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This article is focused on how a general-purpose hierarchical planning representation, based on the hierarchical
task networks (HTN) paradigm, can be used to support the representation of oncology treatment protocols. The
planning algorithm used is a temporally extended HTN planning process capable of interpreting such representation
and generating oncology treatment plans that have been proven to support clinical decisions in the area of pediatrics
oncology.
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1. INTRODUCTION

Hierarchical planning, and more concretely hierarchical task networks (HTN) planning
(Sacerdoti 1975; Tate 1977; Castillo et al. 2006), is a planning paradigm that supports the
modeling of planning domains in terms of a compositional hierarchy of tasks representing
compound and primitive tasks at different levels of abstraction. A hierarchical planning al-
gorithm mainly decomposes compound tasks into (compound/primitive) subtasks, following
the order constraints described in different (and possible alternative) decomposition meth-
ods. It follows a reasoning process driven by the procedural knowledge encoded in the HTN
domain, to determine how to perform a high-level task introduced as problem. This planning
paradigm, from a practical point of view, can not only be seen (as is classified in Ghallab,
Nau, and Traverso 2006) as another way to represent heuristic and control knowledge to
speed up planners, by introducing ad hoc procedural knowledge that guides the search of a
primitive action-based planner. Indeed, the knowledge representation scheme on which HTN
planning is based is a necessary way to face a great part of practical problems (Bresina et al.
2005; Castillo et al. 2007). This work is particularly focused on those in which humans need
either to solve problems or carry out their work or making decisions guided by the know-how
of a given organization described in preexisting operating procedures or protocols. In such
cases, the main criticism received by this planning paradigm (the additional knowledge rep-
resentation effort for an HTN planner to work that can be eluded by other means) becomes
a need. This is the case of the medical domain, and more concretely the field of therapy
planning systems (Spyropoulos 2000; Augusto 2005; Votruba et al. 2006), which are aimed
to recommend predefined general courses of action to be applied to a patient, on the process
of treating a disease.

Therapy planning systems incorporate, on the one hand, a computerized representation
of clinical protocols, also called Computer Interpretable Clinical Guidelines (CIGs) (Peleg
et al. 2003). A clinical protocol describes evidence-based operating procedures that physi-
cians follow as a guide to perform clinical tasks as well as making clinical decisions. Most of
the research and development effort on these systems has been focused on the development
of languages and frameworks to support modeling, editing, and representing CIGs (Leong,
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Kaiser, and Miksch, 2007). Furthermore, all of them are based on Task Networks Models
(Peleg et al. 2003) where mechanisms to represent workflow patterns (Mulyar, van der Aalst,
and Peleg 2007) that describe the process logic between subtasks are also included (mainly
sequential, conditional, iterative, and synchronization control structures). On the other hand,
although less effort has been devoted to develop techniques to operationalize such represen-
tations, some systems (Augusto 2005; Duftschmid, Miksch, and Gall 2002; Terenziani et al.
2006) incorporate a reasoning process that is driven by the procedural knowledge encoded
in protocols and, thus, interprets such representation by supporting clinical decisions made
by experts.

In principle, it seems that HTN planning is an appropriate technique that might support
both the representation of clinical processes and clinical decision making in therapy planning.
An HTN planning process might take advantage of its deliberative and knowledge-driven
reasoning process to automatically generate treatment plans, starting from an accurate rep-
resentation of clinical protocols. However, to authors’ knowledge, there is no application of
HTN techniques to this field. It might be due to the fact that the great part of these approaches
have centered on temporal constraints reasoning (Duftschmid et al. 2002; Terenziani et al.
2006) aimed to validate constraints on a previously generated, hand-tailored treatment plan
(Votruba et al. 2006), but very little attention has been paid to the automated generation of
therapy plans (Spyropoulos 2000; Bradbrook et al. 2005). In addition, an argument used to
reject the application of these techniques (Augusto 2005) is the lack of support for a flexible
execution of plans obtained.

Considering that the management of time is a crucial requirement to be fulfilled by any
application to therapy planning, and trying to demonstrate the usefulness of HTN techniques
in the medical domain, in this article we will describe an application of temporal HTN
planning techniques to both, represent computer interpretable oncology clinical protocols,
and automatically generate personalized therapy plans for oncology patients, following a
deliberative hierarchical planning process driven by the procedural knowledge presented in
such protocols. The representation language that supports the description of such knowledge
also allows to represent temporal constraints that are incorporated into the reasoning process
to obtain temporally valid plans, suitable to be applied and flexibly executed as oncology
treatment plans. Furthermore, the representation and visualization of oncology therapy plans
has been developed in close collaboration with oncologists during a proof of concept of this
technology in the Hospital Complex of Jaén (Spain).

2. DOMAIN OF APPLICATION

The work here presented is focused on the pediatrics oncology area, in which health as-
sistance (and particularly therapy planning) is based on the application of oncology treatment
protocols: a set of evidence-based operating procedures and policies to be followed in both
stages of the care providing life cycle, treatment planning, and treatment monitoring of a pa-
tient. The main goal of an oncologist when planning a treatment is to schedule chemotherapy,
radiotherapy, and patient evaluation sessions. These sessions should be planned following
different workflow patterns (Mulyar et al. 2007), included in the protocol, that specify tasks
at different levels of abstraction, including sequential, conditional, and iterative control flow
logic constructs. Furthermore, sessions are organized as cycles of several days of dura-
tion where every cycle includes the administration of several oncology drugs. Additionally,
drugs are administrated following different administration rules regarding their dosage and
duration. Evaluation and follow-up sessions must also be scheduled. Therefore, in most ther-
apies, actions concerning drugs administration and patient evaluation have to be performed
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according to a set of temporal constraints describing either their relative order or deadline
goals and delays between them. Additionally, in many cases, actions must be repeated at
regular (i.e., periodic or following a repetition pattern) times. Furthermore, it is also neces-
sary to carefully take into account the (implicit) temporal constraints derived from both the
hierarchical decomposition of actions into their components, and from the control flow of
actions in the clinical protocol (Terenziani et al. 2006).

In addition, treatment sessions established by any protocol must be arranged considering
the availability and capacity of human and material resources (this is not a matter of an
oncology protocol but it is necessary to put it in practice). Working shifts of oncologists
must be taken into account when planning evaluation and follow-up sessions as well as
capacity and availability dates for administration beds or hospital test facilities needed to
obtain clinical tests to study the evolution of the patient. All these rules, tasks, and decisions
vary depending on a given patient profile and may change as the treatment is going on.

Atpresent, planning a therapy in the hospital services that concern to this work (pediatrics
oncology services in the public health system of Andalusia) is done by hand, that is, though it
is possible to access patient’s medical information in electronic health records (EHRs), there
is no tool to support decisions made while planning the treatment and monitoring sessions
of patients. The deployment of a decision support system to assist oncologists in therapy
planning tasks is a real need that results in several benefits: workload of oncologists will
be reduced and more time might be dedicated to personal assistance to patients (improving
quality of health delivery), patient safety is augmented by automating administration rules,
and efficiency of health delivery is increased because resource coordination and usage will
be supported by an automated planning process capable of representing and reasoning about
time and resources.

The following sections are devoted to describe how tasks concerning the stages of
treatment and monitoring performed by oncologists, their internal process logic, and the
temporal and resource constraints to be observed during a treatment, can be represented
by a temporally extended, HTN-based knowledge representation scheme. First, the main
features of the HTN P&S system (Castillo et al. 2006; Fdez-Olivares et al. 2006), capable
of managing such representation and used as the core technology to support oncologists’
decisions on therapy planning will be summarized. Then knowledge representation as well
as planning and temporal reasoning aspects will be detailed.

3. MAIN FEATURES OF THE PLANNER

The Al Planning and Scheduling system used has been developed by our research group
(Castillo et al. 2006) and, furthermore, it has already been applied to other practical problems
(Fdez-Olivares et al. 2006). It uses as its planning domain and problem description language
an HTN extension of Planning Domain Description Language (PDDL), a language used by
most of well-known primitive action-based planners that allows to represent nonhierarchical
planning domains as a set of actions with typed parameters, preconditions, and effects. The
effects of actions are intended to represent changes in the world by defining which facts are
asserted and retracted by the execution of actions. Numerical functions are also allowed (what
provides support to compute, e.g., the duration of a drug-administration action depending on
patient conditions) and, therefore, it is also possible to represent discrete numerical resources
(e.g., the total drug dosage received by a patient, see: durative-action in Figure 1(b)).

Concretely, primitive tasks of our HTN—PDDL extension, are encoded as PDDL 2.2
level 3 durative actions (allowing to represent temporal information, such as, duration and
start/end temporal constraints; see Castillo et al. 2006 for details). In addition, HTN methods
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(a) (b)

(:task Protocol
:parameters (?p - Patient ?date - Date) (:derived (patient_ok ?p)
(and (> (leucocites 7p) 2000)

(:method Groupl (> (neutrophils ?p) 500) ))

:precondition (= (group ?p) Groupl)
:tasks ( (:durative-action AdminDrug

(eval_patient 7p) :parameters (7p - Patient ?ph - Drug ?ds 7dur - number)

[((and (= ?duration 360) (>= ?start ?date)) :duration (= 7duration 7dur))
(ChemoTherapy 7p)) :condition (patient_ok ?p)

(RadioTherapy 7p)] :effect (increase (total_dosage ?p 7ph) ?ds))

(eval_patient 7p)))
(:task ChemoTherapy

:parameters (7p - Patient)

~

:method Group2
:precondition (= (group 7p) Group2)
.tasks ( (:method repeat

(eval_patient 7p) :precondition (> (NRep 7p VCR) 0)

[((and (= ?duration 360) (>= ?start ?date)) stasks (

(:inline () (decrease (NRep ?p VCR)))

(:inline () (assign 7dosage (* (surface ?p) (intemnsity ?p))))
(:inline () (assign ?7dur (* (surface ?p) (time_rate ?p))))

(ChemoTherapy ?p))
(RadioTherapy 7p)]
(eval_patient 7p)
[((= 7duration 360) (ChemoTherapy ?7p)) (AdminDrug 7p VCR ?dosage 7dur)
(RadioTherapy ?7p)] (ChemoTherapy ?p)))

(eval_patient 7p))

:method base_case
:precondition (= (NRep 7p VCR) 0)
:tasks ()))

FIGURE 1. HTN-PDDL concepts. (a) A compound task with two decomposition methods. (b) A derived
literal, a primitive task and a task with a recursive decomposition scheme, including inline tasks.

— Set A, the agenda of remaining tasks to be done, to the set of high level tasks speci ed in the goal.
— Set IT = (, the plan.
— Set S, the current state of the problem, to be the set of literals in the initial state.
1. Repeat while A # 0
(a) Extract a task ¢ from A
(b) if ¢ is a primitive action, then
i. If Ssatis es t preconditions then
A. Apply t to the state, S = S + additions(t) — deletions(t)
B. Inserttintheplan, [T = IT + ¢
C. Propagate-Temporal-Constraints(/])
ii. Else FAIL
(c) if tis a compound action, then
i. If there is no more decomposition methods for ¢ then FAIL
ii. Choose one of its decomposition methods of ¢ whose preconditions are true in S and map ¢t into its
set of subtasks t1,ta, ...
iii. Insert t1,t2,... in.A.
2. SUCCESS: the plan is stored in 7.

FIGURE 2. A rough outline of the HTN planning algorithm showing the point at which temporal constraints
are propagated (step 1.(b).i.C).

used to decompose compound tasks into subtasks include a precondition that must be satisfied
by the current world state in order for the decomposition method to be applicable by the
planner (see (:task Protocol ...) inFigure 1(a) that describes two alternative courses
of action depending on the group a patient belongs to).

The basic planning process (shown in Figure 2) receives as input a set of facts that
represent an initial state of the world (that describes the context of the healthcare treatment,
including patient’s current state) as well as a goal, described as a partially ordered set of tasks
that need to be carried out. Then it follows a state-based forward HTN planning algorithm
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that decomposes that top-level set of tasks and its subtasks by selecting their decomposition
methods according to the current state and following the order constraints posed in tasks
decomposition schemes as a search-control strategy. Therefore, it follows a deliberative
reasoning process that explores the space of possible decompositions replacing a given task
by its component activities (that may be either primitive or compound), until the initial set of
tasks is transformed into a set of only primitive actions that make up the plan. A key feature
of'this planning system is that the deliberative planning process is interleaved with a temporal
reasoning process supported by a simple temporal constraints network that underlies the plan
in construction. More detail about the temporal representation and reasoning will be given
later.

The forward search and decomposition process makes the planner to know, at every step
in the planning process, the current context of the healthcare treatment, including patient’s
current state. Concretely, this context awareness is specially important when preconditions
of both primitive actions and methods are evaluated at planning time on the current state
(respectively, steps (b)i and (c)ii in Figure 2), which allows to incorporate significant in-
ferencing and reasoning power as well as the ability to infer new knowledge by requesting
information to external hospital information services. In this sense, the planner uses two
mechanisms addressed to represent oncologists’ decision rules concerning issues, such as,
conserving patient safety on the administration of drugs.

On the one hand, deductive inference tasks of the form (:inline <p><c>) may
be fired in the context of a decomposition scheme, when the logical expression <p> is
satisfied by the current treatment state, providing additional bindings for variables or assert-
ing/retracting literals into the planner’s knowledge base, depending on the logical expression
described in <c>. These tasks can be used (as shown, e.g., in Figure 1(b)) to dynamically
compute, depending on the current healthcare context, the dosage of a duration of drugs
administration (from functions that define either the intensity of dosage or the time rate,
depending on the body surface of a patient). On the other hand, abductive inference rules
of the form (:derived <lit> <expr>) allow to infer a fact <1it> by evaluating
<expr> in the current state , which may be either a more complex logical expression or a
Python script that both binds its inputs with variables of <1it>, and returns information
that might be bound to some of the variables of <1it>. For example, a derived literal might
be used to infer whether a patient is in an correct state, from a complex expression including
all the necessary conditions that enable the administration of a given drug (see derived literal
on Figure 1(b)). This literal might then be used as a precondition of an action that represents
the task of administrating a drug.

3.1. Representing Workflow Patterns

Compound tasks, decomposition methods and primitive actions represented in a plan-
ning domain mainly encode the procedures, decisions and actions that oncologists must
follow, according to a given oncology protocol, when they deal with a treatment on a given
patient. More concretely, the knowledge representation language as well as the planner is
also capable of representing and managing different workflow patterns present in any of such
protocols (also present, on the other hand, in most CIGs formalisms; Peleg et al. 2003; Leong
et al. 2007). A knowledge engineer might then represent control structures that define both
the execution order (sequence, parallel, split, or join) and the control flow logic of processes
(conditional and iterative ones). For this purpose the planning language allows subtasks
in a method to be either sequenced, and then they appear between parentheses (T1,T2),
or splitted, appearing between braces [T1,T2]. Furthermore, an appropriate combination of
these syntactic forms may result in split, join, or split—join control structs. For example,
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decomposition methods of the main task :Protocol: (Figure 1(a)) describe that
chemotherapy and radiotherapy sessions must be executed in parallel, but they must be
synchronized with both a previous (split node) and a later (join node) evaluation of the
general state of a patient (issues about temporal information included in the decomposition
scheme shown will be detailed later).

Conditional and iterative control constructs can also be represented as task decomposition
schemes that exploit the main search-control techniques implemented by the planner. Briefly,
a general process p that contains a conditional struct if ¢ then p1 else p2 can be represented
as a task decomposition scheme as the one shown in the task : Protocol: (Figure 1(a)),
that encodes a conditional structure based on the stratification group! of a patient. This
decomposition scheme describes that if a condition ¢ (a patient belongs to Groupl) holds
in the current healthcare context, then apply ( :method Groupl) else apply ( :method
Group?2).

On the other hand, a general process p that contains an iterative struct while ¢ pI may be
represented as a task decomposition scheme as the one shown in the task : Chemotherapy :
(Figure 1(b)). This decomposition scheme describes that the primitive task : AdminDrug:
should be repeatedly performed while the number of repetitions prescribed for the drug VCR
(Vincristine) is greater than zero.

3.2. Representing and Reasoning about Temporal Constraints

Furthermore, our HTN domain description language as well as the planning algorithm
supports to explicitly represent and manage time and concurrency at every level of the task
hierarchy in both compound and primitive tasks, by allowing to express temporal constraints
on the start or the end of an activity. Any subactivity (either task or action) has two special
variables associated to it, ?start and ?end, that represent its start and end time points,
and some constraints (basically <=, =, >=) may be posted on them (it is also possible
to post constraints on the duration with the special variable ?duration). To do that, any
activity may be preceded by a logical expression that defines a temporal constraint as it
is shown in (:task Protocol (Figure 1(a)), where the duration of any chemotherapy
session (subtasks included in its decomposition) is constrained to 360 hours (15 days). The
beginning of chemotherapy (in any of the two alternative courses of action) is constrained to
start not earlier than a given date.

This temporal knowledge can be managed by the planning process thanks to the handling
of metric time over a simple temporal network (STN), a structure (X, D, C) such that X
is the set of temporal points, D is the domain of every variable and C is the set of all the
temporal constraints posted (see Castillo et al. 2006, for more details). In our case, a plan
is deployed over a STN following a simple schema: every primitive action a; included in
a plan owns two time points start(a;) and end(a;), and every compound task #; decom-
posed during the planning process generates two time points start(¢;) and end(t;), which
bound the time points of its subtasks. These temporal constraints are encoded as absolute
constraints with respect to the absolute start point of a STN. All the time points share the
same domain [0, co), but it is important to note that the constraints in C (described in
the planning domain) provide support to describe flexible temporal constraints, by defining
earliest and latest execution times for start/end points associated to every task or action. For
example, it is possible to encode constraints of the form ( (and (>= ?start datel)

! Patients who receive a given protocol are initially stratified in a group depending on several criteria, such as, the size of
their tumor.
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(:durative-action AdminDrug
:parameters (?p - Patient ?ph - Drug ?ds ?dur - number)
:duration (= ?duration ?7dur)
:condition (patient_ok 7p)
:effect (and (increase (total_dosis ?p 7ph) 7ds))
(assign (last-admin ?p ?ph) 7end))

(:task A3
:parameters (7p - Patient ?ph - Drug)
(:method A3
:precondition (...)
:tasks (((= ?start (last-admin 7p ?ph)) (b)))))

FIGURE 3. Generating and recovering a temporal landmark.

(<= ?start date2)) (t)) what provides flexibility for the start time of t’s
execution, indicating that t should start neither earlier than datel nor later than
date?2.

Every time that a compound or primitive task is added to the plan, all the time points and
constraints of the STN are posted, propagated, and validated automatically, observing both the
implicit (derived from qualitative order constraints) and explicit (derived from quantitative
constraints described in the domain) temporal constraints defined in any decomposition
scheme. This temporal representation, on the one hand, provides enough expressivity power
to truly represent workflow schemes such as sequence, parallel, split, and join because during
the planning process, our planner is capable of inferring quantitative temporal constrains from
the qualitative ordering constraints expressed in decomposition methods. On the other hand,
time points of subtasks of any task t with temporal constraints are embraced by the time
points of t, which means that subtasks inherit the constraints of their higher level task.
This allows to represent and reason about temporal constraints derived from hierarchical
decompositions, a strong requirement of any system devoted to support therapy planning (as
stated in Terenziani et al. 2006).

3.3. Representing Periodic Tasks and Temporal Constraints

The HTN planner is also able to record the start and end of any activity and to recover
these records to define complex synchronization schemes between either tasks or actions
as relative constraints with respect to other activities. This mechanism is used to encode
synchronization of tasks that correspond to repetitive periodic patterns. The first step is the
definition, by assertion, of temporal landmarks that signal the start and the end of either a
task or an action (Figure 3). These landmarks are treated as PDDL fluents (predicates that
represent functions, which when evaluated return a value or an object, in this case, a timepoint
of the STN) that are associated to the time points of the temporal constraints network.

These landmarks are asserted in the planner’s current state, and later on, they may be
recovered and posted as constraints of other tasks to synchronize two or more activities. For
example, Figure 3 shows how to recover a temporal landmark that restricts action b to start
exactly at the same time than action AdminDrug ends.

In particular, thanks to the expressive power of temporal constraints networks and to the
mechanism explained so far, a planning domain designer may explicitly encode in a problem’s
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(:task ChemoTherapy
:parameters (?p - Patient)

(:method repeat
:precondition (> (NRep 7p VCR) 0)
:tasks (
(:inline () (decrease (NRep 7p VCR)))
(:inline () (assign ?dosage (* (surface ?p) (intensity ?p))))
(:inline () (assign ?dur (* (surface ?p) (time_rate 7p))))
((and (>= ?start (last-admin 7p VCR)) (= ?duration 24)) (Delay 7p VCR))
((and (= ?duration 7dur)) (AdminDrug 7p VCR 7dosage ?dur))
(Chemotherapy ?p)))

~

:method base_case
:precondition (= (NRep 7p VCR) 0)
:tasks ()))

FIGURE 4. A chemotherapy cycle.

domain all of the different orderings included in Allen’s algebra (see Castillo et al. 2000,
for details) between two or more tasks, between two or more actions or between tasks and
actions. Furthermore, temporal landmarks are an excellent resource to express different kinds
of periodic patterns to be followed by temporal constraints, a strong requirement of clinical
protocols, particularly oncology clinical protocols. For example, Figure 4 shows a refined
description of the Chemo therapy task that combines temporal landmarks management and
recursive decompositions to specify that the administration of VCR must be always preceded
by a delay of 24 hours, and must be repeated a number of times defined by a function
((NRep ?p VCR)). Additionally, note that all the actions of this chemotherapy cycle must
be executed in an interval of 15 days (360 hours) because the task Chemotherapy has been
constrained to a duration of 360 hours (15 days), as shown in Figure 1(b), and the planning
process allows subtasks to inherit constraints of higher level tasks.

3.4. Representing and Managing Resources

The workflow specified in an oncology treatment protocol does not include issues related
to which human and material resources are involved in the therapy planning process, but it
is necessary to represent and manage them to truly support clinical processes and decisions.
Therefore, capacity and availability dates of consumable, discrete resources may be repre-
sented in the planning domain description language. A generalization of timed initial literals
(Castillo et al. 2006), that allows to represent temporal patterns for exogenous events, is used
to this end.

For example, as shown in Figure 5, the (between ...) clause (specified in the planning
problem) represents periods of 24 hours of availability of an oncologist, repeated every week.
Thus, evaluation sessions that require the presence of a specialist, must be scheduled only
when the oncologist is available. This is modeled as a (at start...) precondition in
the proper primitive action eval-patient. The dates in which the literal is true are
represented as time points and, because this literal may appear several times with different
associated time points, it also represents a choice point and, therefore, a backtracking point
for the satisfaction of the precondition of action eval-patient.
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(between "07/08/2007 00:00:00" and "08/08/2007 00:00:00"
and every 144hrs (available John))

(:durative-action eval-patient

:parameters (7p - Patient ?s - specialist)
:duration (= ?duration 24hrs)

:condition (and (at start (available 7s)) ...)

FIGURE 5. Oncologists’ working shifts and how this information is used as preconditions in evaluation
sessions.
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FIGURE 6. A general schema of Hodgkin’s disease clinical protocol. The representation followed to show
the periodical temporal patterns for chemotherapy cycles (OPPA, OEPA, and COPP) is literally copied from the
protocol specification. OPPA, OEPA and COPP are protocol-internal identifiers used to denote three qualitatively
different cycles of chemotherapy.

It is necessary to note that the search and reasoning process that supports the planning
algorithm of the planner is not intended to obtain an optimal assignment of resource con-
straints, instead of this, the planning and scheduling process obtains the first feasible plan
with a correct arrangement of actions and temporal and resource constraints.

4. PROOF OF CONCEPT

Considering the previous description, a proof of concept of this technology has been
carried out in collaboration with expert oncologists in the Hospital Complex of Jaén (Spain).
During this proof, a model of a concrete oncology clinical treatment protocol (the one
followed at present for planning the treatment of Hodgkin’s disease (Group 2003) and
elaborated by the Spanish Society on Pediatrics Oncology) has been encoded in the planning
language above described, in a knowledge elicitation process based on interviews with
experts.

A general schema of the treatment workflow process, indicated in such clinical protocol,
is outlined in the flow-chart diagram of Figure 6. First, a child must receive two chemotherapy
cycles (of type OPPA or OEPA, depending on the genre) and another two cycles of type COPP.
If a complete remission of the tumor is not achieved by patients of Group then radiotherapy
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sessions must start. If the stratification group (decided by the oncologist) is either Group?2
or Group3 two more COPP cycles must be administrated. In case of a patient of Group3,
additional radiotherapy sessions must be administrated when a complete remission of the
tumor is not detected.

Temporal patterns to administrate every type of chemotherapy cycle are shown below
the flow chart of Figure 6. For example, a cycle of type OPPA takes 15 days, the rules to
administrate a cycle of type OPPA state that the drugs prednisone and procarbazine must
be administrated every day (dosage is also specified), VCR has to be administrated the first,
eighth, and last day, and ADR the first and last day (OEPA and COPP patterns should be
interpreted in a similar way). In addition, start times for every chemotherapy cycle must be
separated at least 28 days, and an evaluation session has to be scheduled previously to the
start of every cycle.

As previously explained, the decision-making process followed by clinicians during the
elaboration of a treatment plan must be guided by the knowledge specified in the clinical treat-
ment protocol that, as shown in this example, embodies knowledge about clinical processes
and about clinical decisions. This decision-making process results in a complete treatment
plan composed by a sequence of temporally annotated clinical actions, with a time horizon
that covers all the treatment life cycles: chemotherapy, evaluation, and radiotherapy sessions.
It is important to remark that the process represented in a treatment protocol might be seen
as a problem-solving strategy aimed to achieve a complete remission of a given tumor: it
establishes multiple ways to refine high-level tasks into lower level ones and the available
options are constrained mainly by clinical data about a patient. These multiple courses of
actions might also be interpreted as alternative refinements that reflect different strategies
and tactics available to achieve a complete remission of a tumor. This problem-solving
strategy clearly fits to the knowledge-driven, deliberative reasoning process followed by the
planning technology described in previous sections. Therefore, workflow patterns included
in the treatment protocol, temporal constraints to be observed between chemotherapy cycles,
periodic patterns to administrate drugs as well as the representation of oncologists’ working
shifts have been encoded as planning domain and problem files. The domain includes 6
compound tasks, 13 methods, 6 primitive tasks and the file contains more than 400 lines of
code.? A discussion about experiments performed and plans obtained is shown in the next
section.

5. EXPERIMENTAL RESULTS

In every experiment performed, the planner received as input a planning domain, repre-
senting the Hodgkin’s disease protocol (in the terms described in the previous section), and
a therapy planning problem in the following terms:

e An initial state representing some basic information to describe a patient profile (strati-
fication group, sex, body surface, etc.).

e Temporal constraints to be considered in chemotherapy cycles as well as in the admin-
istration of drugs (drug dosage, frequency and administration mode).

e Resource constraints, mainly related to availability of resources, taking the form of
working shifts of oncologists.

e A task-goal at the highest level of abstraction that is interpreted by the planner as a
high-level specification of the strategy to be followed to generate a therapy plan. This

2 Available on http:://decsai.ugr.es/~faro/Hodgkin/index.html
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task goal can be annotated with temporal constraints (representing the start date of the
treatment plan) and it is subsequently decomposed by the planner following the strategy
declared in the HTN domain.

Figure 7 shows an example problem file where some basic information about date
format (dd/mm/yy), objects managed by the planner, and initial data for a given patient are
represented. Resource availability constraints are also represented as working shifts of two
oncologists in such a way that each one of them is alternatively available to attend evaluation
sessions during 1 month. In addition to this information represented by a PDDL extension
of timed literals, temporal constraints on chemotherapy cycles and drug-administration rules
are also declared taking into account the following properties:

e Dosage (mmg/cm?) and administration mode: IV for intravenous, IVP for intravenous
perfusion and 03D for oral administration three times at day.

e Frequency of administration: the PDDL function (NRep ?drug ?cycle) represents
the number of times a drug must be administrated in a cycle, that is, the number of
repetitions of an action in a cycle.

e Duration of administration: the literal (rep_dur ?drug ?cycle ?dur) repre-
sents the duration of a single drug-administration action (i.e., a repetition) in a cycle.

e Elapsed time between repetitions: the time between every repetition in a cycle is repre-
sented by the literal (inBetweenAll ?drug ?cycle ?dur). This literal is use-
ful when the elapsed time corresponds to a periodic pattern. It is also possible to encode
ad hoc elapsed durations with the literal (inBetweenEach ?i ?drug ?cycle
?dur) that defines the elapsed duration between the consecutive repetitions i — 1 and
i. This literal has not been used in these experiments because the different chemotherapy
cycles do not require it.

For example, as shown in the problem of Figure 7, the drug VCR in an OPPA cycle
must be administrated three times, each one with a duration of 24 hours (that is, it has to be
scheduled so that it has to be administrated at a given day) and considering an elapsed time
of 6 days (144 hours) between all the administration actions (in other words, VCR must be
administrated the days 1st, 8th, and 15th of the OPPA cycle, as shown previously in Figure
6). This information represented in the problem is managed at planning time as temporal
constraints. In addition, other knowledge related to total cycle duration, cycle’s start and end
dates is declared in the HTN domain as specific temporal constraints of tasks, at different
levels of abstraction, as explained in previous sections.

Considering this problem description, the planning problem consists of finding a se-
quence of temporally annotated clinical actions that fits to the guidelines declared in the
clinical protocol (and represented in the HTN domain), subject to the resource availability
constraints described in this case as working shifts of oncologists, and to the temporal con-
straints declared as temporal patterns for chemotherapy administration. Several experiments
have been performed on six patients, each one considered as a representative of the six
different profiles corresponding to the possible combinations of sex and stratification group:
female (Groupl, Group2, Group3) and male (Groupl, Group2, Group3). Experiments were
aimed to validate both the knowledge represented (Hodgkin’s protocol) and therapy plans
generated. Oncologists played a validation role (based on interviews) in both stages, knowl-
edge elicitation and representation, and plan validation. Plans generated represent therapy
plans tailored to a given patient profile, and they allow to represent therapies of several months
of duration, including tens of temporally annotated actions with start/end constraints. Figure
8 shows, for each patient profile, the total number of actions, the number of chemotherapy
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(define (problem hodgkinl) (:domain hodgkin) (:customization
(= :time-format "%d/%m/%Y")

(= :time-horizon-relative 2500)

(= :time-start "08/11/2007 08:00:00")

(= :time-unit :hours))

(:objects

Job - Patient

Juan Tomas - Specialist

PRD VCR PRC ADR VP16 CFM - Drug
IV 03D IVP - Mode

Groupl Group2 Group3 - Group

M F - Sex

)

(:init

;;Patient profile
(= (body-surface Job) 10)
(= (weight Job) 15.0)
(= (height Job) 80.0)
(sex Job F)
(group Job Group3)
;;Patient current state
(= (leucocites Job) 2500)
(= (neutrophiles Job) 600)
(= (plaquets Job) 110000)

;; Working Shifts

(between "07/11/2007 00:00:00" and "07/12/2007 00:00:00" (available Juan))
(between "07/12/2007 00:00:00" and "07/01/2008 00:00:00" (available Tomas))
(between "07/01/2008 00:00:00" and "07/02/2008 00:00:00" (available Juan))
(between "07/02/2008 00:00:00" and "07/03/2008 00:00:00" (available Tomas))

(start-date Job "08/11/2007 08:00:00")

;;VCR Administration in cycle OPPA
(= (dosage VCR OPPA) 1.5)

(mode VCR IV)

(= (NRep VCR OPPA) 3)

(rep_dur VCR OPPA 24)
(inBetweenAll VCR OPPA 144)

;;PRD Administration in cycle OPPA
(= (dosage PRD OPPA) 60.0)

(mode PRD 03D)

(= (NRep PRD OPPA) 15)

(rep_dur PRD OPPA 24)
(inBetweenAll PRD OPPA 0)

)
(:tasks-goal
:tasks( (and (>= ?start "08/11/2007 08:00:00")) (Hodgkin Job)))

FIGURE 7. A therapy planning problem using an extended PDDL syntax to encode timed literals.
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Sex Group  Actions Cycles Duration Time
Female Groupl 35 4 4 0.26
Female  Group2 51 6 5 0.43
Female Group3 51 6 5 0.44

Male Groupl 35 4 4 0.13
Male Group2 51 6 5 0.44
Male Group3 51 6 5 0.43

FIGURE 8. Number of therapy actions, number of chemotherapy cycles, duration of therapy (in months) and
time performance (in seconds) of therapy plan generation for different patient profiles (on an Intel Core2 Duo
2.40 GHz CPU).

cycles, the total therapy duration (in months), and the generation time (in seconds) of its
corresponding therapy plan.

Figure 9 shows one of these therapy plans (with 51 actions and 6 months of duration)
obtained for a female patient of stratification group Group3. For each action in the plan,
the following information is shown: start and end dates, duration (in hours), task name, and
resources employed. In the case of drug-administration actions, the resource is a drug, and
the plan also informs about its dosage and administration mode. Evaluation sessions have an
oncologist as resource, and it is used depending on his/her working shift. In addition, the plan
shows summary tasks that inform about the start, end, and duration of chemotherapy cycles.
These tasks are generated at planning time and they are included for informative purposes,
helping to structure the final therapy plan.

The protocol also states different types of evaluation sessions that are shown in the ther-
apy plan of Figure 9: a previous evaluation must be scheduled before every chemotherapy
cycle (if no other type of evaluation is scheduled), a response evaluation must be scheduled
after the administration of two chemotherapy cycles of the same type, and a tumor remission
evaluation must be scheduled at the end of the treatment. It is important to note that eval-
uation sessions are scheduled according to both working shifts of oncologists and specific
temporal constraints between chemotherapy cycles (recall that chemotherapy cycles must be
administrated with a separation of 28 days).

An important issue that raised when plans were shown to oncologists during plan valida-
tion is related to the detail of a therapy plan. For example, the administration of drugs with
oral mode might be subdivided into more detailed repetitions (one for each administration
and scheduled at different hours each day). However, this detail was not considered informa-
tive for oncologists. The same happens to the actions that have to be applied continuously
(every day) during a chemotherapy cycle, as the action to administrate either PRD or pro-
carbazine (see Figure 9). In this case, oncologists recommended to show them as a single,
summarized action, instead of a set of repetitions, because it is better suited by third party
visualization tools (as explained below).

These plans are represented in a standard Extensible Markup Language (XML) represen-
tation and may be displayed as Gantt charts in standard tools devoted to project management
(such as, MS Project, see Figure 10). The plan shown in Figure 10 has been obtained after
an automated postprocessing of the output of the planner, to friendly show the tasks of
the plan (left-hand side of the figure) as well as their temporal dimension as a Gantt chart
(right-hand side). The visualization of the tasks in a MS Project display allows to show tasks
in a Work Breakdown Structure including different outline levels (either summary tasks as
OPPA CYCLE or standard tasks as AdminDrug), which may be collapsed or deployed as
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HODGKIN’s ProTocoL SEX FEMALE GROUP Groupr3

Start End Dur (hrs.) Task Resource Mode Dosage (mmg)
07/12/2007 08/12/2007 24 Previous Eval. Tomas

08/12/2007 23/12/2007 360 Summary OPPA

08/12/2007  09/12/2007 24 AdminDrug VCR v 0.866025
15/12/2007 16/12/2007 24 AdminDrug VCR v 0.866025
22/12/2007  23/12/2007 24 AdminDrug VCR v 0.866025
08/12/2007 23/12/2007 360 AdminDrug PRD 03D 34.641014
08/12/2007 23/12/2007 360 AdminDrug PRC 03D 57.735027
08/12/2007  09/12/2007 24 AdminDrug ADR VP 23.094009
22/12/2007 23/12/2007 24 AdminDrug ADR IVP 23.094009
07/01/2008 08/01/2008 24 Previous Eval. Juan

08/01/2008  23/01/2008 360 Summary OPPA

08/01/2008 09/01/2008 24 AdminDrug VCR v 0.866025
15/01/2008  16/01/2008 24 AdminDrug VCR v 0.866025
22/01/2008 23/01/2008 24 AdminDrug VCR v 0.866025
08/01/2008 23/01/2008 360 AdminDrug PRD 03D 34.641014
08/01/2008 23/01/2008 360 AdminDrug PRC 03D 57.735027
08/01/2008 09/01/2008 24 AdminDrug ADR IVP 23.094009
22/01/2008  23/01/2008 24 AdminDrug ADR VP 23.094009
23/01/2008 24/01/2008 24 Response Eval. OPPA Juan

05/02/2008 20/02/2008 360 Summary COPP

05/02/2008  06/02/2008 24 AdminDrug VCR v 0.866025
12/02/2008 13/02/2008 24 AdminDrug VCR v 0.866025
05/02/2008 20/02/2008 360 AdminDrug PRD 03D 23.094009
05/02/2008 20/02/2008 360 AdminDrug PRC 03D 57.735027
05/02/2008 06/02/2008 24 AdminDrug CFM IVP 288.675140
12/02/2008  13/02/2008 24 AdminDrug CFM VP 288.675140
20/02/2008 21/02/2008 24 Previous Eval. Tomas

04/03/2008 19/03/2008 360 Summary COPP

04/03/2008  05/03/2008 24 AdminDrug VCR v 0.866025
11/03/2008 12/03/2008 24 AdminDrug VCR 18% 0.866025
04/03/2008 19/03/2008 360 AdminDrug PRD 03D 23.094009
04/03/2008 19/03/2008 360 AdminDrug PRC 03D 57.735027
04,/03/2008 05/03/2008 24 AdminDrug CFM IVP 288.675140
11/03/2008  12/03/2008 24 AdminDrug CFM VP 288.675140
19/03/2008 20/03/2008 24 Response Eval. COPP Juan

01/04/2008 16/04/2008 360 Summary COPP

01/04/2008  02/04/2008 24 AdminDrug VCR v 0.866025
08/04/2008 09/04/2008 24 AdminDrug VCR v 0.866025
01/04/2008 16/04/2008 360 AdminDrug PRD 03D 23.094009
01/04/2008 16,/04/2008 360 AdminDrug PRC 03D 57.735027
01/04/2008 02/04/2008 24 AdminDrug CFM IVP 288.675140
08/04/2008  09/04/2008 24 AdminDrug CFM IVP 288.675140
16,/04/2008 17/04/2008 24 Previous Eval. Tomas

29/04/2008 14/05/2008 360 Summary COPP

20/04/2008  30/04/2008 24 AdminDrug VCR v 0.866025
06/05/2008 07/05/2008 24 AdminDrug VCR v 0.866025
29/04/2008 14/05/2008 360 AdminDrug PRD 03D 23.094009
29/04/2008 14/05/2008 360 AdminDrug PRC 03D 57.735027
29/04/2008 30/04/2008 24 AdminDrug CFM IVP 288.675140
06/05/2008  07/05/2008 24 AdminDrug CFM IVP 288.675140
14/05/2008 15/05/2008 24 Remission Eval. Juan

FIGURE 9. A therapy plan following the Hodgkin’s protocol.
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FIGURE 10. A temporally annotated and automatically generated therapy plan represented as a Gantt chart.
The plan represents the treatment for a patient of Group1 (male) following the Hodgkin’s disease protocol. Start
and end dates of every action are shown in the left-hand side. Drugs and their dosage are shown in the bars of
the chart.
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shown in the figure. It is worth to note that this structure is managed by the planner from
the knowledge encoded in the domain, taking advantage of the possibility of encode addi-
tional special features in a procedural knowledge representation as the one supported by our
planning language. On the other hand, the Gantt chart visualization offers an outline of how
these tasks are correctly arranged following the periodic rules of every type of chemotherapy
administration.

Contrasted with oncologists, only the generation and visualization in few seconds of a
therapy plan (in this case only chemotherapy sessions are displayed) is considered of great
help because it saves a lot of time in their current decision-making process. The planner takes
less than 1 second to generate a therapy plan, while oncologists take hours to elaborate a
therapy plan by hand because they have to consider too many detailed constraints and tasks.
Furthermore, at present they are using unstructured, personal text-based templates to write
therapy plans, and representing plans in an electronic format as previously shown is also
considered as an important advance. In addition, experiments show that the size of plans
obtained is considerably smaller than the size of plans in traditional planning applications.
For example, in Fdez-Olivares et al. (2006) the same planning technology has been employed
to support the generation of fire fighting plans with hundred of actions. However, the size
of plans here obtained cannot be considered as a drawback or an obstacle to introduce
Al planning technology in this domain. Indeed, the utility of this technology is based on
the capability of shifting detailed and repetitive human decisions to an automated planning
process. As explained in previous sections, this results in a reduction of the workload of
oncologists and, therefore, may lead to improve the quality of health delivery.

This proof of concept has been focused on the validation of the Al planning technology
here presented to support both clinical processes and decisions in the field of (pediatrics)
oncology therapy planning. At present, a Clinical Decision Support System for oncology
therapy planning is being developed in the framework of OncoTheraper, a recently started
R&D project (funded by the Regional Andalusian Government) participated by our research
group together with the pediatrics oncology services (distributed in six different hospitals)
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of the Public Health System of Andalusia and two private companies (IActive Intelligent
Solutions, a spin-off started up from our research group, and AT4Wireless). The operation
of this system is outlined in the following section.

6. OPERATION OF THE SYSTEM

OncoTheraper is intended to be used by oncologists in two decisive steps of the care
providing life cycle, namely, treatment planning and treatment monitoring. During the treat-
ment planning step, an oncologist interacts with the therapy planning system (based on
the techniques described in previous sections), and consults with the system before each
treatment to obtain and validate an initial therapy plan. The main requirement demanded
by oncologists about the output of the planner for this step is that therapy plans obtained
must follow the guidelines of the treatment protocol as well as cover a time horizon such
that all the clinical treatment tasks (chemotherapy, radiotherapy, and evaluation sessions) are
included. As shown in the previous section, the therapy plans obtained by the planner adjust
to this requirement.

The treatment monitoring step starts once an initial therapy plan has been generated and
validated by the oncologist. This step is supported by an execution monitoring system that
has been defined in de la Asuncién et al. (2007) and applied to a different domain application
(Fdez-Olivares et al. 2006) that, nevertheless, shares the same representation of plans. At
present, it is being adapted to the new requirements of the application domain object of
this work, although the main features of this process are also valid for this application. The
monitoring process is designed to interactively support the correct execution of the actions
contained in a therapy plan, and it is aimed to guarantee a safe treatment process. Among
other functionalities, it might alert clinicians about deviations from the initial plan, forcing
oncologists to confirm the beginning of a chemotherapy cycle or avoiding the activation of
actions once they have finished.

The monitor receives as input an XML representation of a therapy plan that contains
actions that represent clinical activities as well as clinical decisions that an oncologist should
follow during the treatment of a patient. These actions are deployed on top of a STN that
supports the flexible representation of time intervals that constraint start and end execution
times of actions (an example plan with fixed time points is shown in Figure 10). At the
beginning of the execution of a therapy plan given as input, its actions, temporal constraints,
and facts representing preconditions and effects of actions are consistent with respect to the
initial conditions of the planning problem. The execution monitoring process is an event-
driven, real-time algorithm that follows the execution of such temporal plans at the highest
level of detail because it keeps track of the time at which every effect of every action is
achieved. Therefore, it is possible to check that every action executes as predicted. As the
plan execution progresses, to support a robust plan execution, the system is capable of
detecting inconsistencies that affect either to the temporal dimension of the plan (a delay in
the administration of a drug) or to the preconditions of actions (a patient does not progress
as expected). The policy applied in such cases is the following:

e In the case of temporal inconsistencies, the execution monitoring process distinguishes
between feasible delays and unfeasible delays. The former ones may also be either local
delays (they only affect to an isolated parallel branch of a therapy plan, and thus, a new
local reschedule may be found only for that branch) or global delays (they might affect
all the remaining actions of the plan, and a whole new reschedule might be needed). In
both cases, the rescheduling process is based on the propagation and validation of the
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temporal constraints of the plan, following an algorithm that is described in (Castillo
et al. 2006).

e Inthe case of unfeasible delays or violation of the precondition of an action no reschedule
is possible, and a new planning/replanning episode, using the above described planning
process, is considered.

e Finally, experts may also detect some perturbation in the execution of a plan and, in this
case, a new cycle of decision making is started.

7. RELATED WORK

The approach here presented should not be considered only as a new different way to
represent therapies. Regarding other approaches devoted to therapy plan management (such
as, Asbru, Duftschmid et al. 2002 or Glare, Terenziani et al. 2006), authors argue that therapy
planning is not supported in these systems by an automated, deliberative process as the one
presented in this work. Instead, the plan management life cycle of these approaches requires
specialized human intervention (either knowledge engineers or trained medical staff) when
tailoring a therapy plan from an initial protocol scheme to a given patient profile. Therefore,
the planning process and representation so far described present some advantages with
respect to current state of the art techniques devoted to therapy planning that are worth to
note.

First, the representation and reasoning about temporal constraints of our approach allows
to simultaneously validate temporal constraints while generating therapy plans (plan gen-
eration, temporal constraint management and reasoning are interleaved). Most approaches
(Augusto 2005) are only focused in one side of the problem of therapy planning because
they only consider how to manage temporal constraints of actions, and neglect aspects re-
lated to how automatically generate sequences of actions with temporal constraints. These
approaches are mainly focused on the verification of therapy plans with temporal constraints
(apart from providing very expressive CIGs representation formalisms) and we have shown
that our temporal representation and reasoning is as expressive as the one used in Asbru or
Glare.

Very few (Duftschmid et al. 2002; Votruba et al. 2006) face the problem of plan gen-
eration, but it is carried out following a static, nondeliberative process (close to case-based
planning), which is not interleaved with temporal constraints reasoning. Instead of this, it is
based on a batch process that firstly generates a complete plan and then analyzes its temporal
constraints, which affects negatively to the efficiency of the overall process, as well as to
important reasoning aspects, such as, the loss of backtracking points (which are lost when a
plan is completely generated) or the impossibility of using the causal rationale of the plan
as a guide to propagate constraints (as is the case of our planner Castillo et al., 2006). These
features are especially important when plans have to be readapted due to new circumstances
arisen during the treatment stage. Furthermore, the process performed by other approaches to
temporal constraints verification could be used at execution time to revise possible temporal
inconsistencies (such as, a delay in the administration of a drug), but there are circumstances
in which the actions included in a therapy plan (and not only temporal constraints) must be
partial or completely readapted (e.g., when a patient’s stratification group changes because
his/her tumor size does not progress as expected). In such cases our approach might use the
same planning process to automatically readapt the therapy plan, leveraging the whole life
cycle of the treatment, by shifting more detailed decisions to the planner and reducing the
workload of oncologists, as opposite to current approaches that always need to readapt from
the scratch.



120 COMPUTATIONAL INTELLIGENCE

Considering the planning language here described (a temporal extension of HTN), it
should be seen as a knowledge representation mechanism to both, represent human expertise,
and use it as a guide to the planning process. Although McDermott’s HTN extension of
PDDL (McDermott 2003) incorporates expansion methods (that could be used to represent
operating procedures), it does not incorporate mechanisms to describe domain heuristics
(such as, e.g., :inline tasks) that are followed by oncologists to perform tasks and make
decisions. Furthermore, our time representation allows to easily encode time constraints
on both compound and primitive tasks, as well as to describe synchronization mechanisms
between them. The time representation used in McDermott (2003) relies on a semantics of
processes and it is based on a sophisticated syntax that is much more complex to encode and
manage than the one of our “light” time representation based on STNs.

Finally, it is important to remark that the HTN domain of this approach does not only
captures procedural knowledge (as already explained the planning language has the capabil-
ity of representing common workflow patterns) but also declarative knowledge: the planning
representation supports the declarative description of alternative courses of actions and dif-
ferent subgoaling strategies (both supported by decomposition schemes) as well as qualitative
and quantitative scheduling constraints (causal and order relationships, deadline goals, or
resource availability constraints) in several knowledge structures (deductive rules, PDDL
actions, HTN tasks, and temporal constraints at different levels of abstraction). These are
different types of domain knowledge that require the integration of different techniques (HTN
planning, forward search, deliberative, and temporal reasoning) in the planning process.

In this sense, the first stages of the treatment planning decision-making process (devoted
to generate an initial, temptative therapy plan to support the initial decision-making process of
oncologists) require a temporal HTN planning process based on deliberative techniques, such
as, the one here shown (similar to other real-world planning systems, such as, O-PLAN (Tate,
Drabble, and Kirby, 1994), or SIPE (Wilkins and desJardins, 2001). These techniques present
a better operation and expressiveness for this purpose than specific procedural reasoning
systems, such as, PRS (Georgeff and Lansky 1987) or PRS-CL (Wilkins and Myers 1995).
These systems are intended to represent only procedural knowledge (concretely collections
of structured actions for use in specific situations) and they are oriented to support a reactive,
event-driven behavior. As these systems have been traditionally used to support design of real-
time, continuously active intelligent systems, they are much more appropriate to support the
execution monitoring of therapy plans instead of the knowledge-based generation of plans.

8. CONCLUSIONS

In this work, we have presented an Al P&S system based on temporal HTN that provides
support for both representing clinical processes and making clinical decisions. The HTN
planning language (a temporal and hierarchical extension of PDDL) and the hierarchical
planning and scheduling process are able to automatically and dynamically generate per-
sonalized therapy plans for oncology patients, following a deliberative hierarchical planning
process driven by the procedural knowledge described in oncology protocols. In addition,
as shown in the experiments, the guidelines provided in such protocols to administrate
drugs are represented in a simple, intensional mode, which together with the deliberative,
temporal-based knowledge-driven process, allows to generate extensional schedules for each
chemotherapy cycle.

From the health assistance point of view, this approach presents some benefits: on the
one hand, oncologists recognize that their workload might be reduced in benefit of the patient
(they spend hours in planning an accurate therapy while our system obtains the same therapy
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plans in few seconds), which allow to improve health delivery quality. On the other hand,
authors argue that patient safety might be augmented because the recommended actions to
administrate drugs are based on an automated planning process. The opinion of oncologists
(when they were interviewed in the plan validation stage) is that the automated validation of
temporal constraints may help to reduce administration errors related with time management,
as well as the management of numerical resources might reduce dosage errors. However, at
present the system is not deployed and we cannot contribute with real data about the impact of
this tool on the error rate in clinical practice. This is a subject of further study. In addition, the
electronic representation and operationalization of clinical oncology protocols (supported by
an appropriate distributed architecture) helps to access the knowledge of the protocols from
any place at any time, thus the representation of human resources in therapy plans may also
help to assign resources to tasks involved in the treatment, improving resource coordination
and reducing communication errors (everybody knows what task to do and when to do it).

Results shown in this work should be considered as the first step in the process of the full
development and deployment of a Clinical Decision Support System for therapy planning
based on oncology treatment protocols. Many aspects in this sense are at present subject
of further development in the framework of OncoTheraper. One of the main challenges is
related to the integration with legacy clinical information systems already existing in the
working environment of oncologists, particularly those related with both how to translate
the information stored in EHRs into the planning representation language, and how to store
the plans obtained by the planner in EHRs following a standard representation for clinical
information. Most hospitals incorporate in their clinical information systems a drug stock
control system that is already being used by oncologists to send drug-administration orders.
Indeed, the opinion of oncologists is that the output of the therapy planning system here
presented might be of great help if it were integrated with the input to such system.

Finally, we cannot neglect the use of knowledge engineering techniques to support the
process of representing oncology protocols in our planning language. The proliferation of
standard languages and frameworks for modeling and editing CIGs (Peleg et al. 2003) is
well known. As explained in the introduction and shown through this article, our planning
language embodies most of the features of such languages. Indeed, our next planned step is
to represent oncology clinical protocols into one of these standard schemes and to develop a
fully automated translation process from such representation to our planning language, thus
allowing to automatically generate, execute, and monitor treatment plans from a standard
representation.
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