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Abstract. The idea of including a flexible management of time in a
temporal planner is the aim of this work. We propose an extension of
a previous work of the authors [4] based on the use of fuzzy temporal
intervals by defining a possibility measure over the continuous time line.
This gives the planner some very interesting features like obtaining valid
plans when the knowledge is ill defined, obtaining approximate plans
when exact plans are not possible and provide a flexible time line of
execution.

1 Introduction

Temporal planners [1, 9, 14–16, 18] use a rather rigid notion of time in the sense
that time and durations are assigned and compared taking into account only
strict equality. This leads to the design of temporal plans that must be executed
exactly in the time line defined by the planner since, otherwise, the plan will not
work. In realistic problems this is a very restrictive notion of time since many of
the time points or durations implicitly computed in a plan may be ill defined, due
to incomplete or vague knowledge, unpredictable behaviors or execution errors.
In these cases, temporal plans could be more flexible in the handling of time,
in the sense that they might be able to handle ill defined temporal knowledge
or some variations along the time line of the execution of the plan in order to
cope with these uncertainties. For example, when one makes a plan in order to
go to work from home, one doesn’t know the exact time that the bus arrives
at the bus stop, nor the exact time that the bus takes to complete the route.
Therefore, in order to succeed in the execution of this plan, one predicts how
long in advance one must leave the home to take the bus. None of these times
are precisely known but plans still succeed since people continue using the bus.

This paper is an extension of a previous work of the authors which defined a
Temporal Constraint Network (TCN) based temporal planner able to introduce
some uncertainty in a temporal plan by using bounded temporal constraints
thanks to the expressiveness of TCNs [4, 8]. Now, in this paper, these temporal
intervals are transformed into fuzzy temporal intervals by defining a possibility
measure over them in order to recognize that not every time point in a temporal
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interval is equally preferred or certain and that, in many realistic applications,
constraints are more or less relaxed in practice. This allows the planner to build
plans based on vague temporal constraints of the form: “the action of filling the
tank will take about 100 time units” or “action a must be delayed more or less
between 20 and 30 time units after action b”. This type of “soft constraints”
provide several advantages:

– It is possible to model domains in which temporal knowledge is vaguely
known and to obtain temporal plans of practical use for these domains.

– It becomes a very interesting approach in time critical problems, like space
missions or complex scheduling problems, where execution times are very
tight and perhaps a solution that completely meet the temporal constraints
is not possible and, instead, an approximate solution may be found.

– Soft temporal constraints are also very important in the framework of Fuzzy
Temporal Constraint Networks. A temporal plan built on top of a FTCN is
not a solution, but a class of possible solutions, i.e., slightly different temporal
schedules of the same set of actions that may be obtained by a solution
extraction procedure [8, 17]. This means that a temporal plan may be seen
under a very flexible point of view. Once a solution has been extracted and
it has started its execution, if an unexpected delay occurs, it is still possible
to obtain a new time line for the remaining of the plan without the need to
replan, just by adapting the plan to the existing delay.

Soft constraints have been successfully used to model and solve different
realistic domains as for example in industrial optimization problems [5], robotic
vehicle routing [6], electrical distribution problems [7], patient supervision in
intensive care units [2] or industrial job-shop scheduling [11]. Fuzzy temporal
constraints have also been investigated and there are different papers [17, 19]
in the literature about FTCN. But most of them are somehow “a posteriori”
approaches, i.e., they are a further work on a FTCN previously built upon some
evidences or observations like in diagnosis or monitoring applications. This paper
introduces a new perspective in FTCN since temporal planning needs an “a
priori” approach to handle these models, i.e., while several different, alternative,
FTCN are being built to solve the same problem, the planner has to choose the
best one in order to meet the goal of the planning problem and now the question
is: which FTCN, amongst every possible FTCN for the same temporal problem,
provide better temporal plans?

2 An overview of Machine
T

Machine
T is a partial order, causal-link based temporal planner [4]. Domains

are described as a set of agents and every agent is described by means of a Finite
State Automaton (FSA) as shown in Figure 1.

Thus, every agent has a set of internal states and a set of actions, each of
whom produces a change of state (immediate, since they are internal states) and
a set of effects in the environment (every effect takes some time to be achieved
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Fig. 1. The structure of a domain of Machine
T which shows two agents and sev-

eral actions available for each agent. Circles represent states and arcs represent
actions.

and during this delay the effect is undefined). Figure 2 shows the structure of
the domain of the zenotravel problems [13] in terms of this FSA representation.
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Fig. 2. The structure of the well known zeno travel problem expressed in
Machine

T by means of a complex FSA

Given this representation, durative actions are represented taking into ac-
count the Newtonian assumption that once an action has started its execution,
it will continue executing until some other event interrupts it. Therefore, once
an action has achieved a change of state in its agent, it will continue until the
next change of state of the agent or until the end of the plan. For example,
given the domain of the zenotravel problem in Figure 2 action Fly achieves the
state FLYING and it will continue executing until the next change of state, i.e.,
until action Stop or the end of the plan, so its possible intervals of execution
are either [Fly, Stop] or [Fly, End-Of-Plan] depending on how the plan has
been designed.

In addition, invariant conditions of PDDL 2.1 level 3 [12] are also easily rep-
resented associated to these intervals. For example, following the zeno example,
action Fly requires that before and during its execution the plane must have
finished any possible refueling operation (i.e. (STATE PLANE NO-REFUEL)). This
is represented as a simultaneous requirement of action Fly and protected by
means of a causal link [4, 21] along its interval of execution, that is, either [Fly,
Stop] or [Fly, End-Of-Plan].

Machine
T also allows to represent both deadline goals and makespans of

plans. Deadline goals are goals that must be achieved exactly in a given period
of time [tmin, tmax]. This model does not allow slacks during the satisfaction of
deadline goals. Makespan of plans is the expected duration of the plan and it is



also specified in the form of an interval of time points [tmin, tmax] standing for
the minimum and maximum duration of the plan (see [4] for details).

Temporal plans are built on top of a simple Temporal Constraint Network
(TCN) [8] where every action is represented as a node of the TCN and temporal
constraints are posted during the resolution process every time that an action
solves a subgoal or when actions are reordered to avoid interferences between
them. The result is a partially ordered plan (see Figure 3) whose actions are
annotated with an earliest and a latest execution time (taking into account that
the beginning of the plan has an absolute time point zero). These temporal plans
do not represent a temporal solution to the problem being solved, but a class of
solutions where the exact execution time for every action is obtained by means
of a very simple solution extraction procedure [8].

[  0,  0]

START 

[7601,8000]

END 

[7401,7800]

PLANE−OD SCOTT 

[7601,8000]

PLANE−CD 

[7401,7800]

PLANE−STOP 

[  1,400]

PLANE−OB SCOTT 

[201,600]

PLANE−CB 

[201,600]

PLANE−ZOOM CITY−A CITY−C 

[  1,500]

PLANE−REFUEL 

[101,600]

PLANESTOP−REFUEL 

Fig. 3. A temporal plan showing the earliest and latest execution times for every
action. The plan was built taking into account a possible makespan of [0, 8000]
time units.

3 The introduction of fuzzy notion of time as a more
rational temporal uncertainty

The uncertainty shown in temporal plans, mainly in execution times (see Figure
3) but also in any relative constraint between actions, comes from the following
assumptions. Firstly, every effect of an action may not be instantaneous but it
might have a delay. For example, action Refuel Plane in the domain of Figure 2
takes 100 time units to refuel a plane and action Open Boarding ?person takes
200 time units to board a person.

And secondly, once all of the preconditions of a consumer action have been
achieved at time t the consumer action might be executed at time t but however,
it might also be executed at some arbitrary time point greater than or equal to
t whenever it did not interfere with the rest of the plan and in order to fit
more general or overall temporal constraints of the problem. For example, if the
preconditions Refueled Plane and Boarded ?person of action Fly have been
achieved at time units 100 and 200 respectively, then action Fly may start at
time unit 200 but it might be delayed as long as needed. Therefore the time of
achievements of preconditions is only a minimum time for the execution of the
consumer action. This implicitly leads to the posting of constraints of the form



[tmin,+∞) between producer and consumer actions that become closed intervals
of the form [tmin, tmax] only when deadline goals or makespans are present in a
problem.

The representation and handling of these uncertain temporal references is a
very important issue in realistic problems where unexpected faults and delays
may occur during the execution of the plan. In these cases, once an initial solution
has been extracted from the temporal plan and it has started its execution, the
occurrence of a delay in the execution of an action may be still acceptable if the
detected delay fits in the set of constraints of the temporal plan, otherwise the
delay will be inconsistent with the plan and a new plan should be built.

However, although this capability is very useful for realistic problem solving
and monitoring, the use of intervals may not be as rational as desired since
they suddenly change from consistency to inconsistency in the boundary of the
interval. Let consider the following example. A plan has been built for the zeno
problem and a flight has been scheduled to take no more than 8000 time units,
but due to an unexpected delay in the execution of an action, very useful in
the aerospace domain indeed, a new solution can be obtained but it is 8005
time units long. Is it acceptable or not? The answer could be that it is not as
acceptable as a solution in the correct bounds, but if no such a solution may be
found, then it may be considered rather acceptable.

This leads to the acknowledgement of relaxed constraints and different de-
grees of acceptability for a set of solutions or, in terms of temporal reasoning, to
different degrees of temporal consistency. The remaining of the paper describes
the use of fuzzy sets theory to represent and handle temporal plans that ac-
cept solutions with different degrees of consistency thanks to the use of Fuzzy
Temporal Constraint Networks [17, 19].

3.1 A brief introduction to fuzzy sets

A fuzzy set, or more precisely a fuzzy subset, is a subset of a reference set whose
boundaries are not precisely known [22]. The left hand part of Figure 4 shows a
classic, or crisp, subset C whose membership is given by the function πC which
hardly restricts the membership to the subset. The right hand part of Figure 4
shows a fuzzy subset F whose membership is given by the possibility distribution
πF . This is a function from the reference set R to the real interval [0, 1] which
softly restricts the membership to the subset. In this case πF (x) is a numerical
estimation for the fact that element x can be considered as a member of the
subset F .

Taking into account an ill defined subset or relation, this possibility distri-
bution may be used to model either uncertainty, not related to probability, or
preference with respect to the elements of the reference set [10, 22]. The greater
is the difference between values a and b and values c and d, the fuzzier is the
subset and it may be used by a modeler to represent the uncertainty about the
membership to the fuzzy subset or the degree of preference with respect to the
values of the reference set.
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Fig. 4. A classic, or crisp, subset (left) C and a fuzzy subset (right) F of the ref-
erence set R between points b and c and their respective membership functions.

A fuzzy subset F , or its possibility distribution πF , is said to be unimodal
if it defines a convex subset, i.e., ∀x1, x2, x3 ∈ R such that x3 ∈ [x1, x2] it holds
that πF (x3) ≥ min {πF (x1), πF (x2)}.

A fuzzy subset F , or its possibility distribution πF , is said to be normalized if
∃x ∈ R such that πF (x) = 1. The height of a fuzzy subset is hgt(F ) = max

x∈R
πF (x)

that, in the case of normalized fuzzy subsets is equal to 1.
In the following, only unimodal, not necessarily normalized, fuzzy sets are

considered.

3.2 Representation of fuzzy time in Machine
TF

A fuzzy date D is an imprecise reference to a time point or to a temporal
interval. It may be represented as a fuzzy subset of a continuous time scale T so
that πD(t), t ∈ T represents the degree of possibility for the fuzzy date D to take
the exact value t. This concept of fuzzy date has been used to design a flexible
temporal planner called Machine

TF on the basis of the the temporal features
of a crisp temporal planner explained in [4]. These features are summarized in
the following.

– Delays of effects. Every effect f of every action takes about tf time units to
be achieved (see Figure 5.a). This temporal reference is noted as t̃f and its
fuzziness is decided by the domain designer according to the uncertainty of
the problem.

– Execution times. Some actions have not a predefined execution time but
others have a fixed execution time of t̃f time units (see Figure 5.a).

– Deadline goals. There may be goals which should be achieved more or less
between t1 and t2 time units (see Figure 5.b). This is noted as [t̃1, t̃2].



– Plan makespan. A plan may be required to be more or less between t1 and
t2 time units long (see Figure 5.b).

– Reordering of actions. In order to prevent harmful interactions between mu-
tually interfering actions, an action a may be reordered more (less) than t
time units after (before) action b (see Figure 5.c). This is noted as [t̃,+∞)
or (−∞, t̃].
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about tf time units

tf+ε T
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Fig. 5. The fuzzy temporal references that are used in Machine
TF . The value

ε may be used by a modeler to increase or decrease the fuzziness of the subset

These temporal features, together with their fuzzy representations, are han-
dled by Machine

TF , as will be explained later in Section 5, to build temporal
plans of top of a fuzzy temporal constrain network. These plans are expected
to solve temporal problems where time is not precisely known and to provide a
flexible time line for its execution.

3.3 Temporal plans as fuzzy temporal constraint networks

Definition 1. A Fuzzy Temporal Constraint Network N = 〈X , C〉 is composed
of a set of variables X = {X0, X1, . . . , Xn+1} and a set of fuzzy binary temporal
constraints defined between them C = {Cij | 0 ≤ i, j ≤ n+ 1} [17, 19].

Every fuzzy binary constraint Cij restricts the possible relative values of Xi

and Xj , i.e., Xj −Xi ≤ Cij . Every constraint Cij is defined as a fuzzy date as
explained in the previous section and represented by a possibility distribution πij
over the continuous time scale T . Every variable Xi is a crisp variable that takes
values of the time scale T restricted to the former fuzzy temporal constraints.
Variables X0 and Xn+1 are two dummy variables used to represent the beginning
and the end of the network.

A solution to a FTCN is an assignment of the form Xi = xi, xi ∈ T . Every
fuzzy temporal constraint of the form C0i restricts the absolute possible values of
variable Xi and constraints of the form Cij i, j > 0 restricts the possible relative
values of Xi and Xj . Then, a FTCN do not have a unique solution, but a set
of solutions each of whom has a degree of consistency (a degree of possibility)
given by the individual degrees of consistency of every single assignment with
respect to their respective fuzzy temporal constraint.



Definition 2. A σ-possible solution of a FTCN N is a tuple s = (x0, x1, . . . , xn+1)
that verifies that πS(s) = σ and

πS(s) = min
0≤i,j≤n+1

πij(xj − xi) (1)

Then, the set of solutions that might be obtained for a FTCN is featured by
the following value.

Definition 3. A FTCN is α-consistent if the set of possible solutions S ⊆ Rn+2

verifies
sup
s∈S

πS(s) = α (2)

Given a FTCN, there are some different ways to extract its solutions, at
different degrees of consistency, and they may be consulted in [17]. In the frame-
work of Machine

TF , a minimal FTCN, that is, the transitive closure of a FTCN
[8, 17, 19], is used to represent a fuzzy temporal plan where every variable repre-
sents the execution time of one of the actions of the plan and every fuzzy binary
temporal constraint is posted during the resolution process as will be explained
later. For example, a fuzzy temporal plan similar to that of Figure 3 is shown in
Figure 6.

[  0,  0]

START 

[7550,7601,8000,8100]

END 

[7350,7401,7800,7850]

PLANE−OD SCOTT 

[7550,7601,8000,8100]

PLANE−CD 

[7350,7401,7800,7850]

PLANE−STOP 

[0.5,1,400,410]

PLANE−OB SCOTT 

[194,201,600,630]

PLANE−CB 

[195,201,600,630]

PLANE−ZOOM CITY−A CITY−C 

[0.5,1,500,510]

PLANE−REFUEL 

[80,101,600,620]

PLANESTOP−REFUEL 

Fig. 6. A fuzzy temporal plan showing the fuzzy temporal reference (π0i) that
constraints the possible values of the execution time of each action. Every fuzzy
temporal reference is expressed by a 4-tuple [a, b, c, d] as in the fuzzy subset of
the right hand side of Figure 4

The capability to build these fuzzy temporal plans provides the following ad-
vantages. Firstly,they may be used to solve problems with ill defined temporal
knowledge since classic temporal plans cannot be used due to their rigid inter-
pretation of time. Secondly, in hard temporal problems, they may be used to
obtain approximate solutions where absolute solutions are not possible thanks
to a flexible interpretation of temporal constraints. And thirdly, they provide
a flexible time line for their execution able to adapt the execution of the plan
to unexpected delays without the need to replan. Even more, this model might
also be used to solve classic temporal problems where time is perfectly known
just by replacing their corresponding possibility distribution by a crisp one:
πt(t′) = 1 if t′ = t, 0 otherwise.

However the use of FTCN in a temporal planning framework poses some
interesting questions that are outlined in the next section.



4 Heuristic featuring of fuzzy temporal constraint
networks

The literature about FTCNs is devoted to further works or refinements over
previously built FTCNs, given some previously known evidences and knowl-
edge, like in deductive and reasoning processes, or in diagnosis and monitoring
applications [2, 20]. Contrary to these approaches, the inclusion of FTCN in a
planning framework needs an “a priori” study of FTCNs since they are part of
a greater search process in which they are being built to support fuzzy temporal
plans. Let see it with the following example.

Consider again the zeno travel domain whose structure has been shown in
Figure 2. Consider as well that a given makespan has been given so that the
use of the faster action Zoom allows to obtain a FTCN with α = 1, that is,
completely consistent with the problem and that, instead, the use of the slower
action Fly only allows to obtain solutions with α = 0.5 or lower. The question
arises when a choice has to be made on both plans in order to decide which one
is the best solution. In this case, both have the same capability for solving the
problem so a complementary criterion is needed. Then the degree of consistency
α plays a very important role. In this case, the plan with the action Zoom and
α = 1 should be more preferred, since it allows to obtain completely consistent
solutions, with respect to the other plan, with the action Fly and α = 0.5, only
able to obtain approximate solutions.

This answer may seem easy but it poses a difficult question. Given Equation
2, the value of the maximum degree of consistency α of a FTCN might be a very
good source of information for decision making, but it seems difficult to obtain
analytically. Perhaps some search algorithm like simulated annealing or genetic
algorithms could be used to guess that value, but this will degrade severely the
performance of Machine

TF since this process should be launched to evaluate
every possible plan being built.

In the framework of Machine
TF , although the value of α is not known, it

may be bounded and used to guide the search of the planning process.
A Montecarlo algorithm is used several times to randomly generate a set of

candidate solutions. Infeasible solutions are rejected and the remaining ones are
evaluated following Equation 1 such that the best degree of possibility of these
candidates is kept δl = max

i
πS(soli) i = 1, . . . , k 1. Clearly, δl ≤ α.

When all of the fuzzy temporal constraints in a minimal FTCN are normal-
ized, i.e., hgt(πij) = 1 ∀i, j the degree of consistency α is equal to 1, that is, there
is at least one solution that completely meets the constraints [17]. Otherwise,
let us consider the following value δu = min

i
hgt(π0i). Then, given equation 2,

it is easy to prove that α ≤ δu. This is a rather good estimation since it has
been obtained from a simplified model. In the case of absolute FTCNs, that is,
FTCNs where only absolute constraints of the form C0i are posted and every
relative constraint Cij , i, j 6= 0 is a transitive constraint, it may be proven that
α = δu.
1 The number or runs, k, is fixed previously to the planning process.



Then, both values δl and δu bounds the unknown value of α

α ∈ [δl, δu]

Since the exact value of α is unknown, the centroid of this interval is used
to estimate the “goodness” of the solutions provided by a FTCN. This value is
then used by Machine

TF as a secondary ranking criterion during the search
process, where the primary ranking criterion is the heuristic evaluation function
of Machine, that has proven to be very powerful in several domains [3].

5 Machine
TF : A flexible temporal planner

The algorithm of Machine
TF is basically, a partial order, causal link based

planning algorithm [21] and it is exactly the same than in Machine
T [4], but

taking into account the introduction of fuzzy temporal constraints:

Goal Satisfaction

– Every time an action a with a delayed effect, as a temporally annotated
literal (f, t̃f ), solves a precondition of an action b, a fuzzy temporal
constraint of the form [t̃f ,+∞) (see Section 3.2) is posted from b to a.

– Every action a with a fixed duration t̃f adds a new fuzzy temporal con-
straint of the form “about tf time units” between the action a and the
end of its interval of execution (see Section 2). In the case that the action
does not have a fixed duration, then the constraint is∧

f ′ in effects(a)

[t̃f ′ ,+∞)

that is, at least the maximum delay time of effects.
– For every deadline goal, as a temporally annotated goal (g, [t̃min, t̃max]),

meaning that goal g must be achieved more or less between times t̃min
and t̃max, which has been solved by an action a with a temporally anno-
tated effect (f, t̃f ) a constraint is added of the form [t̃min	 t̃f , t̃max	 t̃f ]
(see Section 3.2) between the time points of action START and a, given
that time point of action START has an absolute time zero2.

Concurrent actions and threats Say that action a3 with the delayed effect
((not f), t̃f ) interferes with a casual link from actions a1 to a2 with respect
to the effect f . Then promotion adds the constraint∧

f ′ in effects(a2)

[t̃f ′ ,+∞)

between a2 and a3. Demotion adds the constraint [t̃f ,+∞) from action a3
to action a1.

Makespans Makespans for the fuzzy temporal plan can be very easily repre-
sented by adding a fuzzy temporal constraint of the form [t̃min, t̃max] between
actions START and END at the beginning of the planning process.

2 Where the operation 	 is the subtraction operation defined for fuzzy sets [10, 17].



In these terms, Machine
TF is a temporal planner able to represent ill defined

temporal knowledge and to obtain fuzzy temporal plans expressed as a plan
distributed along a minimal FTCN. These temporal plans are not a solution to
the temporal problem being solved, but a set of solutions, so one of the methods
proposed in [17] is used3 to obtain one of these solutions and its corresponding
degree of possibility.

6 Conclusions

This paper has outlined Machine
TF , a temporal planner based on the repre-

sentation of fuzzy temporal knowledge. The main contributions of Machine
TF

are the following.

– It is able to obtain plans in domains in which time is not precisely known.
This is very important in real world problems and mainly with respect to
classic temporal planners, which need a rigid representation of time and,
therefore, they lose most of the temporal expressiveness of these domains.

– It is also able to obtain approximate solutions where exact solutions are not
feasible, given a soft interpretation of temporal constraints. This is also very
important in hard temporal problems since it transforms the inconsistency
in a matter of preference and degrees, more in accordance with most usual
constraints in real life.

– And finally, fuzzy temporal plans obtained provide a flexible time line for
its execution. Given that a fuzzy temporal plan may be scheduled in dif-
ferent time lines, depending on the solution that has been extracted, if an
unexpected delay occurs (due to an error, a delay in the execution of an ac-
tion, etc), a new solution adapted to the new situation may be re-extracted
without the need to replan.
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