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Partial Abductive Inference in Bayesian Belief
Networks—An Evolutionary Computation Approach
by Using Problem-Specific Genetic Operators

Luis M. de Campos, José A. Gamez, and Serafin Moral

Abstract—Abductive inference in Bayesian belief networks existin natural language understanding [6],[7], vision [8], legal

(BBNs) is intended as the process of generating théd( most reasoning [9], plan recognition [10],[11], planning [12], and
probable configurations given observed evidence. When we are learning [13].

interested only in a subset of the network’s variables, this problem . . . .
is called partial abductive inference. Both problems are NP-hard _Abduction [14]is defined as the process of generating a plau-

and so exact computation is not always possible. In this paper, a Sible explanation for a given set of observations or facts. In the
genetic algorithm is used to perform partial abductive inference context of probabilistic reasoning, abductive inference corre-
in BBNs. The main contribution is the introduction of new genetic  sponds to finding the maximura posteriori probability state
operators designed specifically for this problem. By using these of the system’s variables, given some evidence (observed vari-
genetic operators, we try to take advantage of the calculations ables). It is well known that abductive reasoning in BBNs is

previously carried out, when a new individual is evaluated. The - .
algorithm is tested using a widely used Bayesian network and & NP-hard problem [15] and this fact has motivated the devel-

a randomly generated one and then compared with a previous opment of aDPFOXimate algorith_ms. As adeCFiVe_inference in
genetic algorithm based on classical genetic operators. From the BBNs can be viewed as a combinatorial optimization problem,
experimental results, we conclude that the new genetic operators the use of optimization meta heuristics arises as a good choice
preserve the accuracy of the previous algorithm, and also reduce tq gglve it in an approximate way.

the number of operations performed during the evaluation of InT6 luti tati h | d
individuals. The performance of the genetic algorithm is, thus, n [16], an evolutionary computation approach was employe

improved. to tackle the problem of partial abductive inference in BBNs.

Index Terms—Abductive inference, bayesian belief networks, Concretely, the kind of evolutionary algorithms employed was

evolutionary computation, genetic operators, most probable genetiq algprithm (GA). GAs [:!-7] are population-pased algo-
explanation, probabilistic reasoning. rithms inspired by the mechanics of natural selection and nat-

ural genetics, i.e., survival of the fittest, and have been applied
widely to many difficult optimization problems. In this paper,
we focus on the design of specific crossover and mutation op-
ROBABILISTIC methods were discarded for some timerators for the problem of partial abductive inference, with the
as a tool for dealing with uncertain reasoning because thayn of improving the performance of the GA presented in [16].
required too complex a specification and computation. Nevelre do so, we establish a double goal.

theless, with the appearance of probabilistic network modelsl) As the majority of the computational effort in our problem

I. INTRODUCTION

(mainly Bayesian and Markov networks [1], [2]), probability is devoted to evaluating individuals (probabilistic propa-
has enjoyed a spectacular revival, being nowgdays one of the gation), we aim to reduce the number of calculations car-
most accepted and used measures of uncertainty. ried out when an individual is evaluated by reusing some

Bayesian belief networks (BBNs) are used frequently as the o the calculations carried out during the evaluation of
kernel of a probabilistic expert system because they provide an previous similar individuals.
efficient reprefsentatlon of th.e-Jomt probability distribution and 2) The GA with new operators should have a degree of accu-
allow calculation of probabilities by means of local computa- racy similar to that obtained when the classical operators
tion, i.e., probabilistic computations are carried out overthe ini-  o.o"\\sed. After all. more important than getting a quick
tial pieces of information instead of using a global distribution. answer is obtaining a good answer.

In this paper, we are interested in a particular type of infer- , . .
ence, known as abductive reasoning or diagnostic reasoning. Il N€ rest of the paper is organized as follows. In Section I,
fact, it is in the field of diagnosis where abductive reasonin§® revise the problem of abductl,ve inference in BBNS. (?ome
has its clearest application [3]—[5], although other applicatiofroductory material about BBN's and inference in BBN's is

given in Appendix |, while knowledge about GAs is assumed.)

In Section Ill, we briefly review the previous work related to
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Il. PRELIMINARIES Now, if we denote the explanation set By, C X, then we

In this section, we briefly revise the problem of abductivé"" to obtain the configurationy; of Xz such that

inference in Bayesian networks. To follow this section, some
knowledge about propagation in Bayesian networks is assumed’ e = 48 IEEELXP@EWO) =arg IE%XZ P(zg,zr|zo)
(see Appendix | for details and notation). TR @)

) whereXr = Xy \ Xg. In generalz?; is not equal to the pro-

A. Abductive Inference jection of the configuration:}; over X g, so we need to obtain
Abductive inference in BBNSs, also known as belief revision’s; directly (2).

[18] or the most probable explanation (MPE) problem [19] is de- The process of finding the MPE; is more complex than that
fined as the problem of finding the MPE of observed evidencef finding z7; because not all join trees obtained from the orig-
In the context of BBNs, an explanation for a set of observatiofizal BBN are valid. In fact, because summation and maximum
Xo = xo is a configuration of states for the network variableBave to be used simultaneously and these operations do not show
1 such thatzy, is consistent witheo, i.e., xi{XO = z0.In acommutative behavior, the variables6f; must form a sub-

fact, the explanation is}IX“\XO because the values taken by th&"e€ of the complete join tree. The construction of the join tree

variables inX, are previously known. Given the large numbels based on the triangulation of an undirected graph. In partial

of possible explanations and since we are interested in the Lguctive inference [25], in order to obtain a valid join tree, in-

explanation, our goal will be to obtain the MPE. stead of searching for arbitrary deletion sequences, we can only
Thus, abductive inference in BBNs [1] corresponds to findi:%)r‘s'd?r sequences in which the variabletia come before

the maximum a posteriori probability state of the network, givéR€ variables inX g In [25], itis shown that the size of the ob-

the observed variables (the evidence). In a more formal way!@ned join tree grows significantlyn relation to the size of the

X,, is the set of observed variables aiig is the set of unob- J0in tree obtained without restrictions and so the propagation al-

served variables, we aim to obtain the configuratignof X gorithm for partial abductive inference will be less efficient than
such that propagation algorithms for (total) abductive inference.

z}; = argmax P(zy|zo) (1) lll. ABDUCTIVE INFERENCE AND GENETIC
ru ALGORITHMS—PREVIOUS WORKS

where Xo = w0 is the observed evidence. Usually, is GAs have been previously used to address NP-hard problems
known as the MPE. related to BBNs, such as triangulation of graphs [26], imprecise
Dawid [20] has shown that the MPE can be found using proprobabilities propagation [27], estimation of a causal ordering
ability propagation methods, but replacing summation by mager the variables [28],[29], and learning [30]. Given the success
imum in the marginalization operator (due to the distributivgf these applications, the NP-hardness of the abductive infer-
property of maximum with respect to multiplication). Theregnce problem and the fact that abductive inference in BBNs can
fore, the process of searching for the MPE has the same cqf-gefined as a combinatorial optimization problem, several au-
plexity as probabilities propagation. However, in general we afig, s have used GAs to approximate a solution (Rojas-Guzman

@ntere_sted noF onlyin the MPE, but in the MPEs. For exampl_e, and Kramer [31],[32], Gelsema [33]). Below, we describe some
in a diagnostic problem, we could probably be more Conf'degglevant points of these algorithms
el .

in the diagnosis knowing the set of most probable diagnoses in [31] and [32], a chromosome of the population is rep-

cause we could pay attention to the similarities and differences ) ) .
of the states taken by the variables in the set of top explanatioheﬁ.emed as a copy of the graph included in the BBN, but in

Nilsson [21] has shown that only theoward phase of the W ich every va_riable has be_en instantigted tq one qf its pos-
propagation algorithm is necessary in order to perform abddiible states. This representatlpn makes it possible to |mplgment
tive inference over a join tree. However, he has also proved ti3§ Crossover operator as the interchange of a subgraph with the
by using Dawid’s algorithm, only the three most probable coenter in the variable(;, X; being randomly selected for each
figurations can be identified directly, but in general the fourtBrossover. In Gelsema’s algorithm [33], a chromosome is a con-
cannot be found directly. So, in order to obtain tieMPEs figuration of the unobserved variables, i.e., a string of integers.
(K > 3), more complex methods have to be used [22],[23]. In this case, crossover is implemented as the classical one-point

crossover. It is worth noting that Gelsema usesthgori prob-
B. Partial Abductive Inference abilities of the BBN and the observed evidence to generate the

Sometimes we are interested in obtaining B&PEs only initial population, so that the search starts in promising regions

for a subset of the network’s variables called the explanation &I\tthe search space. .

[24]. This problem is known as partial abductive inference and | @lgorithms presented [31]-[33] have in common the use
we think that, in practical applications, this is more useful thf the same procedure in order to calculate the fitness of an indi-
the classical abductive inference problem. In fact, in system di1as an example, consider a BBN with seven variadlas,. .. ., Xo, v},
agnosis, we can select as the explanation set those variables seqp-that there is a link” — X for each variableX;. If all the variables

resenting diseases in a medical diagnosis problem, the Variamgstake ten different states, then the size ofdpgémumijoin tree obtained in
order to apply probabilities propagation or (total) abductive inference is 600,

representing critical components (starter, battery, alternator)jfie the size of the join tree obtained for partial abductive inference taking
a car diagnosis problem, etc. Xp ={X1,...,Xs}is107.
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vidual. As P(xys|xe) is proportional taP(zy, zo), this value 1. Incorporate Xeg =a2p to 7 as evidence.
can be used as tHinessfor x;. The calculation of this value 2. for i+t downto 2 do
can be easily carried out because the state of all the variables-isf ch(C;)#£0 then
known (Xy U Xg = X;) and so the chain rule (9) can be ap- M=) — Y enS: ) {L/’(Ci) ® (®Ck€chm) M’““)}
plied. Therefore, to evaluate a chromosaome it is necessary glse A~ Yens, e »(Cy)
to perform|X;,| multiplications. - Send Mi—T( -
Although the previous a!gor.|thms are deS|gned' to deal w@_ P(C) = () D (®eycanieny AI’“—1>
the problem of total abductive inference and not with the partigl P( ’
one, in [33] the task of approximating the best set of (partial)
explanations is attempted by integrating the appropriate mem-Therefore, to evaluate a chromosome, only the first phase of
bers occurring in the final population of the GA. As Gelsemprobabilities propagation needs to be carried out. Furthermore,
[33] points out, this problem is not a trivial matter, and in faggiven the type of inference to be performed (probabilities prop-
Gelsema’s method only finds the best explanation in a smafjation), the join tree over which the propagation will be carried
percentage of the runs, not being ranked as the best in mosbof is obtained without any constraint and so its size is signifi-
them [16]. cantly smaller than the (mostly prohibitive) size of the join tree
De Campos=t al. [16] have applied GAs to the problem ofused for exact partial abduction. Moreover, in [16], the authors
partial abductive inference, but approaching the problem giropose three operations in order to improve the efficiency of
rectly. The rest of this section is devoted to the review of thiie evaluation function: 1) the join tree is precomputed (pruned)
algorithm, as it is the basis of the present paper. for each explanation set; 2) the way in which the marginalization
1) Representation of the Populatios chromosome or in- (summation) is peformed is modified in order to avoid having to
dividual of the population is a configuration of states for thinstantiate the chromosome in the join tree and so it is not neces-
variables in the explanation sz, i.e., a string of integers of sary to reload the initial potentials when a new chromosome has
length| X £|. Notice that in this case it is not useful to represenb be evaluated; and 3) a hash table is used to store the fithess of
a chromosome as a graph because we are working only witthea chromosomes previously evaluated, making it unnecessary
subset of the variables in the graph and its associated subgrptepeat the propagation. Although in this paper we also take
will usually be a set of disconnected graphs. advantage of these improvements, for the sake of simplicity, we
2) Evaluation Function:In partial abductive inference, focus our discussion on the evaluation function as it appears in
P(xzg,z0) can be used as the fitness for a chromosame Algorithm 2. For more details, see [16].

rp,x0) — P ¥ (er).

However, as 3) Generation of the Initial PopulationHalf of the initial
population is generated randomly (the search starts with points
P(zg,z0) = Z P(zg, xR, 0) in all the search space) and the other half is generated by simu-

lation, using a procedure inspired in the idea of Gelsema and is
based on Henrion’s probabilistic logic sampling [34] (the search
starts with points in promising regions).
4) Transition From One Populatio#’(¢) to the NextP(t +
1): To obtain a new generation, a procedure similar to the mod-
5, then the number of operations to evaluate a chromosoif‘ d GA (_modGA) proposed by Michalevyicz [35]is “?ed- This
falls into the category of preservative, generational, and

zg is bounded by50 - 230 multiplications and2*® summa- .. : . ; ;
. 2 : : . elitist selection and has similar theoretical properties as the clas-
tions. Clearly, this is computationally intractable given the Iarﬁ

muEQxH

it is necessary to use the chain rid&y,. | times to evaluate a
chromosome. For example, if we have a network Wik, | =
50 bivalued variable§Xg| = 15, | Xgr| = 30, and|Xo| =

ber of individuals to b luated in th . faG ical GA. The main modification with respect to the classical
number ot individuals to be evaluated in the execution of a A is that in modGA the classical selection step is not per-

Because of this, de Campes al. [16.]_'0@'0033 to e_valuate aformed, but rather distinct chromosomes (usually those that
chromosome by means (.)f a probab|||st|g propagation. g best) are selected froR(¢) to be copied taP(¢ + 1).

Aswe can seein AIIgorlthm 1 (App.end.|x I;}B), tlhe probablllfty Other models of GAs (classical and steady state) were consid-
P(zo) can be calculated by summing In the clique root aftef,qy 4t the beginning of our experimentation. Although all the
the upward phase. When we are going to evaluate a chromgsje|s worked quite well, when the goal was to search for the
some, the state taken by the variables in the explanation se{iS explanation, we decided to use modGA because its struc-
known, so we can treat those variables as evidence and calculglg seemed to fit best the problem of searching foitHdPEs
P(ap, xo) by using the first three steps of Algorithm 1. Algo-perhaps due to the fact that modGA maintains a subpopulation
rithm 2 shows the pseudocode of the evaluation function US@éhtaining the best individuals found during the search.

in [16]. In [16] the parameters used were those cited below. Although
the majority of them have been maintained for this paper, we
Algorithm 2: Evaluation Function indicate those that have been modified.
Input: The join tree T = {Ci,...,C} with the 1) Select the best 50% chromosomes fréitt) and copy
evidence Xo = zo previously instantiated. them toP(¢ + 1). In this way, the population diversity
The configuration xr to be evaluated. is ensured and the premature convergence problem is

Output:  P(xg,z0). avoided.
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C,=(A=a, E=e, G=g, H=h) C,=(A=ma, E=—e, G=g, H=h)

Fig. 1. (a) Messages sent during the evaluation,0fb) Messages sent during the evaluatiomaf

2) 35% of the new population is obtained by crossover. 5) Stopping Criterion: The algorithm stops when a fixed
The crossover operator used is the classical two-poimimber of iterationsi{g) has been carried out. The probability
crossover and the two children obtained are copied ¢ the chromosomes stored Kibest is then divided by(x¢)
P(t+1). Inthe original work [16], the chromosomes arén order to obtairy(zg|zo).
selected with a probability proportional to their fitness, As in this paper, we are going to experiment with different
but in this paper, we will use a probability of selectiorpopulation sizes and different ways of initializing the popula-
based on the position in which individuals aienked tion, we have modified the stopping criterion in the following
according to their fitness. Our experimentation indicategay: the algorithm stops when the probability mass of the ex-
that this type of selection improves the behavior of oylanations included idbest does not improve in ten genera-
algorithm, especially with respect to the variability otions.
the outcomes.

3) 15% of the new population is obtained by mutation. Mu-
tation is carried out by selecting a chromosome fiB(h)
and modifying one of its components, the resulting chro- The main disadvantage of the GA presented in [16] [from now
mosome is copied t&(t+1). We, thus, apply genetic op- on called GA with classical operators (GACO)] is the need to
erators on whole individuals as opposed to individual bifserform a complete upward propagation each time a new chro-
(classical mutation). As Michalewicz [35] points out, thisnosome has to be evaluated. In this section, we introduce new
would provide an uniform treatment of all operators usegenetic operators to avoid this disadvantage. The new opera-
in the GA. Theparentsfor mutation are selected fromtors are based on the following idea: when a new chromosome,
P(t) with a probability based on their rank, except foobtained by mutation or crossover has to be evaluated, we can
thebestchromosome, which is always selected as a paretake advantage of some of the calculations carried out during
(thus, the area in the proximity of the best chromosometise evaluation of their parents’ chromosomes. The modification
explored). In the original work, parents for mutation weref GACO to include the new genetic operators will be called
selected randomly, but we have changed this for the sa@@ with specific operators (GASO). Of course, the evaluation
reasons as in the crossover. of a new chromosome in GASO will be faster than in GACO,

Notice that inP(¢ + 1), only half of the population is new although the amount of memory needed will be greater too be-

and so only those chromosomes are candidates to be evaluatatse we have to store the relevant information created during
in each generation. This fact is important in our problem b#ie evaluation of a chromosome. Let us motivate the new oper-
cause of the evaluation function complexity. When a new chrators with an example.

mosome is evaluated, it is tested to see whether it should bé&example 1 Consider the join tree in Fig. 11 (see Appendix I)
included inKbest, an array which contains th€ best individ- and the explanation setr = {A, E,G, H}. The messages
uals obtained from the beginning up to the current generatiorquired to evaluate the configurations (chromosonags}=

The numbers 50, 35, and 15 were selected by experimentatiofih= a,F = ¢,G = g,H = h) andcz; = (A = -, FE =

[16], although the behavior of the algorithm seems not to be te@, G = g, H = h) are shown in Fig. 1(a) and (b), respectively.
sensitive to small variations around these numbers. HowevEhe variables inside brackets in each cluster are the separator
a drastic reduction in the number of individuals to be mutatext with its father and we will refer to the variables outside the
could degrade (in general) the behavior of the algorithm, esf@ackets as theesidual setWe have also underlined the vari-
cially with respect to searching thi€ MPEs. ables of the explanation set in the residual sets (notice that a

IV. DESIGN OF THENEW GENETIC OPERATORS
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variable can be included in the separator set of several clusteysgrators, it should be pointed out that the initial population is
but only in one of them as residug). evaluated using the evaluation function presented in Algorithm
As variablesG and H take the same value in both configu2 because, at the beginning, there is no information to reuse.
rationsc; andes,, it is clear that the messagasg*—3, A>3,
andM 32 will be the same in the evaluation of both conflguraA Mutation
tions. Therefore, if we store the calculated messages, fand We shall denote by; the separator set @f; with respect to
we use that information for the evaluation®f we only need its father and byR; the residual set of’;, i.e., R; = C; \ S;.
to operate in clusterSy, O, andCg [depicted in dashed line in Let us define the following set:
Fig. 1(b)].
In fact, in the previous example, we have a subtree with Cr={C; €T |R;NXg #£0}. 3)
the same evaluation for both configurations (remarked in
Fig. 1). This gives us the following idea: we can associate/s the relevant information about a variablg; is obtained
join tree to each chromosome of the population and implememien this variable is summed out (marginalized) and marginal-
the crossover and mutation between trees and not betwézation is carried out in the cluster which contains the variable
chromosomes. In this way, we can avoid the calculatiod$; in its residual set, the@’r contains all the clusters that con-
corresponding to the interchanged subtrees. cern us with respect to the explanation 4&t. The proposed
The relevant information generated when a chromosomenigitation operator is shown in Algorithm 4, where we have used
being evaluated is the set of messages sent among the ctus:C;) as the set containing all the clusters in the path between
ters. This is good because the size required to store the mia¢C;) and the root’;.
sages is much lowerthan the size required to store the clique
potentials. Therefore, in GASO, a chromosome is representddorithm 4: Mutation
by a string of integers (as in GACO) plus (a vector containind)put: The chromosome ¢ to be mutated and its

the messages sent during its evaluationCAsever computes associated vector messages(c).
its message, the vectarssages will be defined from 2 to Output: The mutated chromosome ¢ and its asso-
|71, so messages(c)[i] will represent the message sent@y ciated vector nessages(c').
during the evaluation of chromosome 1. Copy c to ¢ and messages(c) t0 messages(c’).
Algorithm 3 shows the pseudocode of the modified evaluatiéh Select randomly a cluster C; € Cr.
function, in which themessages vector is considered. 3. Select randomly a variable X; e RiNXg.
4. Mutate the variable X; in ¢.
Algorithm 3: Modified Evaluation Function 5. for all Ck € anc(Ci) U{C;} do
Input: The join tree 7 = {Ci,...,Ci} with the messages(c')[k] ~« NIL
evidence Xo = xzo previously instantiated.
The chromosome ¢ to be evaluated and its asso- Therefore, to evaluate the obtained chromosefmwe only
ciated vector messages(c). have to carry out new calculations in the cluster containing the
Output: the fitness for ¢, Ple,z0). mutated variable and in all their ancestors in the join tree. The re-
Auxiliary variable: change maining clusters can reuse the messages calculatetémause
1. Incorporate Xy =c to T as evidence. they are not affected by the modified variatie. For example,
2. change «— false if we consider the join tree depicted in Fig. 11 and the expla-
3. for i« ¢ downto 2 do nation setXp = {A, E,G, H}, thenCg = {C1, Cy, Cs5, Cg}.
3.1 if messages(c)[i] = NIL then Fig. 2(a) shows the messages sent during the evaluation of chro-
- if  ch(C;) # 0 then mosomer; . If the clusterCy is selected in Step 2 of Algorithm
MITRO e 00D E (®Ok&h(c \ Mkﬂ)} 4, then itis clear that variablg’ will be mutated and the state
else MR 3L w(Cy) of the join tree to be used for evaluating chromosais de-
i) picted in Fig. 2(b) (where empty messages are the messages to

- messages(c)[i]«— Mlﬁfa()

- Send M~

- change « true
4. if ( change = true ) then

(1) = () & (R eanion M)
5. Plap,xo) « 30 ¥'(c1)

be calculated and dashed clusters represent the clusters where
new computations have to be carried out).

Notice that in the previous example we have considered one
of the worst cases because the selected cluster is a leaf in the
join tree. For example, if in step two of Algorithm 4 we select
clusterC; with the result that variabld is mutated, then all the
previous messages are valid and the only new computation is

The structure of GASO will be the same as that describ@érformed in cluste€; (Step 5 of Algorithm 3).
previously for GACO, except the necessary changes in the eval-
uation function in order to adapt it to the new genetic operatofs. Crossover
Before introducing more specifically the mutation and crossover|n Example 1, we have seen how the variables (more prop-

2The cluster in which the variable is summed out (marginalized). erly the clusters of’r that contain those Va”ables) of the ex-
3In our experiments, the messages take up about the 20%-25% of the Q@nat'on set whose state was changed could be isolated in a
required to store the clique potentials. subtree. This gives us the following idea: if we select a cluster
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C,= (A=a, E=e, G=g, H=h)

C’l = (A:a, E:e, G:—lg, H:h)

(b)

Fig. 2. (a) Messages sent during the evaluatiom,0{b) State of the join tree after mutating varialifeand before the evaluation of .

Join tree for
chromosome 1

join tree for
chromosome 2

Fig. 3. Structure of the crossover operator.

Cy of 7 and we interchange between two chromosomesnd

¢z, the subtree whose root (5, (75), then to evaluate the new
chromosomes] andc, (obtained by interchanging the state o
the explanation set variables contained in the residual set of
clusters inC'r N 7;), we need only to operate on the clusters b
longing toanc(Gy,). Fig. 3 shows the structure of this crossove
and Algorithm 5 shows the pseudocode of the crossover op

ator.

Algorithm 5: Crossover

Input: The parent chromosomes ¢ and c2 and
their associated vectors
messages(cz2).

Output: The obtained chromosomes
and their associated vectors
messages(ch).

1. Copy ci to ¢ and messages (c;) t0 messages
(c).

2. Copy ¢z to ¢4 and messages(cz) t0 messages(ch).
3. Select (randomly) a cluster CreT.

4. Interchange between ¢y and c,, the state
taken by the explanation set variables be-

longing to the residual set of the clusters

contained in 7. N Ckr.

5. for all C; € anc(Cg) do

-messages(c))[i] «— NIL

messages(c;) and

¢, and b,
messages(c)) and

-messages(ch)[i] — NIL

Fig. 4 shows the messages sent during the evaluation of chro-
mosomes:; = (A = a,F = ¢,G = g,H = h) andcz =
(A= —a,E = —e,G =g, H = —h). If we select cluster
Cj5 as the crossover point, then the state of variabled H
is interchanged between andc;, obtaining the two children
4 =(A=aF =¢,G=—g,H=-h)andd, = (A =
—a, B = —e, G = g, H = h). Fig. 5 shows the state of the join
tree before evaluating the new chromosomes and we can see that
only one message and two clusters are involved in new compu-
tations, so the evaluation of the two children will be faster.

Remember that if a new chromosom@btained by mutation
or crossover) has been evaluated previously, we do not recalcu-
late it again, recovering its fitness from the hash table. Then,
he vectomessages(c) will contain some noncalculated mes-
%iqges. This is no problem for Algorithms 4 and 5, which are

e to deal with empty of null (NIL) messages. The only con-

%'equence is that (in general) the number of new computations re-

uired to evaluate an offspring whose father had NIL messages
ill be greater. For example, in Fig. 6(a) we have the messages
sent during the evaluation @ (messages are represented as
white-headed arrows) and in Fig. 6(b) we have the content of the
vector messages for chromosomemessages are represented
as blackheaded arrows and absence of arrows denotes NIL mes-
sages). I{C; is selected as the crossover point, Fig. 6(c) and (d)
shows the state of the join tree before evaluating the two children
¢ andd,. Itis clear that the state of both join trees is correct for
the application of Algorithm 3, but as a consequence of the NIL
messages inz, the number of new computations to be carried
out in ¢, is greater than those caused directly by takifigas
the crossover point.

1) Selecting the Crossover PoinBtep 3 of Algorithm 5
(crossover) is

Select (randomly) a clustéry, € 7.

We may now ask the following two questions.

1) Are all the clusters iff good candidates to be selected as
the crossover point?

2) Is random selection the best way to select the crossover
point?
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C,=(A=a, E=e, G=g, H=h) C,= (A=—a, E=—e, G=—g, H=—h)

@ (b)
Fig. 4. Messages sent during the evaluation of:(agnd (b)c..

C’,=(A=a, E=e, G=—g, H==h)  C’,= (A=—a, E=—e, G=g, H=h)

() (b)

Fig. 5. State of the join tree after performing the crossover and before the evaluatiorph(a) (b)c;, whenC’; has been selected as crossover point.

With respectto the first question, itis clear that the root cannot Column two of Table | shows the amount of interchanged
be selected as the crossover point because, in that case, the einfoemation when a cluster is selected as crossover point for the
chromosome is interchanged and so the operation does not goim tree in Fig. 7.
stitute a crossover. However, the root is not the only cluster to beDefinition 2: All the clusters in the join tree arealid as
avoided as a crossover point. For example, in the join tree shoarpssover points except those included in the following two cat-
in Fig. 7, if we selectC; as the crossover point, the only infor-egories:
mation to interchange is that corresponding to varidhlelow- 1) the root of the join tree;
ever, if we selecCy as the crossover point, the interchanged in- 2) any clustelC; such that/(C;) = I(fa(C;)).

formation is exactly the same, but the subtree to interchange i fourth column of Table | shows the clusters that are con-
greater and, therefore, the number of new computations t0 8gljereq as valid crossover points for the join tree in Fig. 7.
uate the children is smaller. From this example, we can concludeAt this point, we have answered the first question, but what

that it not all the clusters should be regarded as crossover po"&ﬁout the way a cluster is selected as the crossover point? In

we ,Sh‘?lll now formalize the previous |dea.' . the rest of this discussion, we only consider the clusters that are
Definition 1: The amount of interchanged information when

! ) valid crossover points. In Table I, we can see that the majority
clusterCy, is selected as the crossover point (denotef{ &% )) of the crossover points have a small valuel 0f), so if all the

IS deﬂned_ as the number of explanation set variables containggsg ey points have the same probability (random selection)
in the residual set of the clusters1y. More formally of being selected as the crossover point, then the convergence
of the GA could be slowed down. Therefore, in order to give
H{CH=RX; | X; e Xgn U R; . (4) priority to the crossover points with higher valuelgf), we can
C;€T;, select a crossover point with probability proportionafe).
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< ¢ TABLE |

VALUE OF I(C}.) FOR EACH CLUSTERC'x OF FIG. 7

Probability of selection

}
7 \ / (Cy) (Cy) lid d 1+log()
C; | Cy) | I'(Cy) | Valid | random | prop. | 1+log
(3) (3)
/ﬁ% gﬁ% Ch 4 0 no
(5 ©® @ © @ ’
(@) (b)

Cy 3 1 yes 0.2 1/6 0.189

) ) Cs 2 2 yes 0.2 2/6 0.244

Cy 1 1 yes 0.2 1/6 0.189

Cs 1 1 yes 0.2 1/6 0.189

\ Cs 1 1 yes 0.2 1/6 0.189

g\ l} g\\ Cy 1 1 no
© @ © @
(c) (d) join tree for join tree for

. . chromosome i chromosome j
Fig. 6. Example of crossover with NIL messages. (a) Parent 1. (b) Parent 2.

(c) Child 1. (d) Child 2.

-

Explanation set = {A, E, G, H}
\ ‘\\ ' ‘\ /I/,l , A

VA Yo 7,
NSNSt
SNIITE--T
3 Fig. 8. Structure of the two-point crossover operator.
The third column of Table | shows the valuesif-) and the
. last three columns of the table show the probability of selection
for three different selection criteria: random, proportional, and
log-proportional.

Fig. 7. Join tree. C. Two-Point Crossover

However, to have a very high value &f-) is not good ei- . In(;)rdertr':o tlncreas_etthe d|verS|t_)|/_ho_f possmzle F:ros;ove;s(,jwe
ther because, in that case, the children obtained after applymgo u??h € wo—p0|ndcrfpss§yers. tl's o;l)\(jrgc;)nfa | |retp at ap-
the crossover will also be very similar to their parents. In 0151'1l otno € crossover glr:e 'r:j _etc 'OE o ltjhsi ec mgl;)two
example, if7(Cy) = 3 the children are equal to their parent USIETS as Crossover points and interchanging the two Sublrees.

except in the state of a variable (the same ag{6%,) = 1). To hl? SméCturf Ofttr?e tWO'EO'm fc roT_(sjover is shown _thl_g. 8'. .
correct this situation, we defink(-) as m denotes the number of valid crossover points in a join

tree with respect to an explanation sét, then the number of
I'(Cy) = min(I(Cy), | X g| — I(Ck)). (5) different crossovers is:
1) m, with one crossover point;
2) < m(m —1)/2, with two crossover points.
In this way, we have increased the number of possible
I'(Cy) crossovers significantly; for example, ik = 10, we have
pset(Ci) = ) (0 (6) passed from ten to an upper limit of 45. This number is an
¢; valid J upper limit because some crossover points are descendants
In order to smooth the differences among the probabilities @f the join tree) of other crossover points and if this situation
selection, we can apply logarithms occurs during the crossover, we are acting in the same way as
) in the case of one-point crossover.
po(Ci) = 1+ log(I'(Cy)) _ (7 The GASO algorithm with the two-point crossover operator
Yc; valid 1+ 1og(I'(C;)) will be denoted as GASO2.

Therefore, we will usel’(-) instead ofI(-) to implement the
proportional selection
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TABLE I set were selected in a pseudorandom way, i.e., several sets con-
SOME CHARACTERISTICS OF THENETWORKSUSED IN THE EXPERIMENTS taining |XE| variables were randomly generated and the most
difficult one to be solved by exact computation was chosen. The

Network  nodes arcs states. min max mean difficulty of a problem was measured as a function of the time

Alarm 37 46 {2,3,4) 2 108 203 and space needed to solve the problem _exactly. To so_Ive the
problem exactly, we have used software implemented in Java

random100 100 128 2 2 64  6.54 and running on an Intel Pentium Il (600 MHz) with 384 MB of

RAM, Linux operating system, together with the JDK 1.2 virtual
machine. The time needed to solve Experiments 1, 2, and 3 was
TABLE 1l between 1 and 1.5 h, while solving a total abductive inference
DESCRIPTION OF THEEXPERIMENTS problem using this software takes less than 0.5 s. For Experi-
ment 4, we have not been able to solve the problem exactly be-

#exp. |Xgp|  network X |@x] cause of memory requirements, i.e., the “out of memory error”
1 18 Alarm  pseudo-random 143,327,232 was obtained as response. This error is due to the enormous size
of the join tree obtained from theandom10Metwork by means
2 19 Alarm  pseudo-random 214,990,848 of a compilation constrained by the selected explanation set. In

these networks, total abductive inference requires less than 9 s.
Notice that this fact does not imply that all the problems with

4 30 randoml00 pseudo-random 1,073,741,824 these explanation set sizes are equally hard to solve, because the
complexity of the problem depends on: 1) the selected explana-
tion set and 2) the topology of the network. However, the cases
V. EXPERIMENTAL EVALUATION considered here are examples of problems in which exact com-

T luat lqorith h ied out éputation is not suitable.
0 evaluate our aigorntnms we have carried out Tour exper, o yhq experiments, five variables have been selected as

iments, described in Sections V-A. In Sectlpn V-B, the Pere'vidence, being instantiated to thaipriori less probable state.
formance measures used to compare the different algorith

. . : . ; Rihe four ex eriments, we have také&nh = 50, i.e., we look
are defined. Finally, in Section V-C, the experimental resul P °

are analvzed and seme conclusions are formulated. Due to r the 50 MPEs. Taking into account the valuefof two dif-
yz e vated. bu nt population sizes have been considered: 1@0) (@nd
great amount of generated data and to make possible a cog%

3 20 Alarm pseudo-random 382,205,952

uous reading of the paper, tables and figures are placed in an(fg%'sljv;?e‘é":a?/;ngg;g?};g%;:gomal'/g%peuﬁggg (r;i’e
in [16]). Unlike the stopping criterion considered in [16], i.e.,
a fixed number of generations, here the algorithms stop when
massb0’ (see the next section) does not improve in ten genera-
Three experiments have been carried out over the well-knogions.
Alarm networkt [38] and the other over an artificially gener- The four experiments have been solved by the GACO algo-
ated Bayesian networkandom100 The networkrandom100 rithm and by six versions of the GASO algorithm (GASOd1r,
has been generated by allowing a maximum of five parents I8ASO1p, GASO1l, GAS2r, GASO2p, and GASO2I), where the
each variable and by using the following procedureorder to number indicates if we are using one or two cliques as crossover
generate the probabilities: two uniform random numheasid points, and the letter denotes the way in which the crossover
y are generated and the probability of the two values (margirgdints are selected: random (r), proportional (p), or logarithmic
for root nodes and conditional for the rest) of a variable are dg).
termined by normalizing® andy®, which gives rise to extreme
probabilities. _ _ B. Performance Measures
Table Il shows some information about these networks, where
min, max, and mean make reference to the size of the probabilityThe data we have collected during the execution of the algo-
table attached to each node and states makes reference tdithes is related to the following.
number of possible values that each variable can take. 1) The probability mass of thd¢ MPEs found. Thus,
Table Ill shows a brief description of each experiment. The mass], mass10, mass25, and mass50 represent the
column|Xg| informs us of the number of variables included probability mass of the first 1, 10, 25, and 50 MPEs found
in the explanation set, while the colunifz informs us of the by the exact algorithm anthassl’, mass10’, mass25/,
way these variables were selected as the explanation set. In all  andmass50’ represent the probability mass of the first 1,
the experiments, the variables to be included in the explanation 10, 25, and 50 MPEs found by the proposed algorithms.
4The Alarm Bayesian network constitutes a classical problem for the testing For EXper_'mentS 12, an,d 3, W,e present the percentage
of several types of algorithms (learning, propagation, etc.) in the Uncertainty in of probability mass obtained with respect to the exact
Artificial Intelligence (UAI) community; as an example, we can cite two papers a|gorithm %massX’ = massX’ x 100/massX). For

[36],[37] of the most recent conference on this topic (UAI'2000). This network .
has also been used to test previous abductive inference algorithms [32]. Experiment 4, because of the absence of exact results,

H /
5This process of generating Bayesian networks was used by €ahd39] we directly preseninassX .
in order to obtain very complex problems. 2) The number of generations performed by the GA.

pendix II.

A. Description of the Experiments
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3) The number of differeptevaluated individuals during the
execution of the GA.

4) The number of additions and multiplications carried ot| (b) SOl SOlp SOir SO02 SO02r 85020 CO (w)
during the evaluation of the individuals (propagation
Notice that these are the basic parameters to be cons
ered as far as the goal of this paper is concerned beca
we try to improve the evaluation of individuals and the
operations involved in the evaluation (probabilistic prog
agation) are combination (multiplication) and marginal
ization (addition).

In the tables, the best result in each major column (e.9, 8Y5.9. Example of the output produced by the multiple test. Notice that in this

erage for %massl) is in boldface. All the algorithms have be&ind of diagram, GASO has been abbreviated to SO and GACO to CO.

run 50 times over each experiment and, therefore, the average

(4) and the standard deviation (SD) are shown. Moreover, a
statistical study has been done in order to ascertain whether
there are significant differences among the algorithms used.
The Tukey (Studentized) tewith a 0.05 level of significance
has been used for the analysis of two samples: GACO versus
GASO1r, GACO versus GASOL1l, etc. When significant differ-
ences are found, they are shown in the average column of the
tables (see Appendix II-A) by:

#multiplications

1) The algorithms are ordered from best average (b) (left) to
worst average (w) (right).

2) Four groups are established {GASO1ll, GASO1lp,

GASO1r}, {GASO1p, GASO1r, GASO21}, {GASO2,

GASO2r, GASO2p}, and {GACO}, indicating that

neither of the average differences between the algorithms

included in each group are significant.

3) Since no line connects the {GACO} group with any

1) a plus' sign {) for significant difference in favor of other group, it differs significantly from all the other
GAS_O' ) - ] ) algorithms.

2) a minus sign |) for significant difference in favor of 4) Since no line connects GASO1l with the {GASO2],
GACO. GASO2r, GASO2p} group, these groups differ signifi-

In fact, statistical tests are performed not only between the cantly from each other.
GASO algorithms and GACO, but also between every pair of gy A similar conclusion to the previous one can be obtained
GASO algorithms: GASOL1r versus GASO1p, GASO1r versus ~ ¢, {GASO1l, GASO1p} with respect to {GASO2r,
GASOL1, etc. The information produced by these tests is summa- GASO2p}.
rized with the help of the Student—Newman—Keuls (SNK) mul-
tiple range test (with 0.05 level of significance). This methoﬁ1
works in the following way:

The obtained diagrams are shown in Appendix 1I-B. When
ere is no diagram for some of the studied parameters (i.e.,
massl), it means that there is a line grouping all the algorithms,
1) order the meang, < --- < ju; i.e., there is no significant difference between them.

2) call comparey; ). In order to analyze the different options in relation with the

Compare, j): Comparey; andy; by using a critical value pofpulation (size and initialization), statistical tests have been
determined by the significance level of the test, the degrees Qf1ieq out among the four combinations: R1, H1, R1, H2

freedom from the analysis of variance, and the number of megiSere “R” is random population, *H” is 1/2 heuristic popula-

in the range of means being tested. If the range i.s notsignificaﬁéﬂ' “1" is population of size 100, and “2” is population of size
no further testing is done and the set of considered means iy The analysis has been carried out from the results obtained
declared homogenous. Otherwise, call compajet 1) and  , 5AsO01p and GASO2p. We have selected proportional

compare( + 1’j,)' selection of crossover points because it seems to be the medium
The method first ranks the means (averages) from smalles e. The diagrams obtained are shown in Appendix II-B
largest and then looks for homogenous intervals of values. This '

is done by a recursive procedure. It tests the difference between
the smallest and largest means of a sequence. If it is not sigif- Analysis of the Experimental Results
icant, then all the sequence is considered homogenous. In other

case, two new intervals are generated for test: one removing th%rom the experimental results obtained and with the help of

smallest value of the sequence and the other by removing {ig atistical analysis carried out, the two main conclusions ob-
largest value. A more detailed description can be found, .fhined are the following

in [40]. The output of this test is shown in a compact way by
means of diagrams like the one displayed in Fig. 9. On it, the 1) The accuracy of the GA with the new proposed operators

intervals with no significant differences are connected with hor- is similar to the accuracy of the GA in which the clas-
izontal lines. The meaning of this diagram can be interpreted as ~ sical operators are used. In fact, there is no significant
the following. difference with respect to mass1 and mass10 in any of

SNotice that due to th ¢ a hash tabl ion ed outwh the experiments carried out. The statistical analysis has

otice that due to the use of a hash table, no propagation Is carried out wnen . I . . .

an individual is revisited. revealed that S|gn|f|cz_;1nt differences exist Wlth_resp_ect to
7The BMDP program has been used to perform the statistical analysis of the ~ MasS25 and mass50in a few cases, but sometimes in favor

experimental results. of GACO (9) and sometimes in favor of GASO (15).
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2) The way in which the individuals are evaluatd has been
improved. In fact, in all the seriéssignificant differences

115

has increased with respect to the GACO approach, al-
though these memory requirements are clearly affordable

in favor of GASO versus GACO have been found with re- in today’s personal computers.
spect to the number of multiplications and additions car- 2) Different GASO ApproachesFor this analysis, we focus
ried out during the evaluation of individuals. on the best group determined by the SNK test. By best group,
As these conclusions coincide with our goals, we think thate mean the group in which the algorithm with the best average
the new genetic operators proposed constitute a considerapl#cluded. Notice that this does not mean that there are sig-
improvement to the problem of tackling partial abductive infemificant differences between all the algorithms included in this
ence in BBNs by GAs. Moreover, from the experimentation argfoup and those that are excluded, but there is (at least) a sig-
the statistical analysis, the following more specific conclusiorficant difference between the algorithm with the best average
can also be obtained. and those that are excluded from the best group.
1) GASO Versus GACO: 1) Accuracy:The accuracy exhibited by the six GASO algo-
1) There is no series in which a significant difference unfa- rithms is similar. In fact, in all the series except one, the

voralbe to GASO2| or GASO2r has been found with re-
spect to mass(1, 10, 25, 50).

six algorithms are included in the same group by the sta-
tistical analysis carried out. In the remaining one, there is

2) The differences found with respect to additions are,  asignificant difference in favor of the two-point crossover
roughly speaking, that GACO requires between 1.7 and  approach with respect to the one-point approach.
2.4 more additions than GASO. In the case of multipli- 2) Additions and multiplicationstn this case, it seems that
cations, GACO requires, roughly speaking, between 1.3  when significant differences exist (12 of the 16 series),
and 1.8 more multiplications than GASO. Notice that they favor the one-point approach (except GASOLr,
the reduction ratios are different even for the experi-  which is excluded in four of the 12 series). The expla-
ments carried out over the same network, which is due  nation of this fact lies (in our opinion) in the greater
to the fact that savings depend on the topology of the  portion of the join tree that has to be reevaluated when
precomputated join tree, and on the way variables in the  the two-point crossover approach is used.
explanation set are distributed over the join tree. 3) Generations:From the analysis, it can be observed that
3) With respect to the number of generations carried out, GASO2p and GASO2I| are always included in the best
we can see that significant differences unfavorable to  group. Although GASO1land GASO2r are sometimes in-
GASO1r with respect to GACO can be observed in cluded in the best group, it can be deduced that GASO2p
some cases (one in Experiments 2 and 4, and three in and GASO?2| are the algorithms needing a small number
Experiment 3). By contrast, significant differences in of generations before the stopping criterion is met.
favor of GASO2I with respect to GACO can be observed 4) Individuals:In 11 of the 16 series, all the algorithms are
in 12 of the 16 series. included in the same group. In four of the five remaining
4) The behavior of the two approaches seems to be similar ~ series, GASO1r is excluded from the best group. There-
with respect to the number of different evaluated individ- ~ fore, in this case, the six GASO algorithms seem to have
uals, except in experiment 4, where several times signif-  a similar behavior, the random selection being a bit more
icant differences have been found in favor of the GASO  unstable.
approach. The four cases in which significant differences 3) Different Population Options:
are observed in favor of GACO are always with respect 1) accuracy:Three different groups can be considered here.
to the random selection of crossover points. . a) Experiment 2: This problem seems to be the easiest
5) The extra amount of computer memory required by the

Extra Memory = PopSize x (a x JoinTreeSize)

GASO approach can be calculated by using the following
expression:

(8)

where« is the percentage of space required to store the
messages with respect to the space required to store the
cliqguesin join tree. In our experimentshas taken values

in the interval [0.2, 0.27]. Therefore, if a double needs
four bytes to be represented, then the computer memory
necessary to store the join tree in Experiments 1, 2, and
3 is about 5 kB, while 18 kB are required to store the
join tree used in Experiment 4. However, if the GASO ap-
proach is applied and population size is 200, then about
150 kB, 156 kB, 125 kB and 745 kB are required to store
the messages vector in Experiments 1, 2, 3, and 4, re-
spectively. As we can see, the amount of memory required

8Sixteen series have been carried out: four experiments by four population
combinations.

one considered here, and no significant differences
between the four combinations are found.

b) Experiments 1 and 3In these cases, the worst
choice is R1, which is always excluded from the
best group. The best option seems to be H2 because
it is always included in the best group and also has
the best average. However, H1 and R2 seem to be
competitive with H2, being included in the best
group most often.

c) Experiment 4This case is strikingly different from
the previous one because the heuristic initialization
of the population yields worse results than a whole
random initialization.

Therefore, it seems that the introduction of promising
individuals in the initial population contributes to focus
the search to promising regions of the search space, al-
though in some situations (Experiment 4) these regions
can be local optima, being too difficult for the algorithm
to escape from them. Although in this paper we have al-
ways used the same percentage (50%) as in [16], it might
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be a good idea to reduce the percentage of heuristic indi- P)

viduals introduced in the initial population.
2) GenerationsWith respectto this parameter, itis clear that P(G) PEA)  POD)
the presence of heuristic individuals focuses the search;
hence H2 andH1 need a smaller number of generations
than R2 and R1 to meet the stopping criterion. /
3) Individuals, additions, and multiplication&ior these pa- P(F|G,B) ® PED)
rameters, the four combinations are usually classified in P(C|B.D)
separate groups. Taking into account the averages, the @
order in which they are ranked 81 < R1 < H2 < PHIF.C)
R2.Therefore,H1 is the choice that consumes fewer re-
sources. Taking into account this fact and also that we &fig. 10. Bayesian network.
trying to solve an inference problem (so a quick response
is usually important), together with the conclusion previ- Before proceeding, we define the following notation. A lower
ously obtained from theccuracyparameters (introduc- case subscript indicates a single variable (€Xg), An upper
tion of less than 50% of heuristic individuals), it seemgase subscript indicates a set of variables (&), For some
that the best choice would b1 if we need a quick an- particular problems, the propositional variables are denoted by

swer andH 2 if more time is available. capital letters without subscript, B, C, . . .. The state taken by
a variableX; is denoted byr; and the configuration of states
VI. CONCLUDING REMARKS taken by a set of variableX, is denoted by: . That is, cap-

The problem of performing partial abductive inference iHaI letters are reserved for variables and sets of variables and
qwercase letters are reserved for states and configurations of

BBNs has been studied. We have improved a previous é } . )
(GACO [16]) by introducing new specific genetic operatorsgtates' The set of different states that a variablecan take is

which take into account the way the chromosomes are bef{g10ted byx, and the set of different configurations that a

evaluated. With the introduction of these new operators, t§dPSet of variableX, can take is denoted iy,

process of evaluating new individuals (the most time con- If X“,: {Xl,""’X"}'S the set.ofvar-|ables in the _network,

suming process in our GA) requires less computation and so {HS“ using the mdependence relqt|onsh|ps encoded in the graph,

resulting GA performs faster. Moreover, from the experimentme joint probability can be factorized as

study carried.outj we can conclude that. the accuracy of t.he new P(Xy) = H P(X;|pa(X;)) (9)

GA (GASO) is similar to the one obtained by the previously X.CXy

known GA (GACO). . . .
One disadvantage of the new operators with respect to ,[\ngrep a(X;) contains the parents of; in the graph. This

. . . ; qfuation is known as the chain rule and allows us to represent
classical genetic operators used in GACO is the extra amountof.”. b -
l}ejomt probability distribution efficiently. For example, for the

gg?spﬁ;etrcgnnes?&?é ;eg:g.rsrd Ipokgsl:riov;/fzr; Ql?wa:i?]yii, rtgsls ;ari%twork in Fig. 10, the number of values to be stored in order
time is vervy much a re]ciatr()ed ' 9 P r}o represent the joint probability distribution is 256 if each vari-
y PP X ._able can take two different states and 6561 if the number of dif-
In our future work, we plan to study other ways of evaluatin

a chromosome (approximate computation) and the use of ot rrent states is three. However, using the chain rule, the number
bp P alues to be stored is 38 for the two states per variable case

o : . . %
optimization techniques such as simulated annealing[41] ortag)ﬁjd 109 for the three states per variable case.
search[42], [43].

B. Probabilities Propagation

The main type of inference in Bayesian networks is known
as probabilities propagation or evidence propagation. This
In this appendix, we introduce the Bayesian networks foproblem consists of obtaining the probability of a variable

malism (Appendix I-A) and describe how the basic inferenc&: given some observations (the evidenkg = zo). For

task (probabilities or evidence propagation) is carried out (Agxample, what is the probability of having the flu knowing that
pendix 1-B). the patient has a cough and temperature?

In general, we are interested in obtaining thiposteriori
probability for all the unobserved variables, soXif, = zo is
) _ ) the observed evidence, the goal is to obfa{k; |z ) for every

A BBN [1], [44] is a directed acyclic graph where each nod&; ¢ x,, \ X, where the backslash denotes the set difference
represents a random variable and the topology of the graph Gﬁeration.
fines a set of conditional independence properties. These propyg computep(z;|zo), it is enough to compute(x;, zo)
erties can be identified using a graphical criterion called d-sefer every z; € Qx, as the former is proportional to the
aration (see [1]). The quantitative part of the model is given bter. In fact, we havep(z;|zo) = p(zs,z0)/p(zo) and
a probability distribution for each node conditioned to its pap(zo) = >, p(zi,z0). To computep(z;,zo), we cannot
ents. For example, Fig. 10 shows a Bayesian network with eigipiply the chain rule (9), as this expression provides a factoriza-
variables. tion of the joint probability distribution for all the variables in

APPENDIX |
PROPAGATION IN BAYESIAN NETWORKS

A. Bayesian Networks
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the problem and here we need the probability distribution for
variablesX oy If Xr, = Xy \ Xougy, then we have

plzi,zo) =Y p(wr;, i 20). (10)

The chain rule can be applied to compute each probability
p(zr;, i, o), but we should apply i€2x,, | = [;cr, [€2x;]
times, adding the results afterwards. This approach is clearly
unfeasible even for moderate sets of probability distributions.
In the last few years, many algorithms [1], [45]-[48] have been
proposed to solve this problem (in an exact way) by taking

-

%

advantage of the conditional (in)dependences among variables 4
given by the structure of the graph. These algorithms are called
propagation algorithms because computations are performed lo-

cally and information is shared among the nodes in a netwq%é.tll. Multiple test for Experiment 1 with random population of size 100.
by means of messages that are sent (propagated) across this nef-

work. Although the propagation problem is NP-hard [49] in the _ _ .
worst case, the existing algorithms work efficiently for moderate Depending on the way the inference is executed over the
size networks. join tree, we have several architectures: Lauritzen—Spiegelhalter
Nowadays, the most frequently used propagation algorithif$], Shafer-Shenoy [48], and HUGIN [50]. In this paper, we
are based in the transformation (compilation) of the Bayesié#fus on the Shafer—Shenoy architecture because it is the sim-
network in a secondary structure called join tree or junction tré¥est to explain and understand. Furthermore, for the propa-
in which the calculations are carried out. A join tree is a tregation tasks here required (abductive inference and likelihood
whose nodes are clusters of variables and in which the followigmputation), the three architectures are equivalent.
two properties hold. In the Shafer—Shenoy architecture, there are two messages in
1) For each variabléX; in the Bayesian network, there isthe Separatas; ; between each pair of adjacent clustefsand
at least one clustef; in the tree containing the set ofCs: On€ in each directiol/*=/ will denote the message from
variables{ X;} U pa(X;). C; to C;. The values of the messages are defined recursively

2) Running intersection propertyf C; andC; are two clus- according to the following expression:

ters in the join tree, then the variablesihn C; are con-
tained in every cluster along the path betwégrandC;. M= = Z P(C)) @ ® AR (12)
Property 1 is necessary in order to establish a potential repre- NS, CCne(i) ki
sentation of the joint probability distribution. Each clust&rin

the tree has associated a potential functig6;) : Qc, — [R. Wherene(j) is the set of neighboring clusters ©f. _
These potentials are initialized in the following way. The process of reducing a potential to a subset of variables of

1) Forall cluster; in the join tree, daj(c;) = 1.0, Ve; € the o_ngm_al s_et is callemarglnahzatlon In thls algorithm, the
Q0 marginalization is carried out by a summation over the variables

J - ; f the original set that are not in the subset.
2) For all variablesX; in the network, select one (and onlyO .
one) cluster;, such that X; U pa(X;)} C C;, and do Note_ th.at the message going frafj to C; depends on the
P(C)) = $(C)) @ P(X,|pa(X))), where® represents potential in clustelci(z/;(Ci))_ as well as all th(’aC messages ar-
point-by-point multiplication. (In this context, the opera-”vmg atc; frqm a clus_ter d|ffere_nt fr_oan(M ok F ). .
tion ® is known ascombination. The propagation algorithm consists in an orderly computation

After this initialization of the clusters, if” denotes the set of of messages in order to ensure tigtsends a message &

clusters in the ioin tree. then the following exoression represe hen all the necessary elements to compute it are available, i.e.,
Inthe) O riowing expr ) P % has collected information (messages) from all its neighbors
a factorization of the joint probability distribution:

exceptC.
P(Xy) = H P(C)). (12) During the propagation, the messages flow in two phases:
c;cT upward (from leaves to top) and downward (from top to leaves).

Running intersection property is necessary in order to ens#tger the two phases treeposterioriprobability of each variable
that computations can be carried out in a local manner, i.e.,G8" be calculated. Algorithm 1 shows the pseudocode of the
ensure consistency in the message passing scheme (see [44]f@pagation algorithm.
details). 1) The evidenceXs = xo IS incorporated to the join tree

A join tree can be viewed as an undirected graph or as a di-  in the following way (byz+¥" we denote the configuration
rected graph if we select a cluster as the root. Fig. 11 shows a obtained fromy after removing the literals corresponding
join tree for the network in Fig. 10, where cluster 1 has been to the variables not i)
selected as the root. ~

Associated with each edge of the join tree is a separator, VC; €Tsuch that C; N Xo # 0,
which is the set of variables in the intersection of the two clusters Ve €€e,
at the endpoints of the edge. We u%g to denote the separator Wles) = { Wle;) if /X = xéC;ﬂXo

betweenC; andC;. ‘

) (13)
0 in other case.
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2) The message passing scheme is controlled by means of Calculate and send
an iterative procedure, which uses a topological orderirgg for all
of the clusters in the join tree, i.e.,, ; — C; is an
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A?\Jfa(i)ﬂi
X; QXO do
5.1 Select a cluster

C; such that X; € C;

edge in the tree, theh < j. The direction of the edges 5.2 (X,) — e, UC)
is established choosing; as the root. In the paper, we 53 P(X;|zo) « ¥(X:)/P(x0)

suppose thaf’; is always the root and that;,...,C; is

a topological ordering. ) . . .
3) In the algorithmch(C;) denotes the set of children of N Step 3,ifP(zo) = 0, the evidence is impossible, so there

C; in 7, fa(C;) denotes the father a¥; in 7, andfa(¢)

denotes the index dh(C;).

Algorithm 1: Probabilities Propagation in a Join

Tree

Input: The join tree T

‘\Vo = To.

Output:

1. Incorporate evidence

2. Upward
2.1 for

3. P(xp) — ch Vv (cy) If

phase

= {Ci....,Cy}. The evidence

P(X;|zo) for all unobserved variable

XNo=ap tO 7.

i — t downto 2 do
- Calculate and send
22 (Cy) — p(C1) © (®C,k€ch((,1>MH1)

4. Downward phase

4.1 for

i+— 2t t do

Mi—fa(i)

P(xo) =0 exit.

A. Output of the Algorithms

X

is no reason to continue with the calculations. Algorithm 1 as-
sumes the existence of observed evidence; otherwise, Steps 1,
3, and 5.3 are not executed.

The crucial factor determining the complexity of the com-
putations is the size of the clusters. Each potential defined on
clusterC; needd [, .. [€2x, | values. So, the number of opera-
tions to send a message frarfito C; is of this order of magni-
tude. The number of messages can always be made linear in the
number of variables. The problem is thid.. . [x, | is ex-
ponential in the size of’;. So, the propagation is feasible only
if we are capable of obtaining a join tree such that each cluster
has a reduced number ofvariables. This, in general, mainly de-
pends on the topology of the original network, but there are sit-
uations in which this never happens. Even the problem of ob-
taining an optimal join tree (minimum cluster size) is equivalent
to obtaining an optimal triangulation sequence of an undirected
graph and this problem is known to be NP-hard [51]

APPENDIX Il
EXPERIMENTAL RESULTS

TABLE IV
RESULTS FOR EXPERIMENT 1 WITH RANDOM INITIAL POPULATION OF SIZE 100

Yomassl %mass10 Fmass2d %mass50

Alg. A SD A SD A SD A SD
GACO 83.27 | 29.55 69.52 | 25.11 61.61 24.20 58.08 23.87
GASO1r 83.02 | 30.26 69.93 | 27.21 62.49 27.08 59.17 27.00
GASO1p 85.47 | 25.28 72.76 | 23.46 65.30 24.30 62.00 24.82
GASO1l 78.41 | 37.27 69.46 | 34.81 63.91 34.49 61.42 34.40
GASO2r 83.23 | 24.12 72.86 | 22.69 66.20 23.04 62.92 23.26
GASO2p 82.75 | 26.91 73.01 | 25.64 66.66 25.93 63.48 26.02
GASO21 88.18 | 17.37 78.80 | 18.62 71.94 20.10 68.42 20.61

F#generations #individuals #additions #multiplications

Alg. A SD A SD A SD A SD
GACO 1045 | 384 || 1,989.9 | 489.2 1.72e+06 | 4.22e+05 2.16e-+06 | 5.31e+05
GASOlr 101.0 34.0 || 1,862.1 | 412.3 || (+)6.56e+05 | 1.47e+05 |[ (+)1.13e406 | 2.62e+05
GASOlp 96.6 | 28.3 || 1,859.3 | 389.8 || (+)6.41e+05 | 1.36e+05 | (+)1.11e+06 | 2.42e+05
GASO11 97.9 | 34.3 || 1,898.7 | 426.8 || (+)6.38e+05 | 1.46e+05 || (+)1.10e+06 | 2.6e+05
GASO2r 949 | 311 || 1,954.3 | 418.8 || (+)7.54e+05 | 1.6e+05 || (4)1.32e4+06 | 2.86e+05
GASO2p 90.5 | 34.6 || 1,894.7 | 470.3 || (+)7.19e+05 | 1.77e4-05 || (+)1.26e+06 | 3.18e+05
GASO21 || (+)85.4 | 20.1 || 1,837.9 | 283.5 || (+)6.84e+05 | 1.03e+05 | (+)1.20e+06 | 1.86e+05
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TABLE V
RESULTS FOR EXPERIMENT 1 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 100
Y%omassl Y%emassl0 %mass2b %mass50
Alg. A SD A SD A SD A SD
GACO 100.00 | 0.00 89.61 | 13.03 83.34 19.32 80.57 21.43
GASOI1r 100.00 | 0.00 87.29 | 12.92 79.62 19.07 76.29 21.09
GASOlp 100.00 | 0.00 89.96 | 12.40 84.01 18.77 81.32 20.94
GASO1l 100.00 | 0.00 92.70 ; 10.75 87.54 16.32 84.98 18.33
GASO2r 100.00 | 0.00 84.70 | 13.81 76.07 20.22 72.60 22.06
GASO2p {| 100.00 | 0.00 86.32 | 13.70 78.46 20.00 75.17 21.86
GASO21 100.00 | 0.00 88.21 | 13.25 80.88 19.21 77.66 21.02
F#generations #individuals #additions #multiplications
Alg. A SD A SD A SD A SD
GACO 82.1 | 22.0 || 1,318.0 | 2436 1.14e406 2.1e4+05 1.43e+06 | 2.64e+05
GASOlr 775 | 16.1 || 1,229.9 | 172.7 || (+)4.73e+05 6.5e+04 || (+)7.97e+05 | 1.15e+05
GASO1p 73.7  19.2 || 1,235.9 | 211.6 || (+)4.64e+05 | 7.67e+04 || (+)7.83e+05 | 1.36e+05
GASO1l 77.0 | 23.2 || 1,287.4 | 231.5 || (+)4.75e+05 | 8.62e-+04 || (+)8.03e+05 | 1.51e+05
GASO2r 73.5 | 174 || 1,257.2 | 228.1 || (+)5.19e+05 | 8.54e+04 i (+)8.84e+05 | 1.53e+05
GASO2p || (+)68.3 | 18.0 || 1,216.0 | 2129 || (+)4.95e+05 | 8.19¢+04 || (+)8.43¢+05 | 1.46e+05
GASO21 (+)70.3 | 21.6 || 1,264.0 j 259.1 || {+)5.05e+05 | 9.74e+04 | (+)8.63e+05 | 1.74e+05
TABLE VI
RESULTS FOR EXPERIMENT 1 WITH RANDOM INITIAL POPULATION OF SizE 200
Y%omassl Y%omass10 %omass25 Y%mass50
Alg. A SD A SD A SD A SD
GACO 92.60 | 11.41 83.19 | 14.74 77.36 18.65 74.65 20.43
GASO1r 90.15 | 17.19 84.84 | 18.93 81.33 21.12 79.44 22.29
GASO1p 93.59 | 10.92 90.68 | 13.49 88.29 15.55 (+)86.81 16.85
GASO1l1 91.15 | 20.89 88.20 | 22.11 85.76 23.25 84.34 23.96
GASO2r 94.08 | 10.64 89.99  14.82 86.90 18.03 85.25 19.62
GASO2p | 95.07 | 996 | 91.50 | 13.81 (+)88.80 16.86 (+)87.32 18.39
GASO21 92,60 | 11.41 88.38 | 15.01 85.31 17.81 83.64 19.29
#generations #individuals F#additions #multiplications
Alg. A SD A SD A sD 4 SD
GACO 91.3 32.3 || 3,849.5 | 900.6 3.32e+06 | 7.77e-+05 4.18e+06 | 9.77e+05
GASO1r 87.8 27.5 || 3,628.8 | 719.8 || (+)1.27e4+06 | 2.59e+05 (4)2.2e+06 | 4.62e+05
GASOl1p 82.3 22.7 || 3,636.4 | 611.0 || (+)1.23e+06 | 2.14e+05 || (+)2.14e+06 | 3.81e+05
GASOI1l 7é.9 20.6 || 3,541.5 | 522.7 || (4+)1.18e+06 | 1.82e+05 || (+)2.04e+06 | 3.24e+05
GASO2r 77.0 27.4 || 3,677.5 | 784.7 || (+)1.42e+06 | 3.01e+05 || (+)2.49e+06 | 5.38¢+05
GASO2p 78.3 22.2 || 3,805.9 | 621.4 || (+)1.43e+06 | 2.36e+05 | (+)2.52e+06 | 4.24e4+05
GASO21 (+)73.6 20.0 || 3,669.6 | 589.9 | (+)1.35e+06 | 2.19e+05 | (+)2.38e+06 | 3.93e+05
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TABLE VIl
RESULTS FOR EXPERIMENT 1 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 200
Yemassl %massl0 Y%mass25 Y%rmass50
Alg. A SD A SD A SD A SD
GACO 100.00 | 0.00 97.31 7.56 95.51 11.66 94.62 13.24
GASO1r 100.00 | 0.00 96.69 8.16 94.00 12.46 92.59 14.13
GASOlp || 100.00 | 0.00 96.18 8.71 93.57 13.40 92.33 15.21
GASO11 100.00 | 0.60 97.75 6.86 96.10 10.65 95.22 12.16
GASQO2r || 100.00 | 0.00 95.35 9.68 92.13 14.65 90.56 16.45
GASO2p || 100.00 | 0.00 94.30 9.89 90.18 15.14 88.23 17.13
GASO21 100.00 | 0.60 97.18 6.81 94.40 10.77 92.84 12.52
#generations #individuals #additions F#multiplications
Alg. A SD A SD A Sp A SD
GACO 67.0 | 17.5 |} 2,451.1 | 387.7 2.12e+06 | 3.35e+05 2.66e+06 | 4.21e+05
GASOI1r 64.0 | 14.8 | 2,323.7 | 339.8 || (+)8.85e-+05 | 1.27e-+05 || (+)1.49e+06 | 2.2de+05
GASO1p 62.7 | 13.7 || 2,370.7 | 347.8 || (+)8.79e+05 | 1.23e+05 || (+)1.49e+06 | 2.18e+05
GASO1l1 58.3 | 13.7 || 2,314.3 | 339.9 || (+)8.42e+05 | 1.19e+05 || (+)1.42e-+06 | 2.11e+05
GASO2r 62.7 | 17.6 || 2,493.1 | 468.5 || (+)1.02e+06 | 1.83e+05 || (+)1.75e+06 | 3.28e+05
GASO2p 60.0 | 16.7 || 2,433.9 | 445.6 || (+)9.85e+05 | 1.71e+05 || (+)1.69e+06 | 3.06e+05
GASO21 63.5 | 17.3 || 2,565.1 | 438.8 || (+)1.02e4+06 | 1.69e+05 || (+)1.74e+06 | 3.02e+05
TABLE VIII
RESULTS FOR EXPERIMENT 2 WITH RANDOM INITIAL POPULATION OF SizE 100
Y%ernassl Y%mass10 Y%mass2b Y%mass50
Alg. A SD A SD A SD A SD
GACO 96.36 | 18.00 96.44 | 17.33 96.42 16.64 94.77 15.81
GASO1r 100.00 0.00 ; 100.00 0.03 99.80 0.61 97.99 1.25
GASOl1p 98.18 | 12.84 98.26 | 12.29 98.14 11.69 96.41 10.90
GASOI1l 98.18 | 12.88 98.25 | 12.36 98.14 11.79 96.51 11.07
GASO2r 100.00 0.00 || 100.00 0.00 99.94 0.22 98.25 0.85
GASO2p 98.01 | 14.04 98.02 | 14.03 97.94 14.00 96.15 13.78
GASO21 100.00 0.00 || 100.00 0.00 99.90 0.27 98.34 1.08
#generations #individuals F#additions #multiplications
Alg. A sD A | SD A SD A SD
GACO 89.4 | 19.3 | 1,754.8 | 286.5 1.57¢+06 | 2.56e+05 2.03e+06 | 3.31e+05
CGASOLr || (-)104.4 | 22.9 || 1,803.6 | 2674 || (+)6.27e+05 | 8.96e4+04 || (+)1.1e406 | 1.63e+05
GASO1p 101.6 | 30.9 || 1,810.2 | 374.8 || (4)6.06e+05 | 1.21e+05 || (+)1.07e+06 | 2.2e+05
GASO1 97.7 21.6 | 1,855.8 | 28L.7 || (+)5.97e+05 | 8.86e+04 || (+)1.05e+06 | 1.62e+05
GASO2r 85.0 | 214 | 1,756.5 | 254.6 || (+)6.74e+05 | 9.33e+04 || (+)1.2e4+06 | 1.7e+05
GASO2p 80.1 17.5 1,700.4 | 247.3 || (4)6.34e+05 | 8.43e+04 || (+)1.13e+06 | 1.55e+05
GASO21 82.1 23.6 1,771.6 | 331.1 |} (+)6.37e+05 | 1.14e+05 || (+)1.13e+06 | 2.09e+05
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TABLE IX
RESULTS FOR EXPERIMENT 2 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 100

%massl %mass10 Y%mass2h Jemass50
Alg. A SD A SD A SD A SD
GACO 100.00 | 0.00 100.00 0.00 99.92 0.39 98.28 0.80
GASO1r 100.00 | 0.00 100.00 0.00 99.87 0.59 (-)97.73 1.22
GASOlp || 100.00 | 0.00 100.00 | 0.00 99.90 0.23 (-)97.66 0.78
GASO1l 100.00 | 0.00 100.00 0.00 99.84 0.52 (-)97.76 1.17
GASO2r || 100.00 | 0.00 100.00 | 0.00 99.98 0.13 98.04 0.55
GASO2p || 100.00 | 0.00 100.00 | 0.03 99.94 0.39 98.20 0.68
GASO21 100.00 | 0.00 100.00 0.00 99.99 0.06 98.21 0.46
#generations #individuals F#additions #maultiplications
Alg. A SD A SD A sD A sD
GACO 57.0 | 12.6 886.7 | 124.4 7.93e+05 | 1.11e+05 1.02e+06 1.44e+05
GASO1r 59.0 | 12.6 865.0 | 121.8 || (+)3.47e+05 | 4.39e+04 || (+)5.83e+05 | 7.91e+04
GASO1p 56.6 | 10.3 872.5 | 106.7 (+)3.4e4+05 | 3.64e+04 || (+)5.72e+05 | 6.57e+04
GASO1l1 59.7 | 12.7 919.9 | 130.9 || (+)3.49e+05 | 4.47e+04 || (+)5.88e+05 | 8.08e+04
GASO2r || (+)46.5 | 9.0 || (+)788.7 | 101.8 (4+)3.4e+05 | 3.84e+04 || (+)5.74e+05 | 6.99e+04
GASO2p || (+)47.6 | 10.1 || (+)810.6 | 108.3 || (+)3.42e+05 | 4.08¢+04 || (+)5.79e+05 | 7.43e+04
GASO21 || (+)46.3 | 8.9 }| (+)801.5 | 104.3 || (+)3.32e+05 | 3.79%e+04 || (+)5.59e+05 | 6.9e+04
TABLE X
RESULTS FOR EXPERIMENT 2 WITH RANDOM INITIAL POPULATION OF SizE 200
Yomassl %omass10 %omass25 Pomass50
Alg. A SD A SD A SD A SD
GACO 100.00 | 0.00 || 100.00 0.00 100.00 0.00 99.30 0.54
GASO1r 100.00 | 0.00 || 100.00 0.00 99.97 0.09 99.01 0.73
GASOlp || 100.00 | 0.00 | 100.00 0.00 99.97 0.14 98.97 0.74
GASO1l 100.00 | 0.00 |; 100.00 0.00 99.99 0.11 99.27 0.69
GASO2r 100.00 | 0.00 || 100.00 0.00 99.96 0.16 99.12 0.70
GASO2p || 100.00 | 0.00 || 100.00 0.00 100.00 0.01 99.22 0.55
GASO21 100.00 | 0.00 || 100.00 | 0.00 99.97 0.16 99.17 0.72
F#generations #individuals F#additions #multiplications
Alg. A SD A SD A SD A SD
GACO 73.4 | 116 || 3,337.6 | 346.2 2.98e+06 | 3.09e+05 3.85e+06 4e+05
GASOI1r 80.1 | 15.8 || 3,215.6 | 392.2 || (4+)1.1e+06 | 1.31e+05 | (+)1.94e+06 | 2.38e+05
GASOlp 76.3 | 152 || 3,252.5 | 405.9 || (+)1.07e+06 | 1.3e+05 || (+)1.88e+06 | 2.36e+05
GASO1l 73.5 | 12.8 || 3,283.5 | 374.0 || (+)1.04e4+06 | 1.12e4+05 || (4)1.82e+06 | 2.05e+05
GASO2r 722 | 178 || 3,372.7 | 450.4 || (+)1.29e+06 | 1.64e+05 (+)2.3e4+06 | 2.99e+05
GASO2p 65.9 | 11.3 || 3,241.5 | 356.5 || (+)1.2¢+06 | 1.25e+05 | (+)2.14¢+06 | 2.31e+05
GASO21 || (+)62.8 | 12.9 || 3,188.3 | 431.0 || (4)1.14e+06 | 1.44e+05 || (+)2.02e+06 | 2.65¢+05
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TABLE XI
RESULTS FOR EXPERIMENT 2 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 200
Y%omassl Y%mass10 %ﬁmss% %mass50
Alg. A SD A SD A SD A SD
GACO 100.00 | 0.00 || 100.00 0.00 99.99 0.06 98.92 0.62
GASO1r 100.00 | 0.00 || 100.00 0.00 99.98 0.13 98.71 0.76
GASO1lp || 100.00 | 0.00 || 100.00 0.03 99.89 0.54 (-)98.52 0.81
GASO11 100.00 | 0.00 || 100.00 0.00 99.93 0.38 (-)98.53 0.69
GASO2r 100.00 | 0.00 || 100.00 0.00 100.00 0.00 98.81 0.57
GASO2p || 100.00 | 0.00 {[ 100.00 0.00 100.00 0.00 98.83 0.60
GASO21 100.00 | 0.00 || 100.00 0.00 100.00 0.00 98.59 0.47
#generations #individuals F#additions #multiplications
Alg. A SD A SD A SD A SD
GACO 44.0 9.0 || 1,592.5 | 235.9 1.42e+06 | 2.11e4-05 1.84e+06 | 2.72e405
GASO1r 47.6 | 11.6 || 1,575.9 | 249.5 || (+)6.32e+05 | 8.81e+04 || (+)1.06e+06 | 1.59e+05
GASOIlp 43.7 | 85 | 1,546.1 | 204.3 || (+)6.04e+05 | 6.86e+04 [ (+)1.01e+06 | 1.25e+05
GASO1 44.2 | 10.2 || 1,592.8 | 229.7 || (+)6.03e+05 | 7.56e+04 |[ (+)1.01e+06 | 1.36e+05
GASO2r 409 | 85 | 1,546.4 | 217.1 || (+)6.66e+05 | 8.05¢+04 || (+)1.13e+06 | 1.47¢+05
GASO2p 39.7 | 11.0 || 1,535.8 | 268.1 || (4)6.48¢+05 | 9.83e+04 || (4)1.09e+06 | 1.79%+05
GASO2l || (+)36.3 | 8.1 || 1,466.9 | 209.8 || (+)6.07e+05 | 7.6e+04 | (+)1.02e+06 | 1.38e+05
TABLE XlI
RESULTS FOR EXPERIMENT 3 WITH RANDOM INITIAL POPULATION OF SizE 100
%massl Y%omassl0 Yomass2b Yomassb0
Alg. A SD A SD A SD A SD
GACO 79.46 | 37.63 77.52 | 37.25 73.71 36.86 70.00 36.57
GASO1r 68.72 | 42.34 65.54 | 40.97 59.40 38.78 54.38 36.91
GASOlp 70.77 | 41.04 67.64 | 39.97 62.16 38.40 57.52 37.07
GASO11 75.23 | 38.72 72.21 | 37.85 66.36 36.73 61.48 35.62
GASO2r 69.59 | 42.86 67.44 | 42.14 63.44 40.90 60.07 40.08
GASO2p 67.60 | 42.39 64.78 | 41.11 59.63 39.17 55.34 37.58
GASO21 69.64 | 41.44 66.81 | 40.40 61.57 38.99 57.43 37.78
#generations #individuals F#additions #multiplications
Alg. A SD A SD A SD A SD
GACO 101.7 32.7 || 1,989.4 | 447.3 1.53e-+06 | 3.45e+05 2.09e+06 | 4.69e+05
GASO1r 106.3 27.6 || 1,989.1 | 351.3 || (+)6.75e-+-05 1.2e+05 || (+)1.19e+06 | 2.17e+05
GASO1p 103.0 | 26.7 || 2,011.4 | 3853 || (+)6.6e+05 | 1.25e+05 || (+)1.16e+06 | 2.26e+05
GASO11 108.9 32.0 || 2,111.3 | 415.7 || (+)6.75e+05 | 1.37e+05 || (+)1.18¢+06 | 2.46e+05
GASO2r 92.0 21.9 || 2,002.4 | 323.6 || (+)7.55e+05 | 1.19e+05 || (+)1.34e+06 | 2.17e+05
GASO2p 92.7 | 27.8 || 2,015.5 | 433.5 || (+)7.39e405 | 1.54e+05 || (+)1.31e-+06 | 2.8e+05
GASO21 || (+)82.8 | 21.6 | 1,906.2 | 366.5 || (4)6.71e+05 | 1.27e+05 | (+)1.18e+06 | 2.3e+05
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TABLE XIII
ResSuULTS FOR EXPERIMENT 3 WITH 1/2 HEURISTIC INITIAL POPULATION OF Size 100
Y%emassl Y%omassl0 %omass25 Yornass50
Alg. A SD A SD A SD A SD
GACO 99.53 | 1.88 98.75 4.12 92.78 10.06 86.62 15.18
GASO1r 98.59 | 3.05 96.56 7.14 88.18 14.75 81.13 18.96
GASO1p 99.69 | 1.55 98.88 4.05 91.06 10.62 83.38 15.70
GASO1l 98.59 | 3.05 96.42 7.08 86.40 13.69 77.47 17.36
GASO2r 99.06 | 2.58 97.44 6.18 88.53 12.92 80.23 17.31
GASO2p 99.21 | 2.38 97.87 5.25 87.32 10.30 77.31 14.65
GASO21 99.21 | 2.38 98.11 4.96 90.97 10.66 83.64 15.71
#generations Findividuals #additions #multiplications
Alg. A SD A SD A SD A SD
GACO 71.7 | 126 1,181.3 | 141.1 9.11e+05 | 1.09e405 1.24e+06 | 1.48e+05
GASOIr || (-)81.5 | 19.0 || (-)1,291.2 | 218.1 || (+)4.76e+05 | 7.67e+04 || (+)8.25e+05 | 1.38e+05
GASOl1p 73.2 | 12.6 1,232.1 | 150.0 || (+)4.41e4+05 | 5.16e+04 (+)7.6e+05 | 9.24e+04
GASO1L 70.7 | 15.1 1,226.2 | 183.5 || (+)4.29e+05 | 6.18e+04 | (+)7.37e+05 | 1.1e+05
GASO2r 66.8 | 17.0 1,207.5 | 206.9 || (+)4.81e+05 | 7.97e+04 || (+)8.38¢+05 | 1.4de+05
GASO2p || (+)62.3 | 15.1 1,160.9 | 207.0 || (+)4.53e+05 | 7.68e+04 || (+)7.87e+05 | 1.39e+05
GASO2l || (4+)58.6 | 10.7 1,132.7 | 144.6 || (+)4.29e4+05 | 5.23e+04 || (+)7.41e+05 | 9.45e+04
TABLE XIV
RESULTS FOR EXPERIMENT 3 WITH RANDOM INITIAL POPULATION OF SizE 200
%massl Yomass10 %mass2h Yomass50
Alg. A SD A SD A SD A SD
GACO 90.50 | 26.76 89.47 | 26.99 87.47 27.72 85.64 28.54
GASO1r 90.50 | 26.76 89.47 | 27.00 87.73 27.76 85.95 28.39
GASOl1p 86.37 | 31.49 84.90 | 31.57 82.37 32.05 80.03 32.53
GASO1l 86.82 1 31.24 85.75 | 31.46 84.04 32.00 82.30 32.35
GASO2r 87.01 | 31.67 85.91 | 31.75 83.40 32.02 81.01 32.49
GASO2p 81.47 | 35.52 79.52 | 35.27 76.09 35.27 73.28 35.39
GASO21 77.95 | 38.21 76.78 | 38.32 74.89 38.56 73.21 38.46
#generations #individuals #additions #multiplications
Alg. A SD A SD A SD A SD
GACO 8.7 15.8 3,629.4 | 486.0 2.8e+06 | 3.75e+05 3.81e+06 5.1e+05
GASOIr | (-)98.9 | 20.9 || (-)4,093.8 | 643.8 || (+)1.38e406 | 2.13e+05 || (+)2.44e+06 | 3.86e+05
GASO1p 86.4 19.3 3,839.4 | 585.1 || (+)1.24e+06 1.9e+05 || (+)2.19e+06 | 3.44e+05
GASO1l 81.7 18.8 3,833.1 | 592.3 || (+)1.19e+06 | 1.87e+05 || (+)2.08¢+06 | 3.38e+05
GASO2r 84.2 18.7 || (-)4,098.5 | 672.3 || (+)1.55e+06 | 2.47e+05 || (+)2.76e+06 | 4.52e+05
GASO2p 75.1 | 14.2 3,882.4 | 636.2 || (+)1.42e+06 | 2.21e+05 || (+)2.52e+06 | 4.04e+05
GASO21 70.8 16.8 3,768.6 | 713.9 || (+)1.32e+06 2.4e+05 || (+)2.33e+06 | 4.36e+05
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TABLE XV
RESULTS FOR EXPERIMENT 3 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 200
Y%omassl %massl0 %emass25 Y%emass50

Alg. A SD A SD A SD A 1 SD
GACO 100.00 | 0.00 99.96 0.15 99.14 3.29 97.74 6.50
GASO1r 99.84 | 1.11 99.56 2.17 96.30 6.80 92.78 12.07
GASO1p 99.84 | 1.11 99.48 2.16 (-)94.64 7.41 (-)89.35 13.26
GASO11 100.00 | 4.00 99.88 0.25 97.15 5.78 94.17 10.94
GASO2r 99.84 | 1.11 99.57 2.17 96.67 6.53 93.33 11.60
GASO2p 99.69 ; 1.55 99.27 3.03 96.34 7.33 93.22 12.30
GASO21 100.00 | 0.00 99.77 0.30 (-)94.68 6.87 (-)89.24 13.17

f#generations #individuals F#additions #multiplications

Alg. A SD A SD A SD A SD
GACO 59.1 9.3 2,211.9 | 225.7 1.71e4+06 | 1.74e+05 2.32e+06 | 2.37e+05
GASOIr || (-)70.4 | 13.8 || (-)2,475.9 | 336.4 || (4+)9.09¢+05 | 1.19e+05 || (+)1.58e+06 | 2.14e+05
GASOlp 62.8 | 13.8 2,364.3 | 363.9 || (+)8.41e+05 | 1.24e+05 || (+)1.45e+06 | 2.23e+05
GASO1l 60.2 | 11.3 2,366.7 | 293.5 || (+)8.16e+05 | 9.97e+04 (+)1.4e+06 | 1.79e+05
GASO2r 57.1 | 11.5 2,365.3 | 325.9 || (+)9.42e+05 | 1.25¢4+05 | (+)1.65e+06 | 2.27e+05
GASO2p 54.5 8.0 2,342.7 | 233.6 (+)9.1e+05 | 8.73e+04 || (+)1.58¢+06 | 1.57e+05
GASO21 | (+)513 | 99 2,250.2 | 301.1 || (+)8.51e+05 | 1.1e+05 || (+)1.47e+06 | 1.98e+05

TABLE XVI
RESULTS FOR EXPERIMENT 4 WITH RANDOM INITIAL POPULATION OF SIZE 100
massl massl0 mass2s mass50

Alg. A SD A SD A SD A SD
GACO 0.013527 | 0.002299 0.086642 | 0.014464 0.156269 | 0.026370 0.220818 | 0.038205
GASO1r 0.013401 | 0.002418 0.085503 | 0.016331 0.155129 | 0.031879 0.221612 | 0.048476
GASOlp || 0.014197 | 0.000000 0.090888 | 0.000194 0.165407 | 0.003262 0.236975 | 0.010271
GASO1l1 0.014047 | 0.001058 0.089835 | 0.007415 0.163855 | 0.014881 0.236030 | 0.023674
GASO2r 0.013551 .| 0.002219 0.086613 | 0.014808 0.158053 | 0.028501 0.227447 | 0.042833
GASO2p 0.014024 | 0.001226 0.089822 | 0.007860 0.163969 | 0.014956 0.235535 | 0.023781
GASO21 0.013575 | 0.002137 0.086725 | 0.014608 0.158833 | 0.028884 0.229372 | 0.044679

#generations #individuals F#additions #multiplications

Alg. A SD A SD A SD A SD
GACO 104.1 24.3 2,113.7 351.8 7.3e+06 | 1.22e+06 2.43e+07 | 4.04e+06
GASO1r 108.0 12.4 || (+)1,940.3 191.9 || (+)3.58¢+06 | 3.41e4+05 || (+)1.72e+07 | 1.68e+06
GASOl1p 107.7 25.0 1,958.6 312.7 || (4+)3.56e+06 | 5.56e+05 || (+)1.72e+07 | 2.73e+06
GASO11 93.7 18.0 || (+)1,862.8 255.0 || (+)3.32e+06 | 4.43e+05 || (+)1.62e+07 | 2.21e--06
GASO2r 94.5 24.1 1,947.0 313.0 || (+)3.81e406 | 5.99e+05 || (+)1.78¢+07 | 2.83e+06
GASO2p (+)86.7 19.3 || (+)1,868.9 284.1 || (+)3.62e+06 | 5.24e+05 || (4)1.69e4+07 | 2.53e+06
GASO21 (+)86.1 19.1 || (+)1,911.2 267.7 || (+)3.62e406 | 4.93e+05 || (+)1.71e+07 | 2.38e+06
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TABLE XVII
RESULTS FOR EXPERIMENT 4 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 100
massl massl0 mass25 mass50
Alg. A SD A SD A SD A SD
GACO 0.009558 | 0.003669 0.058740 | 0.025710 0.103597 | 0.052045 0.144063 | 0.078483
GASOI1r || 0.011054 | 0.003731 || 0.069072 | 0.026295 0.125337 | 0.054066 0.180078 | 0.084479
GASO1p 0.010904 | 0.003752 0.068017 | 0.026445 0.123264 | 0.054330 0.177207 | 0.084693
GASO1l1 0.010605 | 0.003776 0.065908 | 0.026616 0.119015 | 0.054699 0.170586 | 0.085485
GASO2r || 0.011054 | 0.003731 || 0.069072 | 0.026295 0.125482 | 0.054082 0.180747 | 0.084539
GASO2p 0.010605 | 0.003776 0.065908 | 0.026616 0.118978 | 0.054857 0.170810 | 0.086093
GASO21 0.010904 | 0.003752 0.068009 | 0.026438 0.123293 | 0.054387 0.177569 | 0.085227
#generations #individuals F#additions F#multiplications
Alg. A SD A SD A SD A SD
GACO 83.6 314 1,469.1 424.6 5.08e+06 | 1.47e+06 1.69e+-07 | 4.87e+06
GASO1r 99.0 30.9 1,497.2 385.6 || (+)2.84e+06 | 6.89e+05 || (+)1.34e+07 | 3.38¢e+06
GASOl1p 93.2 35.4 1,449.3 421.5 || (+)2.73e+06 | 7.57e+05 || (+)1.29e+07 3.7e+06
GASO1l1 88.2 35.5 1,418.0 4253 || (+)2.63e+06 | 7.53e+05 || (+)1.26e+07 | 3.71e+06
GASO?2r 87.4 29.5 1,477.9 398.7 || (+)2.93e+06 | 7.55e+05 || (+)1.35e+07 | 3.59¢+06
GASO2p 7.7 23.1 1,360.8 3254 || (4+)2.6%9e+06 | 6.07e+05 || (+)1.24e+07 | 2.91e+06
GASO2! 1.7 25.0 1,328.8 360.0 || (4+)2.58e+06 6.6e+05 (+)1.2e+07 | 3.19e-+06
TABLE XVIII
RESULTS FOR EXPERIMENT 4 WITH RANDOM INITIAL POPULATION OF SizE 200
massl massli mass2d mass50
Alg. A SD A SD A SD A SD
GACO 0.013874 | 0.001603 0.088904 | 0.009871 0.161572 | 0.018020 0.231215 | 0.026246
GASOI1r || 0.014197 | 0.000000 0.091013 | 0.000232 (+)0.167701 | 0.003335 (+)0.244295 | 0.008667
GASO1p || 0.014197 | 0.000000 || 0.091014 | 0.000211 || (+) 0.167885 | 0.003115 (+)0.245368 | 0.007798
GASO1l 0.014197 | 0.000000 0.090998 | 0.000210 (+)0.167568 | 0.002947 (+)0.244430 | 0.007055
GASO2r || 0.014197 | 0.000000 0.090989 | 0.000209 (+)0.167580 | 0.002807 (+)0.244657 | 0.006378
GASO2p || 0.014197 | 0.000000 0.090998 | 0.000210 (+)0.167883 | 0.002949 (+)0.245363 | 0.007077
GASO2! 0.014197 | 0.000000 0.090998 | 0.000210 (+)0.167820 | 0.002905 || (+) 0.245374 | 0.006468
#generations #individuals Fadditions F#multiplications
Alg. A SD A SD A SD A SD
GACO 81.2 19.3 3,813.6 522.5 1.32e4+07 | 1.81e+06 4.38e+07 6e+06
GASO1r (-)93.9 14.3 3,712.5 408.0 (4+)6.8e+06 | 7.11e+05 (+)3.28e+07 | 3.54e+06
GASO1p 85.2 17.0 3,599.1 457.5 (+)6.48e+06 | 8.17e+05 (+)3.16e+07 | 4.01e+06
GASO1! (+)71.5 12.3 || (+)3,360.0 374.0 (+)5.92e+06 | 6.47e+05 (+)2.92e+07 | 3.23e+06
GASO2r 76.2 11.8 3,648.0 435.0 (+)7.15e+06 | 8.24e+05 (4+)3.33e+07 | 3.92e+06
GASO2p (+)71.5 9.4 || (4)3,557.4 322.4 (+)6.9¢+06 | 6.03e+05 (+)3.23e407 | 2.89e+06
GASO2! (+)70.1 16.0 || (+)3,557.0 465.7 || (+)6.75e+06 | 8.7e+05 (+)3.19e407 | 4.17e+06
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TABLE XIX
RESULTS FOR EXPERIMENT 4 WITH 1/2 HEURISTIC INITIAL POPULATION OF SizE 200
massl massl0 mass2d massb0

Alg. A SD A SD A SD A SD
GACO 0.013149 | 0.002623 0.083834 | 0.018484 0.154895 | 0.037618 0.223703 | 0.057487
GASOI1r 0.013748 | 0.001795 0.088059 | 0.012652 0.164611 | 0.026017 0.242705 | 0.040638
GASOlp 0.013000 | 0.002771 0.082916 | 0.019247 0.153979 | 0.039729 0.225917 | 0.062266
GASOI1l 0.013149 | 0.002623 0.083839 | 0.018486 0.155964 | 0.038024 0.229271 | 0.059499
GASO2r 0.013299 | 0.002456 0.084894 | 0.017312 0.158133 | 0.035610 0.232641 | 0.055659
GASO2p 0.012551 | 0.003131 0.079620 | 0.022069 0.147282 | 0.045401 0.215739 | 0.070999
GASO2i 0.013000 | 0.002771 0.082785 | 0.019531 0.153794 | 0.040174 0.225964 | 0.062916

#generations Findividuals #additions F#multiplications

Alg. A SD A SD A SD A SD
GACO 88.1 25.8 3,350.3 729.0 1.16e+07 | 2.52e+06 3.84e-+07 | 8.37e+06
GASOI1r 90.1 21.1 || (+)2,947.0 495.1 || (+)5.56e+06 | 9.04e+05 || (+)2.63e+07 | 4.38¢+06
GASO1p 79.1 22.2 || (+)2,718.4 556.7 || (+)5.1e+06 | 1.01e-++06 || (+)2.42e+07 | 4.93¢+06
GASO1l 76.1 22.8 || (+)2,712.0 613.0 || (4+)5.01e4+06 | 1.07e4+06 || (+)2.4e+07 | 5.32e+06
GASO2r (+)74.5 17.3 || (+)2,817.5 496.7 || (4)5.62e+06 | 9.41e4+05 || (+)2.58e+07 | 4.48e+06
GASO2p (+)67.5 17.3 || (+)2,645.0 534.5 || (+)5.23¢+06 | 9.97e+05 || (+)2.41e+07 | 4.78¢+06
GASO21 (+)65.3 193 || (+)2,645.2 575.8 || (+)5.13e+06 | 1.07e406 || (+)2.3%e+07 | 5.15e+06

B. Multiple Test Diagrams

(b) SO11 SO1p CO S021 SO1r SO2p $SO2r (w)
#mass10, #mass25
(b) SO21 SO2p SO2r SO1p SO11 SO1r CO (w) (b) SO2p SO21 SO2r SO1p SO SOIr CO (w)
Ftgenerations FFgenerations
(b) SO11 SO1p SO1r SO21 SO2p SO2r CO (w) (b) SO1p SO1r SO11 SO2p SO21 SO2r CO (w)
#additions #additions
(b) SO11 SO1p SOIr SO21 SO2p SO2r CO (w) (b) SO1p SO1r SO11 SO2p SO21 SO2r CO (w)
F#multiplications #multiplications

Fig. 13. Multiple test for Experiment 1 with 1/2 heuristic population of size
Fig. 12. Multiple test for Experiment 1 with random population of size 100.100.
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(b) SO2p SO1p SO2r SO SO21 SOir CO (w) (b) CO S021 SO2p SO2r SO11 SO1r SO1p (w)
#mass25, #mass5H0 #mass50
(b) SO21 SO2r SO2p SO11 SO1p SO1r CO (w) (b) SO21 SO2r SO2p SO1p CO SOlr SO1l (w)
F£generations
#tgenerations

(b) SO2r SO21 SO2p SOLIr SO1p CO SO1l (w)

(b) SO11 SO1p SO1r SO21 SO2r SO2p CO (w)

#individuals

#additions

(b) SO21 SO2r SO1p SO2p SO1r SO1l CO (w)

(b) SO11 SO1p SO1r SO21 SO2r SO2p CO (w)
- Fadditions

(b) SO21 SO1p SO2r SO2p SO1r SO1l CO (w)

#multiplications

#multiplications

Fig. 14. Multiple test for Experiment 1 with random population of size 200.
Fig. 17. Multiple test for Experiment 2 with 1/2 heuristic population of size

100.
b) SO11 SO1r SO1p SO2p CO SO2r SO2!
®) TOUp OUEP . w) (b) SO21 SO2p SO2r CO SO11 SO1p SOIr (w)
#individuals
(b) SO11 SO1p SO1r SO2p SO21 S0 CO (w) #generations
(b) SO11 SO1p SO1r SO21 SO2p SO2r CO (w)
#additions,#multiplications
;Jgo 15. Multiple test for Experiment 1 with 1/2 heuristic population of size #additions
(b) SO11 SO1p SO1r SO21 SO2p SO2r CO (w)
#multiplications

(b) SO2p SO21 SO2r CO S011 SO1p SOIr (w)

Fig. 18. Multiple test for Experiment 2 with random population of size 200.

#tgenerations

(b) SO11 SO1p SO1r SO2p SO21 SO2r CO (w)

(b) CO SO2p SO2r SO1r SO2 SO11 SO1p (w)

F#additions

#massb0

(b) SO11 SO1p SO1r SO2p SO21 SO2r CO (w)

(b) SO21 302p SO2r SO1p CO SO1l SO1r (w)

#multiplications

#£generations

Fig. 16. Multiple test for Experiment 2 with random population of size 100.
(b) SO11 SO1p SO21 SO1r SO2p SO2r CO (w)

#additions,#multiplications

Fig. 19. Multiple test for Experiment 2 with 1/2 heuristic population of size
200.
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Fig. 20.

Fig. 21.
100.

Fig. 22.

(b) SO21 SO2r SO2p CO SO1p SO1r SO1I (w)

#generations

(b) SO1p SO21 SO11 SO1r SO2p SO2r CO (w)

#additions

(b) SO1p SO21 SO11 SO1r SO2p SO2r CO (w)

#multiplications
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Multiple test for Experiment 3 with random population of size 100.

(b) SO2! SO2p SO2r SO11 CO SO1p SOIr (W)

#generations

(b) SO21 SO2p CO SO2r SO1l SO1p SOIr (w)

#individuals

(b) SO1p SO21 SO1l SO1r SO2p SO2r CO (w)

F#additions

(b) SO11 SO21 SO1p SO2p SOir SO2r CO (w)

#multiplications

Fig. 23.
200.

Multiple test for Experiment 3 with 1/2 heuristic population of size

(b) 021 502p CO SO11 SO2r SO1p SOIr (w)

Fgenerations

(b) CO SO21 SO11 SO1p SO2p SO1r SO2r (w)

#individuals

(b) SO11 SO1p SO21 SO1r SO2p SO2r CO (w)

#additions,#multiplications

Fig. 24.

Multiple test for Experiment 3 with random population of size 200.

Fig. 25.
100.

(b) CO SO1 SO2r S02p SO1r SO2I SO1p (w)

#mass25

(b) CO SO1l SO2r SO2p SO1r SOl SO2I (w)

#mass50

(b) SO21 S02p SO2r CO SO11 SO1p SO1r (w)

Ftgenerations

(b) CO S021 SO2p SO1p SO2r SO1l SOIr (w)

#individuals

(b) SO11 SO1p SO21 SOIr SO2p SO2r CO (w)

#additions,#multiplications

Multiple test for Experiment 3 with 1/2 heuristic population of size

(b) SO21 S02p SO1l SO2r CO SO1p SOIr (w)

Ftgenerations

(b) SO11 SO2p SO21 SO1r SO2r SOlp CO (w)

#individuals

(b) SO11 SO1p SO1r SO2p SO21 S02r CO (w)

Fadditions

(b) SO11 SO2p SO21 SO1r SOIp SO2r CO (w)

#multiplications

Multiple test for Experiment 4 with random population of size 100.

(b) SO21S02p CO SO2r SO1I SOIp SOIr (w)

#generations

(b) SO21 SO11 SO2p SO1p SOIr SO2r CO (w)

#additions

(b) SO21 SO2p SO11 SO1p SOIr SO2r CO (w)

#multiplications

Multiple test for Experiment 4 with 1/2 heuristic population of size
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Fig. 26. Multiple test for Experiment 4 with random population of size 200.

Fig. 27. Multiple test for Experiment 4 with 1/2 heuristic population of size

200.

(b) SO1p SO2p SO21 SOIr SO2r SO1l CO (w)

#mass25

(b) SO21 SO1p SO2p SO2r SOl SOlr CO (w)

#mass50

(b) SO21 SO SO2p SO2r CO SO1p SOIr (w)

#generations

(b) SO11 SO2l SO2p SO1p SO2r SO1r CO (w)

#individuals

(b) SO11 $O1p SO2l SO1r SO2p SO CO (w)

#additions

(b) SO11 SO1p SO21 SO2p SO1r SO2r CO (w)

#multiplications

(b) 2pH2 2pH1 1pH2 1pHI1 2pR2 1pR2 1pR1 2pR1 (w)

#massl

(b) 1pH2 2pH2 2pR2 1pR2 1pH1 2pH1 2pR1 1pR1 (w)

#mass10

(b) 1pH2 2pH2 2pR2 1pR2 1pH1 2pH1 2pR1 1pR1 (w)

#mass25,#mass50

(b) 2pH2 1pH2 2pH1 1pH1 2pR2 1pR2 2pR1 1pR1 (w)

#generations

(b) 2pH1 1pH1 1pR1 2pR1 1pH2 2pH2 1pR2 2pR2 (w)

F#individuals

(b) 1pH1 2pH1 1pR1 2pR1 1pH2 2pH2 1pR2 2pR2 (w)

#additions

(b) 1pH1 2pH1 ipR1 2pR1 1pH2 2pH2 1pR2 2pR2 (w)

#multiplications

(b) SO21 SO2p SO2r SO11 SO1p CO SOIr (w)

#generations

Fig. 28. Multiple test for GASO1p and GASO2p in Experiment 1.

(b) 2pH2 1pH2 2pH1 1pH1 2pR2 1pR2 2pR1 1pR1 (w)

#generations

(b) SO2p SO21 SO11 SO1p SO2r SOIr CO (w)

#individuals

(b) SO11 SO1p S0O21 SO2p SO1Ir SO2r CO (w)

F#additions

(b) 2pH1 1pH1 2pH?2 1pH2 2pR1 1pR1 2pR2 1pR2 (w)

#individuals

(b) SO21 SO11 SO2p SO1p SO2r SOIr CO (w)

(b) 1pH1 2pH1 1pH2 1pR1 2pR1 2pH2 1pR2 2pR2 (w)

F#additions

#multiplications

(b) 1pH1 2pH1 1pH2 1pR1 2pH2 2pR1 1pR2 2pR2 (w)

#multiplications

Fig. 29. Multiple test for GASO1p and GASO2p in Experiment 2.
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(b) 1pH2 2pH2 1pH1 2pH1 1pR2 2pR2 1pR1 2pR1 (w)

#1massl

(b) 1pH2 2pH2 1pH1 2pH1 1pR2 2pR2 1pR1 2pR1 (w)

#mass10

(b) 2pH2 1pH2 1pH1 2pH1 1pR2 2pR2 1pR1 2pRI1 (w)

#mass25

(b) 1pH2 2pH2 2pR2 1pR2 1pH1 2pH1 2pR1 1pR1 (w)

#mass50

(b) 2pH2 2pH1 1pH2 1pH1 2pR2 1pR2 2pR1 1pR1 (w)

#generations

(b) 2pH1 1pH1 1pR1 2pR1 2pH2 1pH2 1pR2 2pR2 (w)

#individuals

(b) 1pH1 2pH1 1pR1 2pR1 1pH2 2pH2 1pR2 2pR2 (w)

#additions,#multiplications

Fig. 30. Multiple test for GASO1p and GASO2p in Experiment 3.
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