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Abstract

One of the current limitations for large-scale use of
planning technology in real world applications is the
lack of software platforms to integrate the full spec-
trum of planning-related technologies: sensing, plan-
ning, executing, monitoring, re-planning and learning
from past experiences. In this paper, we present PELEA,
a domain-independent online planning architecture that
includes state-of-the-art components for performing a
wide range of (meta-)planning tasks, such as learning of
control knowledge or low-level planning among many
others. PELEA is conceived as a general-purpose archi-
tecture suitable for problems ranging from robotics to
emergency management. PELEA is also intended to pro-
vide a rapid prototyping life-cycle for building planning
applications and support planning practitioners with a
highly-configurable tool.

Introduction

Automated Planning (AP) has been successfully applied to
different real-world problems, such as space (Ai-Chang et
al. 2004), robot control (McGann et al. 2009), or fire ex-
tinction (Fdez-Olivares et al. 2006) among many others. The
process of developing a final application is an “ad-hoc” man-
ual process that requires expertise and techniques from sev-
eral fields as well as a careful definition of the underlying
architecture. Most applications rely on architectures that in-
clude the functionalities required for a continuous planning,
namely sensing the state, generating the problem at hand,
planning , executing the plan, monitoring the execution for
failures, etc. These applications are also based on replanning
when needed, and, possibly, learning from the interaction
to generate better models or control knowledge to improve
search. However, in most applications, specifically tailored
software had to be developed for the domain at hand, which
usually lacks generality and reuse possibilities.

There have been some attempts, though, to design generic
architectures used for different purposes. Examples can be
found in space and robotics applications of platforms as
Mapgen (Ai-Chang et al. 2004), APSI (Cesta et al. 2009),
PRS (Georgeff and Lansky 1987), or IxTeT (Ghallab and

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

June 26th 2012

Laruelle 1994). However, these platforms have been de-
signed for specific problems and techniques, as timeline-
based planning (Ai-Chang et al. 2004; Cesta et al. 2009;
Ghallab and Laruelle 1994), hierarchical planning (Fdez-
Olivares et al. 2006), or reactive controllers (Georgeff and
Lansky 1987).

In this paper, we present PELEA, a domain-independent,
component-based architecture able to perform planning, ex-
ecution, monitoring. repairing and learning in an integrated
way, in the context of PDDL-based and HTN-based plan-
ning (Alcdzar et al. 2010). PELEA follows a continuous
planning approach, i.e. an ongoing and dynamic process in
which planning and execution are interleaved but, unlike
other approaches (Myers 1999; Chien et al. 2000), it allows
planning engineers to easily generate new applications by
reusing and modifying the components as well as a high
flexibility to compare different techniques for each module
or even incorporate one’s own techniques.

One particular application domain suitable for testing a
continuous planning approach is robotics as it provides the
kind of plan generation and replanning capabilities required
for situated agents in highly dynamic environments. We use
the general-purpose, highly-configurable architecture PE-
LEA as an autonomous mobile robot control system. PELEA
allows controlling the execution of a given task indepen-
dently of the robot control platform and devices, monitor-
ing the correct plan execution, resolving uncertainty by re-
planning when needed, and learning additional knowledge.
To test PELEA as a robot control system we worked with the
Rovers domain from the International Planning Competition
(IPC"). This domain is a simplified version of the planning
tasks performed by the Mars Rovers.

This paper is organized as follows. First, we present an
overview of PELEA architecture. The next two sections re-
late the high-level and low-level planning in PELEA, respec-
tively. The following sections describe the learning module
and the goals and metrics module. Afterwards, a case study
showing the features of PELEA is shown. Finally, the last
section presents our conclusions.

TPC: http://ipc.icaps-conference.org/
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Overview of PELEA Architecture

A full description of PELEA architecture can be found in
(Alcézar et al. 2010). Here, we sketch the components and
main functionalities of PELEA.

PELEA architecture includes components that allow the
applications to dynamically integrate planning, execution,
monitoring, replanning and learning techniques. PELEA pro-
vides two main types of reasoning: high-level (mostly de-
liberative) and low-level (mostly reactive). This is common
to most robotics applications and reflects the separation be-
tween a reactive component and a deliberative component.
However, in our architecture, these are simply two plan-
ning levels. This offers two main advantages: both levels
can be easily adapted to the requirements of the agent; and
the differentiation allows the agent replanning at either level,
which grants a greater degree of flexibility when recovering
from failed executions.

Figure 1 shows a screenshot of PELEA’s web interface
and the current version of the architecture along with the
integration of the modules. As we can see, PELEA is com-
posed of eight modules that exchange a set of Knowledge
Items (KI) during the reasoning and execution steps. We
have chosen to use XML within the architecture to represent
those Kls, which are: (1) stateL, low-level state composed
of the sensory information; (2) stateH, abstracted high-level
state translated from stateL. as an aggregation or a general-
ization of low level information; (3) goals: the set of high-
level goals to be achieved by the architecture; (4) metrics,
metrics that will be used in the high-level planning process;
(5) planH, high-level plan generated with any state-of-the-
art high-level planner (this is a configurable parameter in
PELEA); actions in planH can also be the goals for the low-
level planner (in case we want the low-level planner to act as
a dynamic translation mechanism for high-level actions); (6)
planL, low-level plan as a set of operational actions result-
ing from the low-level planning that are directly executable
in the environment; (7) domainH, definition of actions for
the high-level planning; (8) domainL, definition of behav-
iors (skills) for the low-level planning learning examples; (9)
heuristics, in different forms (control rules, policies, cases,
macro-actions, etc.) allow the planner to improve the effi-
ciency in solving future planning episodes; and (10) info
monitor, meta knowledge on the plan that helps perform the
plan monitoring (for instance, the generation time of a lit-
eral).

The high-level knowledge describes general information,
actions in terms of its preconditions and effects, and typ-
ically represents an abstraction of the real problem. High-
level knowledge is concerned with the description of the
high-level domain, problems, goals and metrics, and they
are required for the purpose of planning sequences of ac-
tions, and for the modifications of these sequences (repair
or replanning). We use PDDL to represent this information.
However, high-level knowledge descriptions are rarely di-
rectly executable, if ever, and they must be complemented
by the low-level knowledge, which specifies how the opera-
tions are actually performed in terms of continuous change,
sensors and actuators. Low-level knowledge describes the
more basic actions in the simulated world, and it is typically
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concerned with specific rather than general functions, and
how they operate. Now, the main components of PELEA are
described.

Execution Module. The starting point of PELEA is the
initialization of the Execution Module to capture the cur-
rent problem state (stateL). This module also receives a
high/low-level domain, and a problem. The Execution Mod-
ule keeps only the static part of the initial state, given that the
dynamic part, stateL, is read from the environment through
sensors. The environment is either a hardware device, a soft-
ware application, a software simulator, or a user. The Exe-
cution Module is in charge of receiving the new stateL and
sending out the low-level actions (planL) that have to be ex-
ecuted at each step to the actuators.

Monitoring Module. Both the problem and the domain
definitions and, optionally, a metric, are sent to the Mon-
itoring Module to obtain a high-level plan (planH). Then,
planH is translated into a low-level plan (planL) whose ac-
tions are finally sent to the Execution Module. In PELEA,
it is not necessary to work at the two knowledge levels. One
can just work at the high-level, so that converting knowledge
from high-level into low-level with the LowToHigh mod-
ule or using the Low-level planner module are not required.
The Monitoring Module calls the Decision Support, which
in turn calls the High-level replanner, to obtain planH. If
the low level is being used, planH is converted into planL;
otherwise, (some) actions in planH are directly sent to the
Execution Module. Once the actions are executed, the Mon-
itoring Module receives the necessary knowledge (current
state, problem and domain) from the Execution Module and
it starts the plan monitoring process. The first step is to check
whether the problem goals are already achieved in the re-
ceived state (goalsL and goalsH in case we are dealing with
the two processes). If so, the plan execution finishes; other-
wise, the Monitoring Module checks whether the received
state matches the expected state or not and determines the
existence or lack of a plan failure.

Low-level planner. The Monitoring Module, with the
help of the Low-level planner module, generates a set of ex-
ecutable low-level actions (planL). An example of low-level
knowledge would be “the coordinates of a robot” or “degrees
of motion of a robot arm”. If the Low-level planner module
is not used, the Monitoring Module assumes that actions in
planH are executable, and they are directly sent to the Exe-
cution Module.

Decision Support Module. It selects the variables to be
observed by the Monitoring Module during the plan mon-
itoring, and takes the decision of repairing or re-planning
through an Anytime Plan-Adaptation approach (Garrido,
Guzman, and Onaindia 2010) when the Monitoring detects
a failure in the plan monitoring. It also communicates the
Monitoring Module with the High-level replanner Module
and retrieves training instances from the execution and the
plans to be sent to the Learning module.

High-level replanner. It receives a problem and a high-
level domain (domainH) and generates a high-level plan
(planH). This module is also invoked when the Decision
Support has to fix (repair/replan) a plan. In this latter case,
the initial state of the problem will be the current observed
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Figure 1: Screenshot of PELEA’s web interface showing the architecture of the system. It shows the execution of a simple

problem in the Driverlog domain.

state. Several planners have been successfully used for this
module: LPG-TD (Gerevini, Saetti, and Serina 2003), SG-
PLAN (Hsu et al. 2007), CRIKEY (Coles et al. 2009) and
TFD (Eyerich, Mattmller, and Rger 2009).

Learning Module. It infers knowledge from a training set
sent by the Decision support module. The knowledge can
be used either to modify the domain planning model or to
improve the planning process (heuristics). Apart from the
different levels of reasoning, PELEA can also learn from past
executions and reason about the current problem to improve
its efficiency.

The components run as separate processes and commu-
nicate through sockets. The inputs are defined by either
the PDDL or HTN domain/problem specification at the
high level. The knowledge exchanged among components
follows the domain-independence principle with domain-
independent APIs (through XML). Here lies the generality
of PELEA; one can exchange a component and PELEA will
continue working as it is, maintaining the XML APIs and
their semantics, which are the standard ones in planning: ac-
tions, goals, states and plans.

Plan Monitoring and Decision Support
The info monitor parameter, provided by the Decision Sup-
port Module, comprises the information that needs to be
monitored to guarantee a successful plan execution. Specif-
ically, it includes: i) the variables to be monitored, i.e. those
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that are directly related to the plan, ii) the time at which
the variable is generated, and the earliest and latest time at
which the variable will be used, respectively; and iii) the
value range for each variable, denoting the set of correct
values that the variables can take on. The Decision Support
Module computes the variables to be monitored through an
extension of the goal regression method proposed in (Fritz
and Mcllraith 2007), which is inspired by the mechanism
used in triangle table defined in (Fikes, Hart, and Nilsson
1972). This mechanism is only used so far to monitor the
high-level information.

The Monitoring Module receives planH and the info mon-
itor parameter and sends a set of executable actions from
planH at a time instant ¢ to the Execution. For example, in
figure 2, at £ = 0.0003 actions a; and ay can be executed in
parallel. The Monitoring sends these two actions to the Ex-
ecution and requests the execution state at the time in which
variables are generated and used, most typically at the end
of the execution of the actions. In this example, the Monitor-
ing, with the help of the Execution, senses the dynamic state
variables from the environment at ¢ = 2.0003.

Once the information of the observed state is received by
the Monitoring at time ¢, it checks the values of the variables
are within the value range specified in info monitor parame-
ter. If so, the Monitoring continues with the plan execution,
sending the next set of actions to the Execution (action as
in figure 2). Otherwise, a discrepancy between the expected
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Figure 2: Example of a parallel plan.

and the observed state is found, in which case the anomaly is
reported to the Decision Support, which determines whether
the discrepancy is relevant to the plan execution or not. At
this point, if reactivity is needed, the low-level planner is
invoked to find the most immediate actions as this module
typically stores predefined policies or courses of actions de-
signed to reach particular goals. In the anomaly entails the
plan is no longer executable, the Decision Support is called
to take a decision between repairing the current plan or re-
planning from scratch.

The decision between repairing or replanning is done via
the application of a regressed goal-state heuristic (Garrido,
Guzman, and Onaindia 2010). A regressed goal state is a tu-
ple of the form G'S = (L, t) where L is the set of atoms, i.e.
values of the state variables, and ¢ is the time of G'S, which
usually coincides with the start time of one action (sequen-
tial planning) or more than one action (parallel planning).
The heuristic estimates the best G.S' according to parame-
ters as the cost or stability of the estimated plan. Then a new
problem from Sy to the selected regressed goal state is gen-
erated and the planner is invoked. Note that the first GS' is
the one from which the whole original plan can be reused;
the subsequent goal states represent reachable states from
which to reuse ever decreasing parts of the original plan;
and the final G'S entails no reuse of the plan at all.

Temporal plan monitoring

When monitoring a temporal plan, the classical definition
of a regressed goal state, GS, to guarantee the executabil-
ity of the plan tail from ¢ is no longer sufficient. A temporal
regressed goal state has now to include actions concurrent
with the state variables at ¢, and the timing of those actions
relative to the variables (Haslum 2006). That is, when com-
puting GS = (L,t), the algorithm must take into account
the actions that are being executed at time ¢. We will call
these actions ongoing actions.

A temporal regressed goal state is a tuple GS = (L, t, A)
where L is the values that the variables should take on at
tand A = {(a1,01),...,(an,0,)} is the set of ongoing
actions, a set of actions a; with time intervals §;, meaning
that each action (a;, 0;) in A has started §; time units earlier.
In other words, a plan achieves the temporal regressed state
GS iff the plan achieves L at ¢ and schedules action a; at
time ¢ — §; for each (a;,0;) € A.

For example, consider the temporal regressed goal state
GS; = (Ls1,5.0012,{(as,3)}) in figure 3 (a sketch of a
plan from a rovers problem). Since ¢ = 5.0012 is the starting
point of the action ay4, the preconditions of a4 are subgoals
(variables) to be achieved by ¢. Additionally, the action that
achieves those conditions must be compatible with the on-
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Figure 3: Temporal plan example - planH solution.

going action ag, which starts 3 time units earlier. Ongoing
actions are automatically computed by the Decision Support
and encoded as special PDDL actions in the new planning
domain file. Particularly, an ongoing action a; of a temporal
regressed state G\S; has the same specification as the orig-
inal action except that the at end effects are ignored and
that the duration is d;. The at start effects of the original
action are included as variables in G'S;.

Analogously to the temporal regressed goal states, there
may be actions that are actually being executed at the cur-
rent time in the observed state (Sp). In this case, the ongoing
actions have already been executed for a certain time so it
is only necessary to execute them during the remaining time
up to the completion of the action. See for example figure
3 where two time units of action ay have already been exe-
cuted at Sy. Now, the current observed state is specified as
follows: Sy = (L, t, A), where L is the observed variables,
t is the current time and A = {(a1,01),...,(an,0n)} is
the set of ongoing actions at ¢, a set of actions a; with time
intervals o;, meaning that each action (a;, 0;) in A remains
0; time units to complete. In other words, a plan from .S
must schedule action a; at current time ¢ with a duration o;
for each (a;,0;) € A. Ongoing actions of the observed state
are encoded as special PDDL actions with: i) preconditions
equal the overall preconditions and at start effects
of the original action, ii) effects equal the at end effects
of the original action and iii) a duration of ¢; time units.

Replanning vs. Plan Repair The Decision Support is
capable of deciding between replanning or repairing in a
timely fashion. It uses an algorithm with anytime capabil-
ities whereby a first solution plan is rapidly returned, and
the solution quality may improve if the algorithm is allowed
to run longer (Garrido, Guzman, and Onaindia 2010). The
heuristic takes a balanced response between metric (cost,
makespan) and plan stability (part of the original plan that
can be reused in the new solution plan) (Fox et al. 2006).
Plan stability is one of the principal reasons for claiming the
preference of plan repair over the alternative of replanning.

The heuristic estimates an approximate plan 11,.cp1qn (a
plan from Sy to the G'S,, discarding the whole original plan),
and a plan II,¢pqir (a plan from Sy to the G'S; keeping the
whole original plan). If cost(IL,epian) < cost(Il epqir) OF
stability (I epian) > stability(Il ¢pair) then replanning is
chosen as the preferred option. Otherwise, the algorithm an-
alyzes the cost and stability of the subsequent regressed goal
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states (G5, ...,GS,—1) and maintains the best regressed
goal state computed so far until time expires. Once a goal
state G.S; is selected, the High-level replanner is invoked
with the initial state Sy and goal state G.S;. The returned
plan is concatenated with the plan tail of the original plan
taking into account the causal links and time constraints.

Closer to the Real World: Low Level

Actions in low-level plans (planL) are atomic actions that
are executed directly in the environment. The low-level rea-
soning components are often required to come up with a so-
lution in a short time. In this section, we present in detail the
PELEA modules that implement the low level behaviour.

Execution Module

The Execution Module deals with the communication be-
tween PELEA and the environment, which can be repre-
sented by a simulator, a hardware device (robot), a third-
party software, or a user. Currently, the Execution Module
works as a wrapper over anything external to PELEA, tack-
ling with low-level details that depend on the kind of envi-
ronment PELEA is working with. Issues like communication
protocols and data formats are responsibility of the Execu-
tion Module.

Low-level states (stateL) are sent to the Monitoring Mod-
ule upon request. Similarly, actions in planL are sent to
the actuators when they are received from the Monitoring.
This is usually interleaved, although PELEA may ask asyn-
chronously for stateL without sending any action to monitor
the execution. Currently, the Execution Module provides in-
tegration with the following environments:

e MDPSim: PPDDL (Younes and Littman 2004) simula-
tor employed in the past probabilistic tracks of the In-
ternational Planning Competition (IPC)?> which generates
states stochastically as actions are received. It works with
a probabilistic version of the regular PDDL domains,
PPDDL, in which the effects of the actions depend on a
series of probabilities.

e In-house temporal probabilistic simulator: we have built
a new simulator that is able to work with temporal prob-
abilistic domains. The domain definition is similar to the
temporal version of PDDL, augmented with probabilistic
effects as in PPDDL.

o Stage/Player (Gerkey, Vaughan, and Howard 2003): free-
ware platform for robot independent control.

e Microsoft Robotics Studio: a robot independent platform
similar to Player.

e Freeware software suite for robotics applications, re-
search and education, which also offers the possibility to
simulate various kinds of robots.

o Allife: open platform for simulating social and emotion
oriented games.

o Planning framework designed to simulate and solve real-
life logistic problems.

2Except for the last one held on 2011.
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Low-Level Planner

The Low-Level Planner generates planL composed of
atomic actions that can be directly executed in the environ-
ment. It receives stateL and a high-level action (the next one
from the current planH). This high-level action conforms
the low-level goal. The low-level actions of the planL gener-
ated by the Low-level Planner are then sent to the Execution
Module. Thus, high-level plans can be decomposed into sev-
eral low-level actions, keeping the reasoning at both levels
distinct. The Low-level planner does not have to be a regular
PDDL-based planner. We have implemented several types of
low-level planners:

e HighToLow translators, that simply decompose a high-
level action into low-level ones with no reasoning. They
can be seen as small programs that take as input a high-
level action and the low-level state and generate as output
a set of low-level actions

e A policy, either learned or manually created. For instance,
based on a states-actions table (as in most reinforcement
learning approaches).

Suppose we have a domain in which a robot can move
along a building and turn around to change its orientation. A
high-level plan may contain the (move locationl location2)
action as the current one, so it is sent to the Low-level plan-
ner. The other input would be stateL that includes informa-
tion on the x and y coordinates of the robot position and
its orientation. Then, the Low-level planner solves the path-
planning problem and returns a sequence of atomic actions
to be sent to the robot; for instance, the sequence (advance
10), (turn 45 right), (advance 5).

LowToHigh Module

The task of the LowToHigh Module is to translate a stateL
into a stateH. In most cases it is just a mapping function be-
tween the low and the high level, although more complex
functionalities can also be implemented. The requirement
of being able to generate a stateH from a stateL is justified
by the necessity of monitoring at both low and high levels.
Thus, replanning and repairing can be performed during the
high-level execution as well.

Learning in PELEA

The Learning Module is in charge of inferring knowledge
from the training data sets sent by the Decision Support
module. So far, machine learning techniques have been used
to improve the planning process by learning domain models,
low-level policies and heuristics. We will shortly describe
them here as a summary of the kinds of techniques that PE-
LEA integrates into its core, since most of them have already
been published elsewhere.

Learning domain models

The generation of accurate robot control PDDL or PPDDL
models for planning is complex. To alleviate this, machine
learning has been used to support model generation. As an
example, a relational learning approach was developed as
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part of the Learning Module of PELEA to learn more ac-
curate robot-action execution durations than the originally
modeled ones (Quintero et al. 2011). PELEA starts with a
deterministic version of a robotics domain and then executes
actions and observes the results of those executions in terms
of the function whose effects we want to learn (e.g. navi-
gate). We used TILDE (Blockeel and Raedt 1998) to learn
the duration of actions of the Rovers domain using regres-
sion trees. Finally, the duration models were later compiled
into the PDDL domain specification. The experiments were
performed using a Pioneer robot that traveled through differ-
ent terrain types, generating the learning examples from the
type of terrain and the time it took the robot to move from
one waypoint to another.

Learning low-level policies

Also, as part of the Learning Module, domain-specific learn-
ing techniques can be used at the low-level. As a proof of
concept, a policy made to substitute the low-level planner
was inferred using reinforcement learning. This was done
for the case study described later, in which training ex-
amples of the form (state, action, state, rein forcement)
were employed to create a state-action table.

Learning heuristics

The Learning Module is also able to learn heuristics for im-
proving the planner’s efficiency. Relational decision trees
were used again to learn how to generate look-ahead states to
improve forward search algorithms (De la Rosa et al. 2011).
This was done by creating training examples that take into
account the helpful actions of previous heuristic evaluations
of states belonging to smaller problems of the same domain.
The learning system is domain-independent, but planner-
dependent, so in the future we would like to include other
planner-independent techniques.

Goals and Metrics Generation

The Goal&metric generation Module is designed to auto-
matically select the new goals and metrics to be used ac-
cording to the current state of the execution. A common use
of this module is for oversubscription problems, where not
all goals can be satisfied. This problem is generally solved
by choosing some goals and discarding others either online
or offline. An algorithm that computes an estimation of the
cost of achieving a goal from every other goal was imple-
mented so a set that maximizes the number of goals that will
be likely achieved can be easily found (Garcia-Olaya, de la
Rosa, and Borrajo 2011).

A Case Study: Rovers domain

In this section, we show an instance of the Rovers domain
which replicates the expected behavior of the autonomous
explorers sent to Mars by NASA in past experiments. It was
simulated both by using Player/Stage (Gerkey, Vaughan, and
Howard 2003), and two real robots, two Pioneers P3-DX,
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Figure 4: Execution of PELEA: real robot and simulator.

which interacted in a recreated physical space that repre-
sented the Mars environment 3.

Both the robot and the simulation were managed using
Player/Stage, so there was a single implementation for both
cases. The actuators/sensors management was implemented
in the Execution Module as a set of basic control skills.
The communication was performed using sockets, acting
Player/Stage as the server and PELEA as the client. Both the
Low-Level Planner and the LowToHigh Module were im-
plemented as an ad-hoc translator adapted for the example.

Description of the case study

We have used the Rovers domain introduced in the IPC in
2002. In this domain, a collection of Rovers navigate on
Mars’ surface, looking for samples/images data which they
should communicate back to Earth. In this case, the STRIPS
version of the domain was used for the sake of simplicity. In
the executed instance two different Rovers are used, and the
goal is to communicate a set of samples taken from rocks
in the environment. In the trace example we will refer to
one of these two Rovers, named Curiosity. During the ex-
ecution, both the physical Pioneer robots and the simulator
provided by Player/Stage are used. Figure 4 shows the real
robot during execution and a screenshot of the simulator at
that instant.

Trace of execution

Now, we show the execution of the action (navigate
curiosity waypoint00 waypointO01). First, sta-
teL is requested to the Execution Module. Curiosity will re-
trieve its current stateL, indicating that the position of Cu-
riosity is (z = 0.00,y = 0.00,z = —1.50), no bumper
detected a collision, and no object is detected to be close by
its sonar ring.

Once stateL is retrieved, the PELEA flow continues. sta-
teL is translated into stateH and checked by the Mon-
itoring module. After the monitoring process is done,
the Low-level planner is executed in order to generate
the next planL. The high-level action being executed (in
our example : (navigate curiosity waypoint00
waypoint01)) is sent to the Low-Level Planner and the
corresponding planL is generated.

For the case of our (navigate curiosity
waypoint00 waypoint01) action, the corresponding

3Currently, we have already uploaded PELEA with ROS into
two humanoid robots, NAOs, and we are using PELEA to control
them for simple tasks
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<plan id="navigate">
<action-plan name="turnleft">
<term name="robot" value="curiosity"/>
</action-plan>
<action-plan name="movetowardsy">
<term name="robot" value="curiosity"/>
<term name="y" value="0.00"/>
</action-plan>
</plan>

Figure 5: planL returned

planL for the actuators is shown in Figure 5. Curiosity has
to change its orientation turning left. And then it has to
move towards the position y = 1.0. Now that the planL has
been generated, the robot can execute the set of commands
to achieve the complete level action. First, Curiosity turns
left and then moves towards position y = 1.00 (PELEA
sends a command movetowardsy as the one shown in
Figure 5). Once the action is executed, the resulting stateL
is returned by the EM. This state is translated into stateH
that should look like the fragment on Figure 6.

<atom predicate="at">
<term name="curiosity"/>
<term name="waypoint01l"/>
</atom>
<atom predicate="full">
<term name="curiositystore"/>
</atom>
<atom predicate="calibrated">
<term name="logitechsph"/>
<term name="curiosity"/>
</atom>

Figure 6: stateH

Related Work

In the late 80’s and beginning of the 90’s there was a pro-
fusion of architectures for autonomous mobile robot sys-
tems which heavily drew upon the popular three-layer SPA
(sensing-planning-acting) architecture. Most of these early
approaches (RAP (Firby 1987), PRS (Georgeff and Lansky
1987), SHAPIRA (Saffiotti, Konolige, and Ruspini 1995))
developed reactive behaviors, fixed pre-compiled patterns
of actions which are selected depending on the actual situa-
tion of the executor. Other architectures smoothly integrate
planning and reacting running asynchronously a classical Al
planner in conjunction with a reactive control mechanism
(Gat 1992; Hayes-Roth 1995). An alternative direction is to
generate plans to solve the entire planning task and mon-
itor their execution afterwards, resorting to re-planning or
plan repairing in case of execution failures (Currie and Tate
1991). The Continuous Planning and Execution Framework
CPEF (Myers 1999) is an asynchronously working archi-
tecture that interleaves planning and execution. CPEF can
generate plans to arbitrary levels of refinement and then
be manipulated at runtime by the executor component. PE-
LEA gathers many of the features of the aforementioned
architectures, namely reactive execution, continuous plan-
ning approach, re-planning and repairing techniques but it
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also features a learning module and the ability to change
goals as new information is acquired during plan execution
(Goal&metric generation module).

PELEA also has some features in common with the Task
Control Architecture TCA (Simmons 1992). TCA was de-
veloped to handle robot control problems and was specifi-
cally tested with Ambler, a robot designed for planetary ex-
plorations, which required a rather deliberative architecture.
TCA provides a general framework of hierarchical task de-
composition augmented with reactive behaviors. Since TCA
was specifically thought of as a high-level robot operating
system, it allows for the definition of task-specific modules.
This contrasts with the more general PELEA behavior, which
has been designed to tackle any type of planning-execution
problem, from the most proactive to the most reactive do-
mains. PELEA also uses PDDL and HTN definitions that are
currently the standards in deliberative planning, so it can
more easily be used by planning practitioners.

IDEA (Intelligent Distributed Execution Architecture)
(Aschwanden et al. 2006) is a real-time architecture that
departs from the three-layer SPA architecture and proposes
instead to unify deliberation and execution under a single
planning technology and model representation. Like T-Rex,
IDEA is composed of self-contained planning systems, each
with a deliberation latency and planning horizon. IDEA uses
XIDDL, a XML encoding of IDEA domain definition lan-
guage, but it does not allow for PDDL or HTN-based model
representation. Additionally, this unified view that permits
the planner to be embedded within the executor usually al-
lows only for a strict and controlled interleaving of the plan-
ning and execution phases (Vidal and Nareyek 2011), mak-
ing it difficult to have a general-purpose planner for different
types of executor systems.

As a whole, PELEA boosts flexibility, modularity, gener-
ality and interoperability. PELEA allows practitioners to re-
place (and reuse) any module of the architecture as long as
the new module is able to read the corresponding XML in-
put file, thus requiring much less effort to easily generate
new interleaved planning-and-execution applications.

Conclusions

In this paper, we have introduced a domain-independent
architecture, PELEA, that integrates planning related pro-
cesses, such as sensing, planning, execution, monitoring, re-
planning and learning. We have shown examples of the two
levels of reasoning in a temporal and no-temporal domains.
High level as in a regular automated planning task; and low
level, composed by atomics actions that are executed di-
rectly in the environment. PELEA is conceived as a flexible
and modular architecture that can accommodate state of the
art techniques that are currently used in the overall process
of planning. This kind of architectures will be a key resource
to build new planning applications, where knowledge engi-
neers will define some of the components, parameterize oth-
ers, and reuse most of the available ones. This will allow en-
gineers to easily and rapidly develop applications that incor-
porate planning capabilities. We believe this kind of archi-
tecture fills part of the technological gap between planning
techniques and applications.
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