Fig. 2. As can be seen from this table, quality factors tealbetter visual fidelity using RE-
CON than with the SPIHT reconstructions. We know that thealisjuality of SPIHT decoded
outputs is bad at 0.0625, 0.03125, and 0.015625 bpp. Hoywneevisual quality of RECON
reconstructions is bad only at 0.015625 bpp.

Computational times (in seconds) for REWIC and RECON onrsgvest images of the

database are shown in Table 2. The times here are for an kendiui 1V at 2.4 GHz.
0.1.2 Experiment 2

The test image#3 (Fig. 1) was first compressed at 0.0156, 0.0312, 0.0625, &8&ldpp using
SPIHT and RECON. Figure 3 shows the respective reconstnti

Fifteen volunteers nonexpert in image compression subgygtevaluated the reconstructed
images using ITU-R Recommendation 500-10. Table 3 sumestlze mean quality factors
for different decoded outputs using the compression method

Figure 4 shows plots of rate vs. PSNR and rate vs. CG for SPHITRECON at 0.0156,
0.0312, 0.0625, and 0.08 bpp. As can be seen from these thet$SNR predicts that the
SPIHT results in a higher image fidelity than RECON, whichsloet appear to correlate with

the subjective quality estimated by human observers (seke Bd. On the contrary, the overall



Table 2: Computational time for REWIC and RECON.

Computational time (in seconds) for REWIC and RECON

IMAGE || Rate (bpp)|| REWIC | RECON
0.015625 1.3 1.5
0.03125 1.3 1.7
0.0625 1.3 1.9
#3 0.125 1.3 1.9
0.25 1.3 1.9
0.5 1.4 2.0
0.015625 1.2 L5
0.03125 1.2 1.6
0.0625 1.2 1.8
i 0.125 1.3 1.8
0.25 1.3 1.8
0.5 1.3 1.9
0.015625 1.1 1.3
0.03125 1.1 L5
0.0625 1.1 1.7
#65 0.125 1.2 1.7
0.25 1.2 1.7
0.5 1.2 1.8
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0.0625 bpp
/

0.08 bpp

Figure 3: Reconstructions of the test image #Li using SPIHT and RECON at 0.0156, 0.0312,
0.0625, and 0.08 bpp.
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Table 3: Quality factors given by human observers.

MEAN QUALITY FACTOR
bpp
SPIHT | RECON
0.015625 1.00 1.07
0.03125 1.47 1.87
0.0625 1.80 2.47
0.08 2.47 2.93
| MEAN | 169 | 209 |
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Figure 4: Plots of rate vs. PSNR and rate vs. CG for SPIHT and RECON at 0.0156, 0.0312,

0.0625, and 0.08 bpp.

impression is that, as predicted by the CG, RECON results imgher image fidelity than

SPIHT, which correlates with subjective fidelity by humarsetvers in Table 3. Recall that an

(bit/pixel)

optimal coder in the CG sense tends to produce the lowest wdlthe CG.

0.1.3 Experiment 3

A new test image was compressed using the SPIHT and RECONscaddgure 5 shows the re-
spective reconstructions at 0.0156, 0.0312, 0.0625, @8&ldpp. A psychophysical experiment
was also performed, and again, 15 volunteers subjectiwaluated the reconstructed images

using the ITU-R Recommendation 500-10. Table 4 summartesnean quality factors that
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Table 4: Quality factors given by human observers.

MEAN QUALITY FACTOR
bpp
SPIHT [ RECON
0.015625 1.00 1.07
0.03125 1.13 1.87
0.0625 2.20 2.87
0.08 3.13 3.13
| MEAN | 187 | 224 |

were provided by this subjective evaluation.

Figure 6 shows plots of rate vs. PSNR and rate vs. CG for RECQNSPIHT at 0.08,
0.0625, 0.03125, and 0.015625 bpp. The PSNR predicts thekTS®esults in a higher image
fidelity than RECON, which does not appear to correlate withgubjective quality estimated
by human observers (Table 4). On the contrary, as can be se@nFig. 6, the CG predicts
that RECON results in a higher image fidelity than SPIHT, \tdorrelates with the subjective

fidelity by human observers given in Table 4.

0.2 Objective coder evaluation

Here we perform a more thorough comparison of RECON and SPbE3ed on the objective
coder selection procedure presenteddhn ([Tests reported here were performed on the data set
composed of 100 standabd2 x 512 grayscale test images shown in Fig. 1.

Tables 5 and 6 summarize the results of this experiment oteftémages of the data set in
Fig. 1: 25 out of 100 test images (25%) have passed condifigrand (2) in the coder selection
procedure. Hence, RECON is significantly better than SPIHtT & high confidence level for
25% of the data set of test images, whereas SPIHT is betteiRE€LON for 1% of the images.
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SPIHT RECON

Figure 5. Reconstructions of test image #63 Aising SPIHT and RECON at 0.0156, 0.0312,
0.0625, and 0.08 bpp.
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Figure 6: For image #65, plots on rate vs. PSNR and rate vs. CG for RECON and SPIHT at
0.08, 0.0625, 0.03125, and 0.015625 bpp.

Table 5: Coder selection procedure.

CODER SELECTION PROCEDURE WITH % CONFIDENCE (SPIHT/RECON)
Condition 1 || Condition 2
Image Number (y/n) (y/n) Confidence
16,25, 26,27, 35, 39,41,
42,49,55,63, 65,66, 71, Yy Yy 99%
77,81, 88,89,93,95
2 Y Y 95%
36, 57,61, 67 Yy Yy 90%

Table 6: Comparative performance of RECON and SPIHT.

Total Percentage of Images at which RECON/SPIHT
is Significantly Better than SPIHT/RECON
with at Least 90% Confidence
RECON better than SPIHT 25%
SPIHT better than RECON 1%
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