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Firstly we propose to rank order images fused by different méhods according
to the computational attention value of their regions of inerest. To this aim we
compute for each of the fused images a multi-bitrate attentn map, following
a rational model of computational attention. From this attention map, we then
calculate the average attention score within areas of intest for each bitrate
while using a prioritization scheme. Here the prioritization protocol is used
to simulate the basic cognitive process of visual informatin adquisition by

human users.

Secondly we develop a novel axiomatic approach to rank ordefused images
using the important information visibility. It allows to de termine if a particu-
lar fused image is more visually efficient than another compgor in a dataset.
The visual efficiency is predicted by an image fusion evaluain score that sat-
isfies a basic set of axioms; with the underlying assumptionding that if a
function satisfies all the desirable constraints it is expded to be more effective

in real applications.



Introduction

The objective of image fusion is to represent relevant mi@ion from multiple individual
images in asingle image. The range of available image fusmiques and systems is steadily
increasing. Some fusion methods may represent importanalinformation more distinctively
than others, thereby conveying it more efficiently to the hunobserver. Hence, there is a
growing need for metrics to evaluate and compare the visuality of fused imagery.

There is a large body of work existing now on the topic of objyecevaluation of image
fusion. A number of objective metrics exist of varying deggeof complexity and a host of
different approaches¢7).

In Reference X) we present a novel approach to rank order fused images frdataset
using the important information visibility. It allows to tl¥mine if a particular fused image is
more visually efficient than another competitor in a data3ée visual efficiency is predicted
by a normalized measure of computational attention witheregions of interest.

The Human Visual System (HVS) appears to employ a serial ctatipnal strategy to
select locations of interest in the processing of massiveuats of incoming visual information
with nearly real-time capacity of reactioB,(17,29. Thus the detection and analysis of visual
objects seem to involve either covert shifts of attentiorsaccadic eye movements, and the
image analysis and scene understanding may be performeadibygibal visual systems through
a temporal serialization into smaller, localized analyagks (2, 19.

Following (27), Koch and Ullman 17) develops the idea of saliency map to accomplish
preattentive selection by encoding the saliency of objectse visual environment. Competi-
tion among neurons in this map gives rise to a single winniregtion that corresponds to the
most salient object (i.e., the next target). Based i), (Itti et al. (12) describes a preatten-

tive selection mechanism based on the architecture of theape visual system, in which 42



maps encoding intensity, orientation and grey in a ceniawesnd fashion at a number of spa-
tial scales can be combined into a single saliency map. A @ake-all algorithm is finally
conducted in order to predict the gaze location.

One of the closest computational models to the local praogdsological reality within
the HVS (18) built a psychovisual space before the center-surrourfdrdiice. Nevertheless
recent results in visual attentio)(brought confirmations for a global integration of feature
information all over the visual field which is possible thartk the impressive neuronal net-
work (20). Following the approach that attention may be due to glpoaperties, Osberger
and MaederZ3) used segmentation to separate the image into several lemaogs areas and
five features were used in assigning a relative importantedareas. Walker et al2®) sug-
gested that saliency may be related to the probability tHatture will be misclassified with
any of the other features within an image or a database, geileral others21, 22 stated
that object components saliency may be inversely propuatito their occurrence within the
image. Otherwise, Itti and BaldiB) proposed a probabilistic approach of surprise based on the
Kullback-Leibler divergence between what was expectedifgpkn and the actual observation.
Mancas R0) introduced a rarity-based three-level attention modeldtiag mono-dimensional
signals as well as images or video sequences.

Anyway, Privitera and Stark6) showed that different computational attention modelsawer
tuned for some kinds of images and often react very badlyheramages, and thus, it should
be very difficult to use only an attention model in all the apgtions. Hence, inl(0) a set of
axioms were proposed to prescribe constraints that seemitoperative to acknowledge in the
problem of allocating attention. The result is a multi-aig attention map which provides us
with a computational attention score for each spatial ioocaat high and low quality versions
of the image reconstruction. The novelty of this map is tfixtt allows distinct attention score

for the same spatial location at different picture qualfiy;it avoids certain forms of behavioral



inconsistency in the absence of a priori knowledge aboutdbations of interest, which is a
characteristic of rational systems; and (iii) a particutdegration of feature information (e.g.,
grey, intensity, orientation) is not used in assigningratte scores to the points, therefore
computational attention is not tuned for only certain inda any case, the critical difference
with respect to the approaches discussed above is that weevdble to predict exactly the
behavior of the axiomatic solution according to its prinegp (L0) proved that the rational

model of computational attention yields a high probabitityorrect classification with respect

to a reference rank order given by the target distinctnessored by human observers.

Comparative Visual Efficiency of Image Fusion Methods

Our work in Referencell) presents a comparative visual efficiency analysis of imat fused
images which are reconstructed at high and low fidelity usirtgansmission method (with-
out region-dependent quality of encoding) to predict thergization of image information at
different bitrates, 15). A high value of the normalized mean attention within theaar of in-
terest at a reconstruction fidelitymeans that the prioritization protocol brings the attemtio
onto the important regions to human subjects at this pdati¢tme of progressive transmission
—corresponding to a bitrate of picture quality. Coull {6) showed the mutually beneficial
effects of attention and timing, since attention is disttéal in time as well as space. Based on
rate-attention curves, as given by the normalized meantaitescore within the areas of inter-
est across bitrates, here we predict which are the imagesdrdataset more able to provide all
salient information in the source images to the potentiah&i operator.

In Referencel) we present a comparative analysis of the fused imagesnhigh saliency
regions which are automatically detected based on compuogtattention. This attention
model will predict what regions involuntarily attract atten in an input image, since their

visual information saliency. The novelty of this approachrage fusion evaluation is the use
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of rate-attention curves which are given by the normalizegmattention score within the ar-
eas of interest across bitrates while using a prioritizapootocol, and where the detection of
regions of interest is achieved either interactively tlglohhuman user intervention or by the use

of automated detection.

Axiomatic Approach to Image Fusion Evaluation

A different approach to image fusion evaluation can be ta ftate some general principles
that the solution of the problem must obey, and then derigestiution that satisfies exactly the
principles.

Reference?) proposes a novel axiomatic approach to rank order fusedeshasing the im-
portant information visibility. It allows to determine if@articular fused image is more visually
efficient than another competitor in a dataset. The visd@iency is predicted by an image fu-
sion evaluation score that satisfies a basic set of axiontls;the underlying assumption being
that if a function satisfies all the desirable constrainis é@xpected to be more effective in real
applications.

To this aim, we discuss the image representational moddugon evaluation and review
the computational attention model. We then present thelzagomatic characterization. The
first axiom states the basic case when both input and fuséettiohs of high-saliency points
contain only one location. The second axiom shows the neferehange effect when we add a
new high-saliency location to the collection of the inputige. A third axiom says that adding
a high-saliency location to the fused image collection #haocrease the score if the high-
saliency location is in the input image collection which ged as reference in the evaluation
of fused images. By the contrary, adding a high-saliencgtioa to the fused image collection
should decrease the score if the high-saliency locationtigrthe input image collection. The

fourth axiom says that the impact of adding a high-salielmoation to the fused image col-
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lection should decrease as we add more and more examples sditiie high-saliency location
which are detected at finer bitrates.

Reference Z) proposes an image fusion evaluation score and provesttisatisfies the
basic axiomatic characterization. Several experimeeisilts are also presented to analyze if
this evaluation score agrees indeed with human observéorpeance, making the approach
valuable for practical applications.

The critical difference with respect to the other approadnethe Literature is that we will
be able to predict exactly the behavior of the axiomatic tsmtuaccording to its principles.
Thus, the axiomatic score function can be used to rank ohdefused images according to the
information visibility from the input scenes in such a waywarify certain forms of behavioral
consistency like the novelty effect, the reference chaffigete as well as the positive addition

effect among others.

Experimental Results

We can now perform a comparative visual efficiency analybisput and fused images using
the seven datasets given in Figs. 1-7. Based on the axiogtatie function given in2), here
we predict which are the fused images in a dataset more alpi@tide all salient information
from the input images to the potential human operator.

A high value of the axiomatic score functidii(117°, F25) defined in @) means that the
fused image-’® brings the attention onto the same high-saliency locafionthe input image
I15 It predicts a faster detection, using a particular fusedge) of high-saliency areas from
the input (e.g., visual, infrared, both) images; theretbeaxiomatic score can be used to rank
order the fused images according to the information vigybifom the input scenes.

For each fused (CWT, DWT, PYR) image, we have that Fig. 13layspthe respective ax-

iomatic score function across datasets @ethrough Set#7) in Figs. 1-7, using as reference
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| Best Performance Visual | Infrared | Visual U Infrared |

Setl CWT CWT CWT
Set 2 DWT PYR PYR
Set 3 CWT CWT CWT
Set 4 CWT PYR CWT
Set5 CWT PYR PYR
Set6 CWT PYR PYR
Set7 DWT PYR DWT

Table 1: Best Performance

the visual image (top), the infrared image (center), andt biwe visual and infrared image (bot-
tom). For each dataset (Sgtl through Set/#7) of input and fused images, Tables 1 and 2
summarize, respectively, the best and the worst performasagiven by the axiomatic score
function with the input imagé!’® being defined as the visual image, the infrared image, and
the visual union infrared image.

The CWT fusion scheme yields the best performance in teeréifit comparisons (see Ta-
ble 1); while the DWT fused images achieve the best perfoo@amthree comparisons and the
PYR fused images in eight comparisons.

It appears that high-saliency locations from visual uniuinared images are best detected
using the CWT fusion scheme (see Table 1). Also it appeatshigh-saliency points from
infrared images are best detected in the PYR fused imageSé&ixde 1).

By the contrary we can see that the PYR fused images yield dristywerformance in ten
comparisons (see Table 2); while the CWT fused images yletdmorst performance in two
comparisons and the DWT fused images in nine comparisons.

It appears that high-saliency locations from visual imagesworst detected using the PYR
fusion scheme (see Table 2). Also it appears that highrsalipoints from visual union infrared
images are worst detected in the PYR and DWT fused imageg &xe 2).

Table 3 summarizes the results for all the comparisons givérables 1 and 2 (see also



| Worst Performance Visual | Infrared | Visual U Infrared |

Setl DWT PYR DWT
Set 2 CWT DWT DWT
Set 3 PYR PYR PYR
Set 4 PYR DWT PYR
Set5 PYR DWT DWT
Set6 PYR DWT DWT
Set7 PYR CWT PYR

Table 2: Worst Performance

| Best minus Worst Visual | Infrared | Visual U Infrared |

CWT 4 1 3
DWT 1 -4 -3
PYR -5 4 0

Table 3: Best minus Worst Performance

Fig. 13). From these results, it follows that the CWT fusicheme appears to yield the best
overall performance. These computational results largghge with the order induced on the
fused images by the detailedness (quality) of human segtiens ¢6).

In the literature, it has been found that a fusion schemeguailVavelet Transform (like
the CWT method) has advantages over the pyramid-basedfasih as increased directional
information, no blocking artefacts that often occur in pyrd-fused images and improved per-
ception compared using human analy28,80. The CWT provides both good shift invariance
and directional selectivity over the DWT; and the increastift invariance and directional sen-
sitivity mean that the CWT gives improved fusion resultsravee DWT @31). These results
agree with the comparative performance of the CWT, DWT an&B¥hemes in the axiomatic
score sense.

It would be of great interest if we compare the proposed naethith other evaluation func-
tion. To this aim we now calculate the average attentioneseothin the areas of interest, for

each bitrate, based on the attention m&@ (P;; p) } p,. The mean attention score within the ar-



eas of interest is normalized by dividing by the averagenéitia achieved in the reconstruction
at bitratep. (11) provides a specification of the algorithm to compute themadized attention
score.

A high value of the mean attention within the areas of intea¢seconstruction fidelity
means that the coding method brings the attention onto thertant regions using a bitrapeof
picture quality, which corresponds to a high saliency ofaheas of interest. Hence it predicts
a faster detection (due to the higher saliency) of the ingmtrareas in the input (visual and
infrared) images; therefore the normalized attention es@mross bitrates can be used to rank
order the important information visibility (se&(@)).

For each one of the seven sets of input and fused images, hreacof Fig. 14 itis illus-
trated the rate-attention curves for the CWT, DWT and PYRdushages within automatically
detected regions of interest for the visual image (left ool and for the infrared image (right
column). The CWT, DWT and PYR fusion schemes yield the bedbprance in eight, five
and one comparisons, respectively.

From these results, it follows that the CWT fusion schemesappto yield the best overall
performance in the rate-attention sense within high sajiergions for the visual image (left
column) and for the infrared image (right column) which agevith the comparative perfor-

mance using the axiomatic score function proposed in thpgpa
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DWT fused

PYR fused

Figure 1: Set#1. Input and fused images
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Visual image | Infrared image

CWT fused DWT fused

PYR fused

Figure 2: Set#2. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 3: Set#3. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 4: Set#4. Input and fused images
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Visual image Infrared image
CWT fused DWT fused

PYR fused

Figure 5: Set#5. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 6: Set#6. Input and fused images
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Visual image

Infrared image (aim) CWT fused

DWT fused PYR fused

Figure 7: Set#7. Input and fused images
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Figure 8: (A), (B), (C) attention scores for three differguiality versions—given in (D), (E) and
(F)—of a highly visible target; (G), (H), () Blending of thespective score maps and image
reconstructions; (J), (K), (L) Most salient locations.
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Figure 9: (A), (B), (C) illustrate attention scores for targuality versions, respectively (D), (E)
and (F), of a military vehicle in low visibility conditiongG), (H), (1) show blendings of the
respective score maps and image reconstructions; (J)(l(KMost salient locations.
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Infrared image |,

Binary HS image

Figure 10: Automatic detection of high-saliency locatidmis/,, = Infrared image; at a bitrate
p* = 0.5 bit/pixel.
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Figure 11: High-Saliency image (HS) automatically detécée a bitrateo* = 0.5 bit/pixel, for
the visual image (left column) and the infrared image (righlumn) in each one of the seven
sets of input images.
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Figure 12: (left column) Visual HS minus Infrared HS; (middiolumn) Infrared HS minus
Visual HS; (right column) Infrared HS interaeict Visual HS.
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Figure 13: For each fused (CWT, DWT, PYR) image, axiomatars@cross datasets (Sét
through Set#7) using as reference the visual image (top), the infraredyar(aenter), and both
the visual and infrared image (bottom).
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