KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

An extended HTN knowledge representation based on a graphical notation

Francisco Palao
IActive Intelligent Solutions
Granada, SPAIN

Abstract

This work presents both an extended HTN Knowledge Rep-
resentation based on a graphical notation inspired in commer-
cial standards and a suite of tools, named [Active Knowledge
Studio, based on this representation aimed at fully support-
ing a knowledge engineering process that, starting with the
acquisition and representation of planning knowledge, ends
with the integration and deployment of planning applications.
The suite is also intended to be a knowledge engineering
workbench for HTN planning applications deployment. This
workbench includes several interesting features like a fully
integrated representation of problem and domain knowledge
and a new graphical and intuitive notation for easily repre-
senting HTN domains. It also provides tools for data integra-
tion with external data sources as well as an enhanced visual
environment for HTN domains and plan validation.

Motivation

Al Planning and Scheduling (AIP&S) has revealed as an en-
abling technology to develop “assistant applications” which
support human decision making in domains where the ac-
complishment of tasks to carry out a given activity or
achieve a goal is mandatory. Most of these applications are
aimed at supporting Human-Centric processes (Dayal, Hsu,
and Ladin 2001) for knowledge workers (experts or deci-
sion makers). These processes are collections of tasks which
support decisions and help to the accomplishment of work-
flow tasks for such knowledge workers in several and diverse
application domains. Indeed, the features of AIP&S are re-
ally aligned with key requirements in these application field:
human-centric processes mainly embody expert knowledge,
processes need to be dynamically generated through a pro-
cess that must be aware of the context in which they will
be executed, and the execution environments are highly dy-
namic, thus requiring adaptive behaviour and rapid response
to the new, changing situations.

The development of such knowledge-intensive applica-
tions, where intelligent planning becomes a key component,
require a great modeling and engineering effort in the main
application development stages: acquisition and representa-
tion of planning knowledge, validation of such knowledge,
integration with external sources of information or already
existing legacy software systems, and deployment of the fi-

Juan Fdez-Olivares
Dept. of Computer Science and A.I
University of Granada

126

Luis Castillo and Oscar Garcia
IActive Intelligent Solutions
Granada, SPAIN

nal planning application. Most planning applications devel-
oped at the time being (Fdez-Olivares et al. 2006), (Fdez-
Olivares et al. 2011),(Boddy and Bonasso 2010), (Cesta et
al. 2010) are based on a standard life-cycle based on the
above stages, but each of the steps in this cycle are per-
formed following different, ad-hoc and difficult to couple
techniques or tools, not easily scalable nor reproducible to
other applications (thought the same technology is being
used). For example, given a set of protocols and procedures
to be operationalized, it is common to manually encode such
protocols in a textual planning language (PDDL (Gerevini
and Long 2006), HTN-PDDL (Fdez-Olivares et al. 2006)
or ANML (Boddy and Bonasso 2010) to cite some), then
to generate plans in order to validate this knowledge, then
to develop ad-hoc algorithms to integrate external sources
of information (for example mapping data from ontologies
or external data bases to PDDL data models (Castillo et al.
2010a)), then to develop extra code in order to integrate the
output of the planner with existing systems, etc. This is
neither an agile nor easily reproducible development pro-
cess that clearly impact negatively the goal of Al Planning
to be a widespread and widely used technology. Moreover,
a widely recognized bottle-neck in the development of such
applications is that the languages used to represent both ex-
pert knowledge and domain dynamics are textual and ori-
ented to expert Al planning researchers, and normally, little
attention is devoted to the domain objects model as well as
the plan representation and integration.

This handcrafted way of working in our area is in con-
trast with the extremely high-technological tools developed
in other, no so distant areas like Business Process Manage-
ment (BPM (van der Aalst, ter Hofstede, and Weske 2003)),
where a plethora of tools may be found which give sup-
port to the whole life-cycle of development in such areas:
modeling, deployment, execution and monitoring of pro-
cesses. BPM is, perhaps, the dominant area in IT solu-
tions for Human-Centric processes, but BPM technology is
mainly focused on the management of static and perfectly
predictable tasks/processes and, at present, there is a clear
trend (Gonzélez-Ferrer et al. 2010) to incorporate features
like dynamic composition, context awareness or adaptive-
ness of processes into software solutions: clearly these fea-
tures may come from the incorporation of AIP&S technol-
ogy into these systems. However, in order to compete on

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

equal terms with this extremely developed area, and to con-
vince IT engineers and managers about the real capabilities
of Al Planning technology, the current engineering process
of planning applications must be radically improved.

Compared with the modeling and engineering processes
of the not so different BPM area, Al P&S lacks of integrated
tools (also called suites) that cover an important gap, still not
fully bridged, between the conceptualization and design of
a planning domain and the final deployment of a fully func-
tional planning application. In this sense, the contribution of
this work is two fold:

e On the one hand, we present an extended knowledge rep-
resentation based on a graphical notation, built on both
the concepts of HTN planning languages (concretely an
HTN extension of PDDL, called HTN-PDDL (Castillo
et al. 2006) which has been used in several applica-
tions) and inspired in the graphical notation of industrial
standards devoted to the modeling of business processes
(called BPMN (White 2004)).

e On the other hand, a suite of strongly coupled planning
tools developed by IActive Intelligent Solutions', inte-
grated into a product called IActive Knowledge Studio®,
conceived as an integrated development environment for
planning applications. It includes several visual working
environments in order to support the main steps of Knowl-
edge engineering: acquisition and representation of plan-
ning knowledge based on the graphical notation, valida-
tion by inspection based on planning process debugging
and plan visualization and analysis, knowledge integra-
tion with external sources of information and planning
application deployment.

Next sections are devoted to describe, firstly, the main is-
sues concerned with the extended graphical representation
and, secondly, the main features of IActive Knowledge Stu-
dio.

The graphical knowledge representation

The graphical knowledge representation introduced in this
work can be considered as an evolution from a former,
textual HTN language called HTN-PDDL (Castillo et al.
2006),(Fdez-Olivares et al. 2011) towards a more usable
one, closer to the modeling practices of general purpose IT
engineers and strongly focused on developing commercial
planning applications. HTN-PDDL is a hierarchical exten-
sion of PDDL which incorporates all the standards concepts
of the PDDL 2.2 version (Edelkamp and Hoffmann 2004).
Concretely HTN-PDDL supports the modeling of planning
domains in terms of a compositional hierarchy of tasks rep-
resenting compound and primitive tasks at different levels of
abstraction, where primitive tasks maintain the same expres-
siveness that PDDL 2.2 level 3 durative actions (allowing to
represent temporal information like duration and start/end
temporal constraints, see (Castillo et al. 2006) for details).
In addition, HTN methods used to decompose compound

"http://www.iactive.es
“Download at
knowledge-studio/

http://www.iactive.es/productos/iactive-

127

tasks into sub-tasks include a precondition that must be sat-
isfied by the current world state in order for the decompo-
sition method to be applicable by the planner. The problem
representation in HTN-PDDL is thus almost the same that
in PDDL 2.2 problems, but with the only difference that the
goal is described as a set of high-level tasks to be decom-
posed, instead of than a set of states to be achieved.

It is worth to note that this textual representation, though
can be seen as a general-purpose hierarchical planning rep-
resentation, based on the HTN paradigm, is specific for
a temporally extended HTN planner, formerly known as
SIADEX (Fdez-Olivares et al. 2006),(Castillo et al. 2006),
which has evolved as a commercial product, developed by
our start-up [Active Intelligent Solutions, now called De-
cisor 3. Both, the textual language and the former plan-
ner have already been applied in several applications in di-
verse domains like crisis intervention (Fdez-Olivares et al.
2006),(Castillo et al. 2010a), e-learning (Castillo et al.
2010b), e-tourism (Castillo et al. 2008) or e-health (Fdez-
Olivares et al. 2011), many of them being at present com-
mercially exploited by IActive .

In the following, we will detail how this textual represen-
tation has evolved into a graphical knowledge representation
based on three pillars: 1) a domain objects representation
based on UML that is called Context Model that clearly over-
comes the classic representation of PDDL domain objects,
2) a planning description language, still based on predicates
but incorporating object-oriented concepts, named EDKL
(Expert Knowledge Description Language) used for writing
logical expressions for preconditions, effects, rules and tem-
poral constraints in both compound tasks and actions, and
3) a graphical notation named EKMN (Expert Knowledge
Model Notation) used to represent the main concepts of an
HTN domain (compound tasks, methods, primitive tasks as
well as hierarchical, compositional and order relations) in-
tended to be understandable by both, IT engineers and do-
main experts.

Context Model: UML-based domain objects model

Domain objects are represented in the Context Model fol-
lowing the standards recommendations of UML (Unified
Modeling Language (Booch, Rumbaugh, and Jacobson
1999)), a standardized general-purpose modeling language
in the field of object-oriented software engineering. UML
includes a set of graphic notation techniques to create visual
models of object-oriented software-intensive systems. Al-
though UML supports the modeling of many aspects related
with planning applications (like activities diagrams or state
machine diagrams) we have opted to use UML only with
those issues related with data and domain objects modeling,
trying to bring the strong modeling capabilities of this stan-
dard to domain objects in Al Planning.

Indeed, all the HTN-PDDL concepts (mostly inherited
from the classical PDDL types and objects representation)
have their associated representation in UML. The Context

3http://www.iactivecompany.com/products/iactive-intelligent-
decisor/
*http://www.iactive.es/casos-de-exito/casos-de-exito/

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

=] material
] Facilities] squad
assigned

wehicle {1}

= venicle

@ speed

& autonomy

@ current_autonomy

@ fuel_rate

£k fuel_consumption : Float

= Terrestrial 5 aerial
] Truck - FullTerrain] airplane

] rResource

current_position
at_location (1)

|=j Human [c1s_Location

- X

@ v

£k distance : Float

] FireDirector L] cis_sector

@ reinforced_attack

Sector_composed_by
GIS_Line (1..%)

E cis_Line

Line_composed_by

IS_POIOSITE) point

1 Helicopter

Figure 1: A (simple) UML model of a fire-fighting ontology: a Resource is located at a GISLocation (represented by a UML
association). Every location is represented by two coordinates and an associated operation to compute the distance between
two points (special Google libraries are provided by the language to implement this operation). There are material (Vehicles
and Facilities) or Human (Squads and Fire Director) resources. A Vehicle has an speed, autonomy, current autonomy and a fuel
rate. The fuel consumption of every vehicle (Terrestrial or Aerial) is a dynamic value computed by a procedure. Attributes,
operations and relations are inherited throughout the is-a hierarchy.

Model is based on five key UML concepts: Class, Attribute,
Operation, Association and Generalization. Object types
are represented as UML Classes (see Figure 1), and the hier-
archy of types is represented as an is-A hierarchy, using the
UML standard Generalization relationship between classes;
object properties are represented as UML Class attributes
and relations as UML Association. Domain objects are rep-
resented as instances of the UML classes defined. In addi-
tion, UML operations are used as special attributes of ob-
jects that need to be computed by a procedure, thus allowing
to manage and represent resources. Finally, it is also possi-
ble to represent temporal information as attributes of a class
the value of which is of a special type called DateTime (sup-
porting the representation of time and dates associated to
objects).

This modeling approach based on UML eliminates any
barrier between the modeler and the AIP&S technology, and
it is intended to offer a standard way to model planning do-
main objects close to IT engineers. Moreover, as seen in
the next section, the Context Model defined as a UML Class
Diagram is directly incorporated and managed by the plan-
ning language. The incorporation of this object-oriented ap-
proach into de planning language provides new features that
increase both the expressiveness of the planning language
and the user-friendliness with respect to previous languages
like PDDL or HTN-PDDL. Among others enhancements,
these features allow to introduce a solid interpretation of
inheritance of properties and operations in the language as
well as a better modeling of objects relations, now much
easier to manage. Perhaps the most important one is the in-
tegration with external data models. That is, most external
sources of information are based on relational data bases or

128

ontologies. Both models can be directly mapped into UML
models, thus increasing the integration capabilities of plan-
ning domains and problems with external sources informa-
tion, a key issue to be addressed in the development of any
planning application.

EKDL: Expert Knowledge Description Language

As opposed to other well known approaches, like for exam-
ple itSIMPLE3.0 (Vaquero et al. 2009), the aim of EKDL>
is not to translate the UML Context Model into PDDL, but
maintaining this object-oriented representation as modeled
in the Context Model and introducing it into the planning
language that will be described in this and following sec-
tions. Predicates are still the basic construction of EKDL,
but the standard syntax used in most planning languages has
been modified in order to cope with objects and classes.
The first consequence is that predicates now respond to
the syntactical pattern (C.p o v), where C' stands for the
name of a class, p stands for the name of a property or a re-
lation, o stands for an instance or a variable of type C', and
v stands for an instance or variable of the range of p (that is,
the Class which the allowed values of the property p belong
to). For example, a typical PDDL predicate (at ?x - Person
?y - Place) shall require firstly to define a Class Person,
with a property at of type Place (Place must also by defined
as a class). This definition will result in an EKDL predicate
(Person.at 7z ?7y) that can be used as desired in any logical
expression. This notation (indeed a prefix form of the stan-
dard < object attribute value >) forces to represent all the

A manual (in spanish) describing EKDL and EKMN can be
found in http://help.iactive.es/

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

expressions as logical combinations of binary predicates, but
has the key advantage that is aligned with standards knowl-
edge interchange formats, like for example RDF triplets, a
common way to serialize knowledge present in ontologies
or relational data bases, thus opening the way to easily in-
tegrate the planning knowledge modeled under EKDL with
other standard knowledge representation formalisms.

In summary, EKDL is an adaptation and extension of
PDDL and HTN-PDDL that tries to maintain the expres-
siveness of logical expressions based on predicates, but also
maintaining the object-oriented approach in logical expres-
sions.

Parameters: 1 ?g:Squad, v:Vehicle, ?pl:GIS_Location, ?p2:GIS_Location
Actors:
Conditions:
| (and (Squad.Vehicle 7g 7v) (Vehicle.at_location 7v 7pl)
(Squad.at_location 7g 7pl)
(= 7dur (/ (GIS_Location.distance 7pl 7p2) (Vehicle.speed 7v))))
Effects:

1(and (not (Vehicle.at_location ?v 7pl))
(Vehicle.at_location 7v 7pZ) (Squad.at_lecation g

(-= (Vehicle.current_autonomyi'.] ?dur))

’pl)) (not (Squad.at_location 7g
p2)

Figure 2: A primitive task represented in EKDL. It is like a
PDDL durative action representing the movement of a hu-
man group transported by a vehicle. Temporal (duration of
the transport) and resource constraints (the autonomy of the
vehicle decreases) are also represented.

Primitive tasks are represented textually in EKDL (see
Figure 2), but supported by visual forms. They are rep-
resented as a name, typed parameters (now referring to
Context Model classes), and logical expressions to de-
scribe preconditions and effects. Preconditions and ef-
fects are represented as logical expressions of predicates
taking into account the object-centered syntax above de-
scribed. Numerical function are also allowed and, there-
fore, it is also possible to represent discrete numerical re-
sources. Indeed numerical resources are represented as nu-
merical properties of objects, for example the remaining
autonomy of a Vehicle can be represented as the attribute
current-autonomy of a class Vehicle. Then EKDL provides
arithmetic and increment/decrement operators that can be
applied to numerical attributes. For example, the expres-
sion (= (Vehicle.currentautonomy?v)?dur) stands for a
decreasing ?dur time units the autonomy of a Vehicle 7v.

In addition, primitive tasks representation inherits the
concepts of PDDL 2.2 level 3 durative actions (allowing to
represent temporal information like duration and start/end
temporal constraints). EKDL also allows the representation
of PDDL 2.2 axioms. As shown in next sections, the intro-
duction of this knowledge is supported by graphical inter-
faces, with powerful capabilities to make the introduction of
this knowledge an easier task.

It is worth to note that neither UML activity diagrams nor
state machine diagrams are intended to capture and repre-

129

sent all the categories of knowledge found in temporal HTN
paradigms. Although they may be useful to represent some
aspects of domain dynamics related to changes of state, and
thus able to model basic primitive actions, they lack of nec-
essary mechanisms to adequately represent temporal con-
straints as well as compound tasks and alternative decompo-
sition methods. UML can represent relationships between
activities at different levels of abstraction, but it is not de-
signed to represent alternative decompositions to be dynami-
cally managed at reasoning time by a planner (one of the key
aspects of HTN). Moreover, thought some time constraints
on activities can be represented in UML, they are intended
to be used on sets of predefined, already fixed activities. The
temporal constraints management in HTN is much more ex-
pressive, since it supports to represent which temporal con-
straints must be satisfied on a dynamically generated, and
initially unknown set of tasks. Therefore, the modeling of
HTN planning domains requires additional characteristics to
the ones presented in UML, since UML is not designed to
be a knowledge representation language. Because of this,
we have defined a new graphical approach for this purpose,
detailed in the next section.

EKMN: Expert Knowledge Model Notation

EKMN Graphic Elements

Graphic notation

Travel
I

Description

Compound Task or Goal

Method

Task

Parallel Task Network

- -

Sequential Task Network

Figure 3: Main elements of the graphic notation.

Compound tasks, decomposition methods and primitive
actions represented in an HTN planning domain mainly en-
code the procedures, decisions and actions that experts must
follow, according to a given protocol, when they deal with a
given decision problem.

Therefore, the main advantage of HTN planning ap-
proaches is their capability of capturing planning expert
knowledge in form of either protocols or operating proce-
dures. Hence, an HTN planning model should be seen as

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

a knowledge representation mechanism to represent human
expertise and operating procedures as well as using them as
a guide to the planning process.

The main goal of EKMN is to face these aspects and pro-
vide a notation that is understandable by IT modelers (re-
sponsible of encoding the knowledge finally managed by
the planner) as well as domain experts (containers of the
knowledge). It is inspired in BPMN (White 2004), the cur-
rent standard notation for process modeling, and its aim is
to display an intuitive visual metaphor of the main cate-
gories of knowledge found in an HTN domain. On the one
hand, compound tasks (or goals), methods, task networks
and primitive tasks. On the other hand, the relationships be-
tween these categories: hierarchical relationships between
tasks and methods, is-part-of relationships between meth-
ods and subtasks, and order relations between tasks inside
a method). Figure 3 shows the visual representation used
for compound tasks (goals), methods, primitive tasks and
sequential and parallel tasks. The main idea behind this
graphic notation is to support a modeling process that starts
with the development of a visual skeleton of the task hi-
erarchy, carrying out (if possible) a collaborative process
between knowledge engineer and expert, and then to detail
this skeleton by filling out more detailed knowledge, using
EKDL, in successive refinement steps. Figure 4 shows an
example of the skeleton of an HTN domain which incorpo-
rates the above described elements.

Attack ‘
“_Reinforced
=i

Select_M...
+

Select_M...
+

! L

T
Deploy_T... Deploy_A... Deploy_S... Deploy_T...
+ + + +

Figure 4: An example domain using EKMN implementing
a standard operating procedure to attack a sector in a forest
fire. The doctrine establishes that, in case of not being a re-
inforced attack, first select appropriated human means, then
deploy and mobilize them. In case of reinforced attack, first
select means, then deploy every human, aerial and terrestrial
mean selected.

More concretely, the knowledge representation language
as well as the planner are also capable of representing and
managing different workflow patterns (van Der Aalst et al.
2003) which can be found in most business process models.
A knowledge engineer might then represent control struc-
tures that define both, the execution order (sequence, par-
allel, split or join), and the control logic of processes with

130

conditional (represented by alternative methods) and itera-
tive ones (represented by recursive decomposition schemas).

In addition, this knowledge representation supports to ex-
plicitly represent and manage time and concurrency at ev-
ery level of the task hierarchy in both compound and primi-
tive tasks, by allowing to express temporal constraints on the
start or the end of an activity. Any sub-activity (either task or
action) has two special variables associated to it, ?start and
?end, that represent its start and end time points, and some
constraints (basically <=, =, >=) may be posted on them
(it is also possible to post constraints on the duration with the
special variable ?duration). In order to do that, any activity
may be preceded by a logical expression that defines a tem-
poral constraint. For example, it is possible to encode con-
straints of the form ((and (>= ?start datel)(<= ?start
date2)) (t)) what provides flexibility for the start time of
t’s execution, indicating that t should start neither earlier
than datel nor later than date2. These constraints are repre-
sented using EKDL and can be posted using a user-friendly
interface, embedded into the integrated development envi-
ronment that is described in the next section.

IActive Knowledge Studio

o oo
File dt Duagam Project Run Sesrch Window Help
ri-de SHEHE@®O L - +-0- [k
= Project Explorer 10 O]k wm 4 PR GoToSite | TR VeaCity 12
= — = | i alette
B Epemploz il |
Epernpla20101602 -
5 e e
pempod - = .
B Fenplod A 4 NE = Task
B Gemphoskips 0 Passive Task
B OncotheraperiH) T Method
B TwristalA VisitSites
‘ —+ Association
vmm ‘:\-\V- v
[VinitSites e R
& Tasks List
Passive Tasks
Tasks [oletite] [|
1 GlobsiTrp ' il v
E LocalTrip | -
© Maceo
= Integration Structure || &3 Task GlobalTrip
General Farameters MypeTranspen, TorgeCity, TdstCity, Mourist
Specification | Actors
Acthity, Conddtiors Elfects:
3 1 r Description
ot Outline & P‘ [andl (Tourist.at-city Ttourist Toeg) (City.site |11
= Metadata £ 7t Temninal) (Tourist.st-site '
- = Assignment = Tcast {* (Teanspor.cont-km Myge) (City.dta
= ; Terate
==l
=1
I
Ry i
=i -

Figure 5: The knowledge edition environment of IActive
Knowledge Studio. From left to right: the project tree show-
ing the main parts of a planning project, the task hierarchy,
an outline of this hierarchy, and a properties view showing
the EKDL representation of a primitive task.

The above described knowledge representation and

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

graphical notation is the cornerstone of a suite of plan-
ning tools developed by IActive Intelligent Solutions, in-
tegrated into a product called [Active Knowledge Studio.
This suite is conceived as an integrated development envi-
ronment for planning applications. It is intended to sup-
port the main steps in the process of Knolwedge Engineer-
ing for Planning and Scheduling: Knowledge Acquisition
and Representation based on the above described extended
graphical representation, Knowledge Validation based on a
validation-by-inspection process supported by an enhanced
debugging process and plan analysis tools, Knowledge Inte-
gration with external sources of information, based on the
Context Model above described and Planning Application
Deployment. TActive Knowledge Studio has been developed
using Eclipse Java technology, and it includes several visual
working environments in order to support each one of these
steps, which will be detailed in the four following sections.

Edition environment

The edition environment is intended to facilitate the acqui-
sition and representation of planning domain knowledge. It
allows to model planning objects based on the UML Context
Model, to describe the task hierarchy based on EKMN and to
fill out the properties associated to every category of knowl-
edge through EKDL. Figure 5 shows a snapshot of the main
perspective. It provides a Project Tree where the main cat-
egories of a planning project are shown: the context model
in the terms above described, the expert knowledge show-
ing an expandable list of tasks and the integration structure
devoted to represent planning problems (see section below).
A region to graphically model both the Context Model ob-
jects and the EKMN domain is also provided. Finally, the
environment also includes a properties window in order to
represent in EKDL the knowledge required for action pre-
conditions and effects, temporal constraints, axioms, etc.

Integration environment

The integration environment has a triple role: (1) it is in-
tended to define the necessary data definitions to allow the
integration of both the input (initial state) and the output (the
plans) of the planner with external systems, (2) to describe
the initial state, and (3) to define the goal. Through this envi-
ronment (see Figure 6), a domain modeler not only is able to
represent the initial values of object properties or relations,
but to define the way in which external sources of informa-
tion can be accessed from the planner. Aimed at preserving
its integration capabilities at the maximum, the data defini-
tion schemas managed by the planner (input data of initial
state, input goal and plans) are stored as XML files (XSD
templates), and these definitions are intended to both, be
used to easily define the mapping from external data sources
into the internal structure defined in the Context Model, and
to integrate the plans obtained with external systems that
need as input the output of the planner (for example, a BPM
running engine).

The integration environment turns around the concept of
Integration Structure, what can be seen as a metaphor of the
”0ld” concept of planning problem, but redefining it into a

131

External
Web Services

External
Data Bases

External
Systems

Planning Software Component

Integration
Layer

Incoming. HTN Planner
g
g Data —_—
(XML) -
: Plan
Gul : &__ B (xmL)
J
Incoming | | Incomir; 3 - B
1 Data Goal - 3
Y (XML) !
“ Goal S <i>
i T I DTD

N Context Model
Local Data
(XML)

Expert
Knowledge

(EKMN)

<
DTD
Context Model

Figure 6: A diagram of the integration environment.

more ambitious way, mainly centered on exploiting and en-
hancing the integration capabilities of the planner. Through
this metaphor a Knowledge Engineer is able to define a plan-
ning problem by using the following concepts: Local Data,
Incoming Data and Incoming Goal. Local Data are in-
tended to be used in the first validation tests of the planning
domain. The working environment allows to describe de ini-
tial conditions of every object as set of data tables (locally
managed by the tool) that are automatically generated from
the Context Model. These tables are automatically gener-
ated in such a way that the attributes of every table 7" cor-
responds to the properties and relations defined for a corre-
sponding class Cr. In addition, each row in the table cor-
responds with an object instance of type Cr. Therefore, a
domain modeler can describe the initial state of the world in
a friendly and commonly accepted interface based on rela-
tional data base tables. The section Incoming data is aimed
at managing the Data Template Definition (DTD), stored as
XML files, that an external source should fit in order for
the planner to access these external data. This is the cor-
nerstone of the integration features of this approach: on the
one hand, the XML schemas so defined can be used to eas-
ily develop data mappings to acquire external information,
on the other hand these files can be used to provide the XSD
specifications to third-party developers responsible of inte-
grating the planning application with other systems. Finally,
through the Incoming Goal Section the modeler defines the
goal, that is, the task at the highest level to be decomposed
as well as its parameters and start/end temporal constraints.
These definitions are also stored as XML files that are given
as inputs to the planner in order to carry out a planning pro-
cess. Finally, the resulting plan is also stored as an XML file
which can be used to integrate this output with other external
systems.

Execution and debugging environment

Once the domain knowledge as well as the information re-
quired for the planner has been defined, the next step con-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

By Boeatpoinn 3
° B
© Bresiys

F et

Figure 7: A snapshot of the debugging environment.

sists on using the execution and debugging environment in
order to validate the knowledge. The execution and de-
bugging environment provides the necessary functionalities
to perform a validation-by-inspection process. On the one
hand, it provides a trace facility that allows to execute step
by step the planning process guided by the knowledge de-
scribed in the EKMN notation (see Figure 7. The trace win-
dow allows to visualize and analyze through a expandable
decision tree the decisions performed by the planner dur-
ing the planning process. In addition, the tool also supports
to define breakpoints associated either to compound tasks
(goals), methods or primitive tasks, thus allowing to inter-
rupt the knowledge-based reasoning process at any point de-
fined by the modeler. The trace tree informs about the se-
lected HTN methods as well as the discarded options during
a given problem solving episode. In addition, this environ-
ment also allows to show the intermediates states produced
by the planner. Moreover, it provides powerful tools for plan
analysis and validation. Firstly, the plan obtained can be vi-
sualized either as a sheet or as a gantt diagram. The gantt di-
agram visualization also allows to intuitively analyze order
dependencies between actions. In addition, there is a section
to show several statistics about the resulting plan (resource
usage, actions duration, etc.).

Deployment environment

The deployment environment allows to obtain a software
component with the functionality defined in the previous
steps and which will be able to be executed as a standalone
application. The deployment process starts when the plan-
ning knowledge has been acquired and represented, when
the data models necessary to integrate external information
have been defined and when the knowledge has been vali-
dated. The deployment environment allows to deploy a plan-

132

ning project either as a local application (a jar file that can
be accessed through an API) or as a web service (allowing to
access to the planning application through remote procedure
calls). In both cases, an API (application programming in-
terface) is automatically provided. This API allows, among
other operations, to perform calls to the planner and to ob-
tain plans. Concretely, the planning component developed
will return a plan from a given goal, specified as an XML file
and a given set of data specified as an XML file accomplish-
ing the data schema defined in the integration environment.
The plan representation is based on an internal model that
can also be known through the API. Therefore, this opens
the way to integrate (by third party developers) the plans
obtained with external systems that require as input the so-
Iutions offered by the planner.

Related work

Regarding other Knowledge Engineering Tools, GIPOII
(McCluskey, Liu, and Simpson 2003) and itSIMPLE3.0 (Va-
quero et al. 2009) are pursuing similar purposes as the work
here presented. On the one hand, GIPOII is mainly aimed at
supporting an object-centered Knowledge Acquisition pro-
cess, focused on how domain objects change their proper-
ties or relations by specifying object transitions. Then these
transitions are grouped to finally form action specifications.
As opposite, the approach here presented supports a task-
centered knowledge engineering process, based on the HTN
paradigm. With respect to isSIMPLE3.0, one of the main
common points is the domain objects model, also based on
UML diagrams. itSIMPLE3.0 is devoted to capture user
data requirements by using class diagrams and state based
diagrams in order to represents the dynamics of actions in
non-hierarchical domains, and then to translate this model
into PDDL. Our approach, on the contrary, maintains the
object-oriented approach to its last consequences and, so,
the planning language (EKDL) has been designed in order
to adopt the object-oriented paradigm. Perhaps, one of the
stronger points of itSIMPLE3.0 is its capability to perform
domain analysis by translating the UML and PDDL spec-
ification into Petri-Nets, what suposses a great help when
focusing on validating the dynamic aspects of the domain.
However these techniques are not fully applicable to hierar-
chical domains like the one addressed in our approach. On
the other hand, itSIMPLE3.0 does not deal with temporal
constraints, nor faces the representation of hierarchical plan-
ning knowledge.

Another work somehow related is (Boddy and Bonasso
2010) where authors describe a knowledge engineering pro-
cess that includes the representation of operating procedures
in NASA’s PRL (Procedure Representation Language)(Ko-
rtenkamp et al. 2008), and then the (manual) translation into
ANML (Action Notation Modeling Language) in order to
be manageable for a planner. Indeed the representation of
operating procedures is supported by a different tool (Ko-
rtenkamp et al. 2008), than the one used to represent plan-
ning domains with ANML (Boddy and Bonasso 2010). Our
knowledge representation, based on the graphical HTN no-
tation here presented is indeed intended to represent operat-
ing procedures (as HTN domains) and, moreover, to make

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

these protocols directly interpretable by a planner, thus of-
fering a more integrated approach than the one described by
Boddy et al.

Conclusions

In this work we have presented an extended Graphical
Knowledge Representation for HTN domains with three
main features: (1) it allows to model domain objects fol-
lowing an object-centered approach based on UML visual
diagrams, overcoming several weaknesses of PDDL, mainly
related with expressiveness and user-friendliness issues, spe-
cially the most relevant one is that this planning domain ob-
jects representation is closer to the modeling practices of IT
engineers; (2) this Context Model is also directly embed-
ded into the planning language and, in order to manage this
object-centered model, EKDL (an object-oriented redefini-
tion of basic PDDL constructs) has been described; (3) the
most important aspect of this knowledge representation is
EKMN, a graphical notation based on standard BPM model-
ing notations, which is aimed at visually and intuitively rep-
resenting HTN domains as hierarchical and expandable di-
agrams based on compound tasks (goals)/methods/primitive
tasks and the relationships between them. This graphical
knowledge representation is intended to be understandable
by both, IT engineers and domain experts. On the other
hand, the knowledge representation is the basis on which
TActive Knowledge Studio has been built. It is a develop-
ment suite intended to support a knowledge engineering pro-
cess that bridges the gap between the conceptualization of a
planning domain and the final deployment of a planning ap-
plication. The tool may also be seen as a workbench that can
be used for academic and research purposes, including inter-
esting features like a fully integrated representation of prob-
lem and domain knowledge and a new graphical and intu-
itive notation for easily representing HTN domains. IActive
Knowledge Studio, also provides tools for data integration
with external data sources, plan statistics and visualization
methods for plan validation. But its most distinguishing fea-
tures is that it has been designed to be used by IT engineers
when developing commercial planning applications. Indeed,
we have achieved to significatively increase the number of
users of AIP&S technology through this development suite,
since it is a commercial product that is being used in sev-
eral industrial projects developed in collaboration with the
partners of [Active Intelligent Solutions.

References

Boddy, M., and Bonasso, R. 2010. Planning for human
execution of procedures using ANML. In Scheduling and
Planning Applications Workshop (SPARK), ICAPS.
Booch, G.; Rumbaugh, J.; and Jacobson, I. 1999. The
unified modeling language user guide. Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA, USA.
Castillo, L.; Fdez-Olivares, J.; Garcia-Pérez, O.; and Palao,
F. 2006. Efficiently handling temporal knowledge in an
HTN planner. In Proceeding of ICAPS06, 63—72.

Castillo, L.; Armengol, E.; Onaindia, E.; Sebastid, L.;
Gonzélez-Boticario, J.; Rodriguez, A.; Ferndndez, S.;

133

Arias, J.; and Borrajo, D. 2008. samap: An user-oriented
adaptive system for planning tourist visits. Expert Systems
with Applications 34(2):1318-1332.

Castillo, L.; Fdez-Olivares, J.; Gonzalez, Milla, G.; Prior,
D.; Morales, L.; Figueroa, J.; and Pérez-Villar, V. 2010a. A
knowledge engineering methodology for rapid prototyping
of planning applications. In Proceedings of FLAIRS 2010.

Castillo, L.; Morales, L.; Gonzlez-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onainda, E. 2010b. Au-
tomatic generation of temporal planning domains fore-
learning problems. Journal of Scheduling 13:347-362.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010. Validation and verification issues in a timeline-
based planning system. The Knowledge Engineering Re-
view 25(03):299318.

Dayal, U.; Hsu, M.; and Ladin, R. 2001. Business process
coordination: State of the art, trends, and open issues. In
Proceedings of the 27th VLDB Conference.

Edelkamp, S., and Hoffmann, J. 2004. The language
for the 2004 international planning competition. http://1s5-
www.cs.uni-dortmund.de/ edelkamp/ipc-4/pddl.html.

Fdez-Olivares, J.; Castillo, L.; Garcia-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
Experiences in SIADEX. In Proceedings ICAPS06, 11-20.

Fdez-Olivares, J.; Castillo, L.; Czar, J. A.; and Prez, O. G.
2011. Supporting clinical processes and decisions by hier-
archical planning and scheduling. Computational Intelli-
gence 27(1):103122.

Gerevini, A., and Long, D. 2006. Plan constraints and
preferences in PDDL3. ICAPS 2006 7.

Gonzalez-Ferrer, A.; Fdez-Olivares, J.; Sanchez-Garzon,
L; and Castillo, L. 2010. Smart Process Management: au-
tomated generation of adaptive cases based on Intelligent
Planning technologies. In Proceedings of the Business Pro-
cess Management 2010 Demonstration Track.

Kortenkamp, D.; Bonasso, R.; Schreckenghost, D.; Dalal,
K.; Verma, V.; and Wang, L. 2008. A procedure repre-
sentation language for human spaceflight operations. In
Proceedings of i-SAIRAS-08.

McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003.
GIPO II: HTN planning in a tool-supported knowledge en-
gineering environment. In /3th ICAPS.

van Der Aalst, W.; Ter Hofstede, A.; Kiepuszewski, B.;
and Barros, A. 2003. Workflow patterns. Distributed and
parallel databases 14(1):5-51.

van der Aalst, W.; ter Hofstede, A.; and Weske, M. 2003.
Business process management: A survey. Business Process
Management 1019-1019.

Vaquero, T.; Silva, J.; Ferreira, M.; Tonidandel, F.; and
Beck, J. 2009. From requirements and analysis to PDDL
in itSIMPLE3. 0. In ICKEPS’09: Proceedings of the 3rd.
International Competition on Knowledge Engineering for
Planning and Scheduling, 54-61,.

White, S. 2004. Introduction to BPMN. IBM Cooperation
2008-029.

