
Image Fusion Evaluation

Computer Vision Group1∗

1Department of Computer Science and Artificial Intelligence, University of Granada,

CITIC-UGR, 18071 Granada, Spain

∗To whom correspondence should be addressed; E-mail: jags@decsai.ugr.es

Firstly we propose to rank order images fused by different methods according

to the computational attention value of their regions of interest. To this aim we

compute for each of the fused images a multi-bitrate attention map, following

a rational model of computational attention. From this attention map, we then

calculate the average attention score within areas of interest for each bitrate

while using a prioritization scheme. Here the prioritization protocol is used

to simulate the basic cognitive process of visual information adquisition by

human users.

Secondly we develop a novel axiomatic approach to rank orderfused images

using the important information visibility. It allows to de termine if a particu-

lar fused image is more visually efficient than another competitor in a dataset.

The visual efficiency is predicted by an image fusion evaluation score that sat-

isfies a basic set of axioms; with the underlying assumption being that if a

function satisfies all the desirable constraints it is expected to be more effective

in real applications.
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Introduction

The objective of image fusion is to represent relevant information from multiple individual

images in a single image. The range of available image fusiontechniques and systems is steadily

increasing. Some fusion methods may represent important visual information more distinctively

than others, thereby conveying it more efficiently to the human observer. Hence, there is a

growing need for metrics to evaluate and compare the visual quality of fused imagery.

There is a large body of work existing now on the topic of objective evaluation of image

fusion. A number of objective metrics exist of varying degrees of complexity and a host of

different approaches (3–7).

In Reference (1) we present a novel approach to rank order fused images from adataset

using the important information visibility. It allows to determine if a particular fused image is

more visually efficient than another competitor in a dataset. The visual efficiency is predicted

by a normalized measure of computational attention within the regions of interest.

The Human Visual System (HVS) appears to employ a serial computational strategy to

select locations of interest in the processing of massive amounts of incoming visual information

with nearly real-time capacity of reaction (8, 17, 24). Thus the detection and analysis of visual

objects seem to involve either covert shifts of attention orsaccadic eye movements, and the

image analysis and scene understanding may be performed by biological visual systems through

a temporal serialization into smaller, localized analysistasks (12,14).

Following (27), Koch and Ullman (17) develops the idea of saliency map to accomplish

preattentive selection by encoding the saliency of objectsin the visual environment. Competi-

tion among neurons in this map gives rise to a single winning location that corresponds to the

most salient object (i.e., the next target). Based on (17), Itti et al. (12) describes a preatten-

tive selection mechanism based on the architecture of the primate visual system, in which 42
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maps encoding intensity, orientation and grey in a center-surround fashion at a number of spa-

tial scales can be combined into a single saliency map. A Winner-take-all algorithm is finally

conducted in order to predict the gaze location.

One of the closest computational models to the local processing biological reality within

the HVS (18) built a psychovisual space before the center-surround difference. Nevertheless

recent results in visual attention (9) brought confirmations for a global integration of feature

information all over the visual field which is possible thanks to the impressive neuronal net-

work (20). Following the approach that attention may be due to globalproperties, Osberger

and Maeder (23) used segmentation to separate the image into several homogeneous areas and

five features were used in assigning a relative importance tothe areas. Walker et al. (28) sug-

gested that saliency may be related to the probability that afeature will be misclassified with

any of the other features within an image or a database, whileseveral others (21, 22) stated

that object components saliency may be inversely proportional to their occurrence within the

image. Otherwise, Itti and Baldi (13) proposed a probabilistic approach of surprise based on the

Kullback-Leibler divergence between what was expected to happen and the actual observation.

Mancas (20) introduced a rarity-based three-level attention model handling mono-dimensional

signals as well as images or video sequences.

Anyway, Privitera and Stark (25) showed that different computational attention models were

tuned for some kinds of images and often react very badly to other images, and thus, it should

be very difficult to use only an attention model in all the applications. Hence, in (10) a set of

axioms were proposed to prescribe constraints that seem to us imperative to acknowledge in the

problem of allocating attention. The result is a multi-bitrate attention map which provides us

with a computational attention score for each spatial location at high and low quality versions

of the image reconstruction. The novelty of this map is that:(i) It allows distinct attention score

for the same spatial location at different picture quality;(ii) it avoids certain forms of behavioral
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inconsistency in the absence of a priori knowledge about thelocations of interest, which is a

characteristic of rational systems; and (iii) a particularintegration of feature information (e.g.,

grey, intensity, orientation) is not used in assigning attention scores to the points, therefore

computational attention is not tuned for only certain images. In any case, the critical difference

with respect to the approaches discussed above is that we will be able to predict exactly the

behavior of the axiomatic solution according to its principles. (10) proved that the rational

model of computational attention yields a high probabilityof correct classification with respect

to a reference rank order given by the target distinctness measured by human observers.

Comparative Visual Efficiency of Image Fusion Methods

Our work in Reference (1) presents a comparative visual efficiency analysis of inputand fused

images which are reconstructed at high and low fidelity usinga transmission method (with-

out region-dependent quality of encoding) to predict the prioritization of image information at

different bitrates, (15). A high value of the normalized mean attention within the areas of in-

terest at a reconstruction fidelityρ means that the prioritization protocol brings the attention

onto the important regions to human subjects at this particular time of progressive transmission

—corresponding to a bitrateρ of picture quality. Coull (16) showed the mutually beneficial

effects of attention and timing, since attention is distributed in time as well as space. Based on

rate-attention curves, as given by the normalized mean attention score within the areas of inter-

est across bitrates, here we predict which are the images from a dataset more able to provide all

salient information in the source images to the potential human operator.

In Reference (1) we present a comparative analysis of the fused images within high saliency

regions which are automatically detected based on computational attention. This attention

model will predict what regions involuntarily attract attention in an input image, since their

visual information saliency. The novelty of this approach to image fusion evaluation is the use
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of rate-attention curves which are given by the normalized mean attention score within the ar-

eas of interest across bitrates while using a prioritization protocol, and where the detection of

regions of interest is achieved either interactively through human user intervention or by the use

of automated detection.

Axiomatic Approach to Image Fusion Evaluation

A different approach to image fusion evaluation can be to first state some general principles

that the solution of the problem must obey, and then derive the solution that satisfies exactly the

principles.

Reference (2) proposes a novel axiomatic approach to rank order fused images using the im-

portant information visibility. It allows to determine if aparticular fused image is more visually

efficient than another competitor in a dataset. The visual efficiency is predicted by an image fu-

sion evaluation score that satisfies a basic set of axioms; with the underlying assumption being

that if a function satisfies all the desirable constraints itis expected to be more effective in real

applications.

To this aim, we discuss the image representational model forfusion evaluation and review

the computational attention model. We then present the basic axiomatic characterization. The

first axiom states the basic case when both input and fused collections of high-saliency points

contain only one location. The second axiom shows the reference change effect when we add a

new high-saliency location to the collection of the input image. A third axiom says that adding

a high-saliency location to the fused image collection should increase the score if the high-

saliency location is in the input image collection which is used as reference in the evaluation

of fused images. By the contrary, adding a high-saliency location to the fused image collection

should decrease the score if the high-saliency location is not in the input image collection. The

fourth axiom says that the impact of adding a high-saliency location to the fused image col-
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lection should decrease as we add more and more examples of the same high-saliency location

which are detected at finer bitrates.

Reference (2) proposes an image fusion evaluation score and proves that it satisfies the

basic axiomatic characterization. Several experimental results are also presented to analyze if

this evaluation score agrees indeed with human observer performance, making the approach

valuable for practical applications.

The critical difference with respect to the other approaches in the Literature is that we will

be able to predict exactly the behavior of the axiomatic solution according to its principles.

Thus, the axiomatic score function can be used to rank order the fused images according to the

information visibility from the input scenes in such a way toverify certain forms of behavioral

consistency like the novelty effect, the reference change effect, as well as the positive addition

effect among others.

Experimental Results

We can now perform a comparative visual efficiency analysis of input and fused images using

the seven datasets given in Figs. 1–7. Based on the axiomaticscore function given in (2), here

we predict which are the fused images in a dataset more able toprovide all salient information

from the input images to the potential human operator.

A high value of the axiomatic score functionE(IHS

n , F HS

m ) defined in (2) means that the

fused imageF HS
m brings the attention onto the same high-saliency locationsfor the input image

IHS

n
. It predicts a faster detection, using a particular fused image, of high-saliency areas from

the input (e.g., visual, infrared, both) images; thereforethe axiomatic score can be used to rank

order the fused images according to the information visibility from the input scenes.

For each fused (CWT, DWT, PYR) image, we have that Fig. 13 displays the respective ax-

iomatic score function across datasets (Set#1 through Set#7) in Figs. 1–7, using as reference
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Best Performance Visual Infrared Visual ∪ Infrared
Set 1 CWT CWT CWT
Set 2 DWT PYR PYR
Set 3 CWT CWT CWT
Set 4 CWT PYR CWT
Set 5 CWT PYR PYR
Set 6 CWT PYR PYR
Set 7 DWT PYR DWT

Table 1: Best Performance

the visual image (top), the infrared image (center), and both the visual and infrared image (bot-

tom). For each dataset (Set#1 through Set#7) of input and fused images, Tables 1 and 2

summarize, respectively, the best and the worst performance as given by the axiomatic score

function with the input imageIHS

n being defined as the visual image, the infrared image, and

the visual union infrared image.

The CWT fusion scheme yields the best performance in ten different comparisons (see Ta-

ble 1); while the DWT fused images achieve the best performance in three comparisons and the

PYR fused images in eight comparisons.

It appears that high-saliency locations from visual union infrared images are best detected

using the CWT fusion scheme (see Table 1). Also it appears that high-saliency points from

infrared images are best detected in the PYR fused images (see Table 1).

By the contrary we can see that the PYR fused images yield the worst performance in ten

comparisons (see Table 2); while the CWT fused images yield the worst performance in two

comparisons and the DWT fused images in nine comparisons.

It appears that high-saliency locations from visual imagesare worst detected using the PYR

fusion scheme (see Table 2). Also it appears that high-saliency points from visual union infrared

images are worst detected in the PYR and DWT fused images (seeTable 2).

Table 3 summarizes the results for all the comparisons givenin Tables 1 and 2 (see also
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Worst Performance Visual Infrared Visual ∪ Infrared
Set 1 DWT PYR DWT
Set 2 CWT DWT DWT
Set 3 PYR PYR PYR
Set 4 PYR DWT PYR
Set 5 PYR DWT DWT
Set 6 PYR DWT DWT
Set 7 PYR CWT PYR

Table 2: Worst Performance

Best minus Worst Visual Infrared Visual ∪ Infrared
CWT 4 1 3
DWT 1 -4 -3
PYR -5 4 0

Table 3: Best minus Worst Performance

Fig. 13). From these results, it follows that the CWT fusion scheme appears to yield the best

overall performance. These computational results largelyagree with the order induced on the

fused images by the detailedness (quality) of human segmentations (26).

In the literature, it has been found that a fusion scheme using a Wavelet Transform (like

the CWT method) has advantages over the pyramid-based fusion such as increased directional

information, no blocking artefacts that often occur in pyramid-fused images and improved per-

ception compared using human analysis (29,30). The CWT provides both good shift invariance

and directional selectivity over the DWT; and the increasedshift invariance and directional sen-

sitivity mean that the CWT gives improved fusion results over the DWT (31). These results

agree with the comparative performance of the CWT, DWT and PYR schemes in the axiomatic

score sense.

It would be of great interest if we compare the proposed method with other evaluation func-

tion. To this aim we now calculate the average attention score within the areas of interest, for

each bitrateρ, based on the attention map{A(Pi; ρ)}Pi
. The mean attention score within the ar-
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eas of interest is normalized by dividing by the average attention achieved in the reconstruction

at bitrateρ. (11) provides a specification of the algorithm to compute the normalized attention

score.

A high value of the mean attention within the areas of interest at reconstruction fidelityρ

means that the coding method brings the attention onto the important regions using a bitrateρ of

picture quality, which corresponds to a high saliency of theareas of interest. Hence it predicts

a faster detection (due to the higher saliency) of the important areas in the input (visual and

infrared) images; therefore the normalized attention score across bitrates can be used to rank

order the important information visibility (see (10)).

For each one of the seven sets of input and fused images, in each row of Fig. 14 it is illus-

trated the rate-attention curves for the CWT, DWT and PYR fused images within automatically

detected regions of interest for the visual image (left column) and for the infrared image (right

column). The CWT, DWT and PYR fusion schemes yield the best performance in eight, five

and one comparisons, respectively.

From these results, it follows that the CWT fusion scheme appears to yield the best overall

performance in the rate-attention sense within high saliency regions for the visual image (left

column) and for the infrared image (right column) which agrees with the comparative perfor-

mance using the axiomatic score function proposed in this paper.
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 1: Set#1. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 2: Set#2. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 3: Set#3. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 4: Set#4. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 5: Set#5. Input and fused images
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Visual image Infrared image

CWT fused DWT fused

PYR fused

Figure 6: Set#6. Input and fused images
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Visual image

DWT fused PYR fused

CWT fused

Infrared image (amb)

Infrared image (aim)

Figure 7: Set#7. Input and fused images
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Figure 8: (A), (B), (C) attention scores for three differentquality versions–given in (D), (E) and
(F)–of a highly visible target; (G), (H), (I) Blending of therespective score maps and image
reconstructions; (J), (K), (L) Most salient locations.

17



(G)(A)

(B)

(C)

(H)

(I)

(D)

(E)

(F)

(J)

(K)

(L)

Figure 9: (A), (B), (C) illustrate attention scores for three quality versions, respectively (D), (E)
and (F), of a military vehicle in low visibility conditions;(G), (H), (I) show blendings of the
respective score maps and image reconstructions; (J), (K),(L) Most salient locations.
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Figure 10: Automatic detection of high-saliency locationsfor In = Infrared image; at a bitrate
ρ∗ = 0.5 bit/pixel.
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Figure 11: High-Saliency image (HS) automatically detected, at a bitrateρ∗ = 0.5 bit/pixel, for
the visual image (left column) and the infrared image (rightcolumn) in each one of the seven
sets of input images.
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Figure 12: (left column) Visual HS minus Infrared HS; (middle column) Infrared HS minus
Visual HS; (right column) Infrared HS intersect Visual HS.
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Figure 13: For each fused (CWT, DWT, PYR) image, axiomatic score across datasets (Set#1
through Set#7) using as reference the visual image (top), the infrared image (center), and both
the visual and infrared image (bottom).
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Figure 14: Rate-attention curves for the CWT, DWT and PYR fused images within automati-
cally detected regions of interest for the visual image (left column) and the infrared image (right
column).
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