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Abstract. This paper is focused on the representation of oncology
treatment protocols by a temporally extended, Hierarchical Task Net-
works (HTN) based knowledge representation as well as their inter-
pretation by a temporal HTN planning process. The planning process
allows to obtain temporally annotated therapy plans that support de-
cisions of oncologists in the area of paediatrics oncology.

1 MOTIVATION

The development of therapy planning systems [3, 16, 18] aimed
to recommend predefined general courses of action to be applied
to a patient, on the process of treating a disease, is an active re-
search area in the general field of Clinical Decision Support Sys-
tems [1, 7]. Decision support systems for therapy planning incor-
porate, on the one hand, a computerized representation of clini-
cal protocols, also called computer interpretable clinical guidelines
(CIGs)[15]: evidence-based operating procedures that physicians fol-
low as a guide in order to perform clinical tasks as well as making
clinical decisions. Most of the approaches in this field have focused
on the development of languages and frameworks to support model-
ing, editing and representing CIGs [12], all of them based on "Task
Networks Models” [15] (the knowledge represented follows a proce-
dural scheme based on tasks and how they are decomposed into sub-
tasks) where mechanisms to represent workflow patterns[13] that de-
scribe the process logic between subtasks are also included (mainly
sequential, conditional, iterative and synchronization control struc-
tures). On the other hand, some systems [3, 8, 17] incorporate a rea-
soning process that is driven by the procedural knowledge encoded in
protocols and, thus, interprets such representation by supporting clin-
ical decisions made by experts. The great part of these approaches
have centered on temporal constraints reasoning [8, 17] aimed to val-
idate constraints on a previously generated plan [18], but very little
attention has been paid to the automated generation of therapy plans
[4, 16].

Al Planning and Scheduling (P&S)[10] seems to be the most ade-
quate set of techniques to cover this aspect since it deals with the de-
velopment of planning systems capable of interpreting a planning do-
main as a set of actions schemes (that might support the representa-
tion of a clinical protocol) and reasoning about them in order to com-
pose a suitable plan (a sequence of actions) such that its execution
reaches a given goal (to treat a patient) starting from an initial state
(that might represent a patient profile). Concretely, HTN planning

1 Department of Computer Science and A.I, University of Granada,
Spain,email: faro@decsai.ugr.es

2 Pediatrics Oncology Service, Hospital Complex of Jaén, Spain,email:
jcozarolmo @hotmail.com

3 Department of Computer Science and A.I, University of Granada,
Spain,email: L.Castillo@decsai.ugr.es

[6, 14] becomes the most suitable Al P&S technique since it supports
the modeling of planning domains in terms of a compositional hier-
archy of tasks networks representing compound and primitive tasks
by describing how every compound task may be decomposed into
(compound/primitive) sub-tasks and the order that they must follow,
by using different methods, following a reasoning process driven by
the procedural knowledge encoded in its domain. These techniques
have been successfully applied to real problems [9, 5] but the main
criticism received, regarding their application to therapy support in
the medical domain [3], has been centered in their incapacity to rep-
resent and manage crucial temporal aspects needed in this domain, as
well as lack of support for a flexible execution of plans so obtained.
Indeed, this has been true until very recently [6], where HTN tech-
niques have been enhanced with valuable temporal extensions that
allow to cope with a very rich temporal representation, as well as to
obtain plans that could be flexibly executed as they contain temporal
constraints that can be adapted during plan execution.

Therefore, in this paper we will describe an application of tem-
poral HTN planning techniques to both, represent computer inter-
pretable oncology clinical protocols, and automatically generate per-
sonalized therapy plans for oncology patients, following a deliber-
ative hierarchical planning process driven by the procedural knowl-
edge presented in such protocols. The representation language that
supports the description of such knowledge also allows to represent
temporal constraints that are incorporated in the reasoning process in
order to obtain temporally valid plans, suitable to be applied as oncol-
ogy therapy plans. Furthermore, the representation and visualization
of oncology therapy plans has been developed in close collaboration
with oncologists during a proof of concept of this technology in the
Hospital Complex of Jaén (Spain).

2 DOMAIN OF APPLICATION

The work here presented is focused on the paediatrics oncology
area, in which health assistance (and particularly therapy planning)
is based on the application of oncology treatment protocols: a set
of operating procedures and policies to be followed in both stages,
treatment and monitoring of a patient. The main goal of an oncologist
when planning a treatment is to schedule chemotherapy, radiotherapy
and patient evaluation sessions. These sessions should be planned
following different workflow patterns [13], included in the protocol,
that specify tasks at different levels of abstraction, including sequen-
tial, conditional and iterative control flow logic constructs. Further-
more, sessions are organized as cycles of several days of duration
where every cycle includes the administration of several oncology
drugs. Additionally, drugs are administrated following different ad-
ministration rules regarding their dosage and duration. Monitoring
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scheme, including inline tasks.

sessions must also be scheduled. Therefore, in most therapies, ac-
tions concerning drugs administration and patient evaluation have to
be performed according to a set of temporal constraints describing
their relative order, and the delays between them. Additionally, in
many cases, actions must be repeated at regular (i.e. periodic or fol-
lowing a repetition pattern) times. Furthermore, it is also necessary
to carefully take into account the (implicit) temporal constraints de-
rived from both, the hierarchical decomposition of actions into their
components, and from the control-flow of actions in the clinical pro-
tocol [17]. All these rules, tasks and decisions vary depending on a
given patient profile and may change as the treatment is going on.

At present, planning a therapy in the hospital services that concern
to this work (paediatrics oncology services in the public health sys-
tem of Andalusia) is done by hand, that is, thought it is possible to
access patient’s medical information in the EHR, there is no tool to
support decisions made while planning the treatment and monitoring
sessions of patients. The deployment of a decision support system
to assist oncologists in therapy planning tasks is a real need that re-
sults in several benefits: workload of oncologists will be reduced and
more time might be dedicated to personal assistance to patients (im-
proving quality of health delivery), patient safety is augmented by
automating administration rules, and efficiency of health delivery is
increased since resource coordination and usage will be supported by
an automated planning process that incorporates representation and
reasoning about time and resources.

The following sections are devoted to describe how tasks con-
cerning the stages of treatment and monitoring performed by oncol-
ogists, their internal process logic, and the temporal constraints to
be observed during a treatment, can be represented by a temporally
extended, HTN-based knowledge representation scheme. First, the
main features of the HTN P&S system [6, 9], capable of managing
such representation and used as the core technology to support on-
cologists’ decisions on therapy planning will be summarized, then
knowledge representation as well as planning and temporal reason-
ing aspects will be detailed.

3 MAIN FEATURES OF THE PLANNER

The AI Planning and Scheduling system used has been developed
by our research group and, furthermore, has already been applied
to other practical problems [9]. It uses as its planning domain and
problem description language an HTN extension of PDDL (Plan-

ning Domain Description Language), a language used by most of
well known planners that allows to represent non-hierarchical plan-
ning domains as a set of actions with typed parameters, precondi-
tions and effects. Actions’ effects are intended to represent changes
in the world by defining which facts are asserted and retracted by
the execution of actions. Numerical function are also allowed (what
provides support to compute, for example, the duration of a drug-
administration action depending on patient conditions) and, there-
fore, it is also possible to represent either consumable or discrete
numerical resources (for example, the total drug dosage received by
a patient, see :durative-action in Figure 1.(b)). Concretely, primi-
tive tasks of our HTN—PDDL extension, are encoded as PDDL 2.2
level 3 durative actions (allowing to represent temporal information
like duration and start/end temporal constraints, see [6] for details).
In addition, HTN methods used to decompose compound tasks into
sub-tasks include a precondition that must be satisfied by the current
world state in order for the decomposition method to be applicable
by the planner (see (:task Protocol in Figure 1.(a) that de-
scribes two alternative courses of action depending on the group a
patient belongs to). The basic planning process is a state-based for-
ward HTN planning algorithm that, starting from the initial state and
a goal expressed as a high-level task, iteratively decomposes that top-
level task and its sub-tasks by selecting their decomposition meth-
ods according to the current state and following the order constraints
posed in tasks decomposition schemes as a search-control strategy.
This is a forward search process that makes the planner to know
the current state of the world (internally represented as a set of facts
that describe the context of the health-care treatment, including pa-
tient’s current sate) at every step in the planning process. Concretely,
this context-awareness is specially important when preconditions of
both methods and primitive actions are evaluated, what allows to
incorporate significant inferencing and reasoning power as well as
the ability to infer new knowledge by requesting information to ex-
ternal hospital information services. In this sense, the planner uses
two mechanisms addressed to represent as well as support oncolo-
gists decision-rules concerning issues like conserving patient safety
on the administration of drugs. On the one hand, deductive inference
tasks of the form (:inline <p> <c>) may be fired in the con-
text of a decomposition scheme, when the logical expression <p> is
satisfied by the current treatment state, providing additional bind-
ings for variables or asserting/retracting literals into the planner’s
knowledge base, depending on the logical expression described in



<c> . These tasks can be used (as shown for example in Figure 1.(b))
to dynamically compute, depending on the current health-care con-
text, the dosage an duration of drugs administration (from functions
that define either the intensity of dosage or the time-rate, depending
on the body surface of a patient). On the other hand, abductive in-
ference rules of the form (:derived <1it> <expr>) allowto
infer a fact <11t > by evaluating <expr>, that may be either a more
complex logical expression or a Python script that both, binds its in-
puts with variables of <11it>, and returns information that might be
bound to some of the variables of <1it>.For example, a derived
literal might be used to infer whether a patient is in an correct state,
from a complex expression including all the necessary conditions
that enable the administration of a given drug (see derived literal on
Figure 1.(b)). This literal might then be used as a precondition of an
action that represents the task of administrating a drug.

3.1 Representing workflow patterns

Compound tasks, decomposition methods and primitive actions rep-
resented in a planning domain mainly encode the procedures, deci-
sions and actions that oncologists must follow, according to a given
oncology protocol, when they deal with a treatment on a given pa-
tient. More concretely, the knowledge representation language as
well as the planner are also capable of representing and managing
different workflow patterns present in any of such protocols (also
present, on the other hand, in most CIGs formalisms [12, 15]). A
knowledge engineer might then represent control structures that de-
fine both, the execution order (sequence, parallel, split or join), and
the control flow logic of processes (conditional and iterative ones).
For this purpose the planning language allows sub-tasks in a method
to be either sequenced, and then they appear between parentheses
(T1,T2) , or splitted, appearing between braces [T1,T2]. Further-
more, an appropriate combination of these syntactic forms may result
in split, join or split-join control structs. For example, decomposition
methods of the main task Protocol (Figure 1.(a)) describe that
chemotherapy and radiotherapy sessions must be executed in paral-
lel, but they must be synchronized with both a previous (split) and a
later (join) evaluation of the general state of a patient (issues about
temporal information included in the decomposition scheme shown
will be detailed later).

Conditional and iterative control constructs can also be repre-
sented as task decomposition schemes that exploit the main search
control techniques implemented by the planner. Briefly, a general
process p that contains a conditional struct if ¢ then pl else p2 can
be represented as a task decomposition scheme as the one shown
in the task Protocol (Figure 1.(a)), that encodes a conditional
structure based on the stratification group* of a patient. This de-
composition scheme describes that if a condition ¢ (a patient be-
longs to Groupl) holds in the current health-care context, then apply
(:method Groupl) else apply (:method Group2).

On the other hand, a general process p that contains an iterative
struct while ¢ pI may be represented as a task decomposition scheme
as the one shown in the task Chemotherapy (Figure 1.(b)). This
decomposition scheme describes that the primitive task AdminDrug
should be repeatedly performed while the number of repetitions pre-
scribed for the drug VCR (Vincristine) is greater than 0.

4 Patients that receive a given protocol are initially stratified in a group de-
pending on several criteria like the size of their tumour

3.2 Representing and reasoning about temporal
constraints

Furthermore, our HTN domain description language as well as the
planning algorithm support to explicitly represent and manage time
and concurrency at every level of the task hierarchy in both com-
pound and primitive tasks, by allowing to express temporal con-
straints on the start or the end of an activity. Any sub-activity (either
task or action) has two special variables associated to it, ?start
and ?end, that represent its start and end time points, and some con-
straints (basically <=, =, >=) may be posted on them (it is also
possible to post constraints on the duration with the special variable
?duration). In order to do that, any activity may be preceded by
a logical expression that defines a temporal constraint as it is shown
in (:task Protocol (Figure 1.(a)), where the duration of any
chemotherapy session (an sub-tasks included in its decomposition)
is constrained to 360 hours (15 days). The beginning of chemother-
apy (in any of the two alternative courses of action) is constrained to
start not earlier than a given date.

This temporal knowledge can be managed by the planning pro-
cess thanks to the handling of metric time over a Simple Temporal
Network (STN), a structure (X, D, C') such that X is the set of
temporal points, D is the domain of every variable and C is the
set of all the temporal constraints posted (See [6] for more details).
In our case, a plan is deployed over a STN following a simple
schema: every primitive action a; included in a plan owns two
time points start(a;) and end(a;), and every compound task ¢;
decomposed during the planning process generates two time points
start(t;) and end(t;) which bound the time points of its sub-tasks.
These temporal constraints are encoded as absolute constraints with
respect to the absolute start point of a STN. All the time points
share the same domain [0, c0), but it is important to note that the
constraints in C' (described in the planning domain) provide support
to describe flexible temporal constraints, by defining earliest and
latest execution times for start/end points associated to every task
or action. For example, it is possible to encode constraints of the form
((and (>= ?start datel) (<= ?start date2)) (t))
what provides flexibility for the start time of t’s execution, indi-
cating that t should start neither earlier than datel nor later than
date2.

Every time that a compound or primitive task is added to the plan,
all the time points and constraints of the STN are posted, propagated
and validated automatically, observing both the implicit (derived
from qualitative order constraints) and explicit (derived from quanti-
tative constraints described in the domain) temporal constraints de-
fined in any decomposition scheme. This temporal representation, on
the one hand, provides enough expressivity power to truly represent
workflow schemes such as sequence, parallel, split and join, since
during the planning process our planner is capable of inferring quan-
titative temporal constrains from the qualitative ordering constraints
expressed in decomposition methods. On the other hand, time points
of subtasks of any task t with temporal constraints are embraced
by the time points of t, what means that subtasks inherit the con-
straints of their higher-level task. This allows to represent and rea-
son about temporal constraints derived from hierarchical decomposi-
tions, a strong requirement of any system devoted to support therapy
planning (as stated in [17]).

The process and representation so far described present some ad-
vantages with respect to current state of the art techniques devoted
to therapy planning that are worth to note. Firstly, the representation
and reasoning about temporal constraints of our approach allows to



simultaneously validate temporal constraints while generating ther-
apy plans (plan generation and temporal constraint management are
interleaved). Most approaches [3] are only focused in one side of the
problem of therapy planning, since they only pay attention on how to
manage temporal constraints of actions, and neglect aspects related
to how automatically generate sequences of actions with temporal
constraints. Very few [8, 18] face the problem of plan generation,
but it is carried out following a static, non-deliberative process (close
to case-based planning), that is not interleaved with temporal con-
straints reasoning. Instead of this, it is based on a batch process that
firstly generates a complete plan and then analyzes its temporal con-
straints, what affects negatively to the efficiency of the overall pro-
cess, as well as to important reasoning aspects like the loss of back-
tracking points (which are lost when a plan is completely generated)
or the impossibility of using the causal rationale of the plan as a guide
to propagate constraints (as is the case of our planner [6]). These fea-
tures are specially important when plans have to be readapted due to
new circumstances arisen during the treatment stage.

3.3 Representing periodic tasks and temporal
constraints

The HTN planner is also able to record the start and end of any ac-
tivity and to recover these records in order to define complex syn-
chronization schemes between either tasks or actions as relative con-
straints with respect to other activities. This mechanism is used to
encode synchronization of tasks that correspond to repetitive peri-
odic patterns. The first step is the definition, by assertion, of temporal
landmarks that signal the start and the end of either a task or an action
(Figure 2). These landmarks are treated as PDDL fluents (predicates
that represent functions which when evaluated return a value or an
object, in this case, a timepoint of the STN) that are associated to the
time points of the temporal constraints network.

(:durative-action AdminDrug

:parameters (?p - Patient ?ph - Drug ?ds ?dur - number)

:duration (= ?duration ?dur)

:condition (patient_ok ?p)

reffect (and (increase (total_dosis ?p ?ph) 2ds)
(assign (last-admin ?p ?ph) Z?end))

(:task A3
:parameters (?p - Patient ?ph - Drug)
(:method A3
:precondition (...)
:tasks (((= ?star (last-admin ?p ?ph)) (b)))))

Figure 2. Generating and recovering a temporal landmark.

These landmarks are asserted in the planner’s current state, and
later on, they may be recovered and posted as constraints of other
tasks in order to synchronize two or more activities. For example,
Figure 2 shows how to recover a temporal landmark that restricts
action b to start exactly at the same time than action AdminDrug
ends.

In particular, thanks to the expressive power of temporal con-
straints networks and to the mechanism explained so far, a planning
domain designer may explicitly encode in a problem’s domain all of
the different orderings included in Allen’s algebra [2] between two
or more tasks, between two or more actions or between tasks and ac-
tions. Furthermore, temporal landmarks are an excellent resource in
order to express different kinds of periodic patterns to be followed by
temporal constraints, a strong requirement of clinical protocols, par-
ticularly oncology clinical protocols. For example, Figure 3 shows a

refined description of the Chemotherapy task that combines tem-
poral landmarks management and recursive decompositions in order
to specify that the administration of VCR must be always preceded
by a delay of 24 hours, and must be repeated a number of times de-
fined by a function ( (NRep ?p VCR)). Additionally, note that all
the actions of this chemotherapy cycle must be executed in an inter-
val of 15 day (360 hours), since the task Chemotherapy has been
constrained to a duration of 360 hours (15 days), as shown in Figure
1.(b), and the planning process allows subtasks to inherit constraints
of higher-level tasks.

(:task ChemoTherapy
:parameters (?p — Patient)

(:method repeat
:precondition (> (NRep ?p VCR) 0)
:tasks (

(:inline () (decrease (NRep ?p VCR)))

(:inline () (assign ?dosage (* (surface ?p) (intensity ?p))))

(:inline () (assign ?dur (% (surface ?p) (time_rate ?p))))

((and (>= ?start (last-admin ?p VCR)) (= ?duration 24))
(Delay ?p VCR))

(Eand (= ?duration ?dur))

AdminPharmac ?p VCR ?dosage ?dur))))

:method base_case
:precondition (= (NRep ?p VCR) 0)
:tasks ()))

Figure 3. A chemotherapy cycle

4 PROOF OF CONCEPT

Considering the previous description, a proof of concept of this tech-
nology has been carried out in collaboration with expert oncologists
in the Hospital Complex of Jaén (Spain). During this proof, a model
of a concrete oncology clinical trial protocol (the one followed at
present to planning the treatment of Hodgkin’s disease [11] and elab-
orated by the Spanish Society on Pediatrics Oncology) has been en-
coded in the planning language above described, in a knowledge elic-
itation process based on interviews with experts. In the experiments
performed, the planner received the following inputs: a planning do-
main, representing this protocol; an initial state representing some
basic information to describe a patient profile (stratification group,
age, sex, body surface, etc.) as well as other information needed
to apply administration rules about drugs (dosage, frequency, etc.);
and a high-level task representing the goal (apply the protocol to the
patient) with temporal constraints representing the start date of the
treatment plan. The output of the planner are plans with actions tem-
porally annotated with start/end constraints. These plans are repre-
sented in a standard XML representation and may be visualized as
Gantt charts in standard tools devoted to project management (like
MS Project, see Figure 4). Several experiments were realized on dif-
ferent patient profiles, and all the plans were obtained in less than
one second. The domain includes six compound tasks, 13 methods,
6 primitive tasks and the file contains more than 400 lines of code
3. Plans generated represent therapy plans tailored to a given patient
profile, and they allow to represent therapies of more than one year
of duration, including more than 50 actions.

Plans contain actions that represent activities as well as decisions
an oncologist should follow, and they are deployed over a STN used
to represent time intervals that constraint both start and end execu-
tion times of actions. Therefore, at the beginning of the execution

5 Available on http: : //decsai.ugr.es/-faro/Hodgkin/index.html
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Figure 4. A temporally annotated and automatically generated therapy
plan represented as a gantt chart

of a therapy plan, actions, temporal constraints and facts that repre-
sent preconditions and effects of actions are consistent with respect
to the initial conditions expressed in the planning problem. Addi-
tionally, regarding plan execution, a monitoring process has been
developed (applied to a different domain application [9] that, nev-
ertheless, shares this same plans representation) that guarantees the
correct execution of actions, thus avoiding for example the activation
of actions once they have been finished. However, as the plan execu-
tion is progressing, inconsistencies may arise that could affect either
the temporal dimension of the plan or actions’ preconditions. In such
cases a rescheduling process might be carried out devoted to rear-
range temporal constraints, by checking the consistency of the under-
lying plan’s temporal network. In the case that a consistent temporal
network couldn’t be found, an automated replanning process (based
on the same planning process here described) might be triggered in
order to readapt the therapy plan to new circumstances.

5 CONCLUSIONS

In this work we have presented an Al P&S system based on temporal
Hierarchical Task Networks (HTN) planning techniques able to au-
tomatically and dynamically generate personalized therapy plans for
oncology patients, following a deliberative hierarchical planning pro-
cess driven by the procedural knowledge described in oncology pro-
tocols. This approach should not be considered only as a new way to
represent therapies. Regarding other approaches devoted to therapy
plan management (like Asbru [8] or Glare [17]), authors argue that
therapy planning is not supported in these systems by an automated,
deliberative process as the one presented in this work. Instead, the
plan management life-cycle of these approaches requires specialized
human intervention (either knowledge engineers or trained medical
staff) when tailoring a therapy plan from an initial protocol scheme to
a given patient profile. These approaches are mainly focused on the
verification of therapy plans with temporal constraints (apart from
providing very expressive CIGs representation formalisms) and we
have shown that our temporal representation and reasoning is as ex-
pressive as the one used in Asbru or Glare. Furthermore, the process
performed by these approaches to temporal constraints verification
could be used at execution time in order to revise possible tempo-
ral inconsistencies (like a delay in the administration of a drug), but

there are circumstances in which the actions included in a therapy
plan (and not only temporal constraints) must be partial or com-
pletely readapted (for example, when a patient’s stratification group
changes since his/her tumour size does not progress as expected). In
such cases our approach might to use the same planning process to
automatically readapt the therapy plan, leveraging the whole life cy-
cle of the treatment, by shifting more detailed decisions to the plan-
ner and reducing the workload of oncologists, as opposite to current
approaches that always need to readapt from the scratch.

Finally, we cannot neglect the use of standard languages and
frameworks for modeling and editing CIGs. Indeed, our next planned
step is to represent oncology clinical protocols into one of these stan-
dard schemes and to develop a fully automated translation process
from such representation to our planning language, thus allowing to
automatically generate, execute and monitor treatment plans from a
standard representation.
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